NASA’s Resilient Opportunity Rover Starts Martian Mountaineering

Opportunity starts Martian Mountaineering. NASA’s Opportunity rover captured this southward uphill panoramic mosaic on Oct. 21, 2013 (Sol 3463) after beginning to ascend the northwestern slope of "Solander Point" on the western rim of Endeavour Crater - her 1st mountain climbing adventure. The northward-facing slope will tilt the rover's solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy advantage for continuing mobile operations through the upcoming winter. Assembled from Sol 3463 navcam raw images by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer

Opportunity starts Martian Mountaineering
NASA’s Opportunity rover captured this southward uphill panoramic mosaic on Oct. 21, 2013 (Sol 3463) after beginning to ascend the northwestern slope of “Solander Point” on the western rim of Endeavour Crater – her 1st mountain climbing adventure. The northward-facing slope will tilt the rover’s solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy advantage for continuing mobile operations through the upcoming winter. Assembled from Sol 3463 navcam raw images by Marco Di Lorenzo and Ken Kremer.
Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer
Story and imagery updated[/caption]

NASA’s super resilient Opportunity robot has begun a new phase in her life on the Red Planet – Martian Mountaineer!

“This is our first real Martian mountaineering with Opportunity,” said the principal investigator for the rover, Steve Squyres of Cornell University, Ithaca, N.Y.

And it happened right in the middle of the utterly chaotic US government shutdown ! – that seriously harmed some US science endeavors. And at a spot destined to become a science bonanza in the months and years ahead – so long as she stays alive to explore ever more new frontiers.

On Oct. 8, mission controllers on Earth directed the nearly decade old robot to start the ascent of Solander Point – the northern tip of the tallest hill she has encountered after nearly 10 Earth years on Mars.

Opportunity starts scaling Solander Point - her1st mountain climbing goal. See the tilted terrain and rover tracks in this mosaic view from Solander Point peering across the vast expanse of huge Endeavour Crater.  Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment.  This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013).  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com). See the complete panoramic view below
Opportunity starts scaling Solander Point – her1st mountain climbing goal. See the tilted terrain and rover tracks in this mosaic view from Solander Point peering across the vast expanse of huge Endeavour Crater. Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment. This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com). See the complete panoramic view below

The northward-facing slopes at Solander also afford another major advantage. They will tilt the rover’s solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy boost enabling continued mobile operations through the upcoming frigidly harsh winter- her 6th since landing in 2004.

Opportunity will first explore outcrops on the northwestern slopes of Solander Point in search of the chemical ingredients required to sustain life before gradually climbing further uphill to investigate intriguing deposits distributed amongst its stratographic layers.

The rover will initially focus on outcrops located in the lower 20 feet (6 meters) above the surrounding plains on slopes as steep as 15 to 20 degrees.

Opportunity starts scaling Solander Point - her 1st mountain climbing goal. See the tilted terrain and rover tracks in this panoramic view from Solander Point peering across the vast expanse of huge Endeavour Crater.  Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment.  This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013).  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com).
Opportunity starts scaling Solander Point – her 1st mountain climbing goal. See the tilted terrain and rover tracks in this panoramic view from Solander Point peering across the vast expanse of huge Endeavour Crater. Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment. This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com).

At some later time, Opportunity may ascend Solander farther upward, which peaks about 130 feet (40 meters) above the crater plains.

“We expect we will reach some of the oldest rocks we have seen with this rover — a glimpse back into the ancient past of Mars,” says Squyres.

NASA’s powerful Mars Reconnaissance Orbiter (MRO) circling overhead recently succeeded in identifying clay-bearing rocks during new high resolution survey scans of Solander Point!

As I reported previously, the specially collected high resolution observations by the orbiters Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) were collected in August and being analyzed by the science team. They will be used to direct Opportunity to the most productive targets of interest

“CRISM data were collected,” Ray Arvidson told Universe Today. Arvidson is the mission’s deputy principal scientific investigator from Washington University in St. Louis, Mo.

“They show really interesting spectral features in the [Solander Point] rim materials.”

NASA’s Opportunity rover captured this southward uphill view on Oct. 21, 2013 after beginning to ascend the northwestern slope of "Solander Point" on the western rim of Endeavour Crater. The northward-facing slope will tilt the rover's solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy advantage for continuing mobile operations through the upcoming winter.  Credit: NASA/JPL
NASA’s Opportunity rover captured this southward uphill view on Oct. 21, 2013 after beginning to ascend the northwestern slope of “Solander Point” on the western rim of Endeavour Crater. The northward-facing slope will tilt the rover’s solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy advantage for continuing mobile operations through the upcoming winter. Credit: NASA/JPL

The new CRISM survey from Mars orbit yielded mineral maps which vastly improves the spectral resolution – from 18 meters per pixel down to 5 meters per pixel.

This past spring and summer, Opportunity drove several months from the Cape York rim segment to Solander Point.

“At Cape York, we found fantastic things,” Squyres said. “Gypsum veins, clay-rich terrain, the spherules we call newberries. We know there are even larger exposures of clay-rich materials where we’re headed. They might look like what we found at Cape York or they might be completely different.”

The summit of Solander Point.  Opportunity rover captured mosaic on Oct. 21, 2013 (Sol 3463) after beginning to ascend the northwestern slope of "Solander Point" on the western rim of Endeavour Crater - her 1st mountain climbing adventure.  Assembled from Sol 3463 pancam high resolution raw images by Marco Di Lorenzo and Ken Kremer.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer
The summit of Solander Point
Opportunity rover captured mosaic on Oct. 21, 2013 (Sol 3463) after beginning to ascend the northwestern slope of “Solander Point” on the western rim of Endeavour Crater – her 1st mountain climbing adventure. Assembled from Sol 3463 pancam high resolution raw images by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer

Clay minerals, or phyllosilicates, form in neutral water that is more conducive to life.

At the base of Solander, the six wheeled rover discovered a transition zone between a sulfate-rich geological formation and an older formation. Sulfate-rich rocks form in a wet environment that was very acidic and less favorable to life.

Solander Point is located at the western rim of the vast expanse of Endeavour crater – some 22 kilometers (14 miles) in diameter.

Today marks Opportunity’s 3466th Sol or Martian Day roving Mars – for what was expected to be only a 90 Sol mission.

So far she has snapped over 185,200 amazing images on the first overland expedition across the Red Planet.

Her total odometry stands at over 23.89 miles (38.45 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.

Meanwhile, NASA is in the final stages of processing of MAVEN, the agencies next orbiter.

It is still scheduled to blast off from Cape Canaveral on Nov.18 – see my photos from inside the clean room at the Kennedy Space Center.

MAVEN’s launch was briefly threatened by the government shutdown.

On the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp and recently discovered a patch of pebbles formed by flowing liquid water.

Ken Kremer

Traverse Map for NASA’s Opportunity rover from 2004 to 2013.  This map shows the entire path the rover has driven during nearly 10 years and over 3460 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location ascending her 1st Martian Mountain - Solander Point - at the western rim of Endeavour Crater.  Opportunity discovered clay minerals at Esperance - indicative of a habitable zone and seeks clay minerals now at Solander. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013
This map shows the entire path the rover has driven during nearly 10 years and over 3460 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location ascending her 1st Martian Mountain – Solander Point – at the western rim of Endeavour Crater. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone and seeks clay minerals now at Solander. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer

Incredible Vertical-Landing Grasshopper Rocket Has Retired

The SpaceX Grasshopper during its test flight on March 7, 2013. Credit: SpaceX.

Did you take a moment to look at that August video of the Grasshopper rocket deliberately going sideways and then appearing to hover for a bit before returning to Earth? For more video fodder, there’s also this high-flying test the rocket took in October.

We hope you enjoyed these views, because Grasshopper is being retired. SpaceX now wants to focus its energy and resources on to the larger Falcon 9-R first stage, which should see its first test flight in New Mexico this December.

It sounds like SpaceX would have loved to go further, in a sense. “In some ways we’ve kind of failed on the Grasshopper program because we haven’t pushed it to its limit,” SpaceX president Gwynne Shotwell said at the International Symposium for Personal and Commercial Spaceflight (ISPCS) in New Mexico last week, as reported in the NewSpace Journal. “We haven’t broken it.”

Grasshopper took eight test flights during its flight history, which spanned about a year between September 2012 and October 2013. It was intended to test Vertical Takeoff Vertical Landing technology (VTVL). The strange appearance of a rocket leaving Earth and gently, deliberately touching back down again turned heads — even in the general public.

We have coverage — and videos! — of most of its past test flights here (the dates below are flight dates, not publication dates)

Most rockets are single-use only and are discarded either in orbit or (better yet, for space debris concerns) are put in a path to burn up in Earth’s atmosphere. SpaceX, however, wants its next-generation Falcon 9 rocket to have a reusable first stage to cut down on launch costs. (Grasshopper was about 10 storeys high, while the Falcon 9 will be about 14 storeys tall when carrying a Dragon spacecraft on board.)

The Falcon 9-R during a 10-second test in June 2013. Credit: Elon Musk on Twitter
The Falcon 9-R during a 10-second test in June 2013. Credit: Elon Musk on Twitter

As for the Falcon 9 series, a rocket flight in September delivered its payload (which included the Canadian Cassiope satellite) to space successfully, but faced some technical problems with the upper stage — and the first stage, as the rocket was supposed to be slowed down for splashdown.

As Space News reported, two burns were planned. The first worked, but the second burn took place while the rocket was spinning, which affected the flow of fuel. A picture shown by SpaceX demonstrated the rocket was intact three meters above the ocean, although it did not survive after it hit.

“Between the flights we’ve been doing with Grasshopper and this demonstration that we brought that stage back, we’re really close to full and rapid reuse of stages,” Shotwell said in the report.

What New Horizons Sounds Like (Sort Of) When It Phones Home

New Horizons
Artist's impression of the New Horizons spacecraft. Image Credit: NASA

Now that’s a tune for a space geek’s ears. This is a highly modified sound bite of ranging signals between the Pluto-bound New Horizons spacecraft with NASA’s Deep Space Network (DSN) receiving stations.

What are the changes? The frequency has been altered to something that human ears can hear, explained a scientist in a New Horizons blog post this week:

“The ranging technique is just like seeing how much time it takes to hear the echo of your voice reflected off some object to measure how far away you are,” stated Chris DeBoy, New Horizons telecommunications system lead engineer who is with the Johns Hopkins Applied Physics Laboratory.

The ranging code first emanated from the DSN, which sent it to New Horizons. The spacecraft demodulated (or processed) the signal and sent it back to Earth. The DSN then calculated the delay (in seconds) between when it sent the signal, and when the answer was received.

“The DSN’s ‘voice’ is a million or more times higher in frequency than your voice, travels almost a million times faster than the speed of sound, and the round-trip distance is more than four billion miles,” DeBoy added.

In this case, the signals were sent June 29, 2012 from a DSN station in Goldstone, California. The answer arrived at a fellow DSN station in Canberra, Australia and yielded a round trip time of six hours, 14 minutes and 29 seconds.

Despite its great distance away, New Horizons is still almost two years from its brief encounter with Pluto and its moons in July 2015. Some interesting trivia about the mission: some Plutonian moons were discovered while the spacecraft was en route. Shows how quickly science changes in a few years.

Source: Johns Hopkins Applied Physics Laboratory

Cygnus Commercial Cargo Craft Completes Historic First Flight to Space Station

The Cygnus commercial resupply craft departed the ISS this morning (Oct. 22) to complete its maiden voyage after being released from Canadarm2 by station astronauts. Credit: NASA TV

Commercial space took another major leap forward this morning, Oct 22., when the privately developed Cygnus cargo vehicle undocked from the International Space Station on its historic maiden flight and successfully completed a highly productive month long stay during its demonstration mission – mostly amidst the US government shutdown.

The Cygnus was maneuvered about 10 meters (30 feet) away from the station and held in the steady grip of the stations fully extended robotic arm when astronauts Karen Nyberg and Luca Parmitano unlatched the arm and released the ship into free space at 7:31 a.m. EDT today – signifying an end to joint flight operations.

The next Cygnus resupply vessel is due to blast off in mid-December and is already loaded with new science experiments for microgravity research and assorted gear and provisions.

After the Expedition 37 crew members quickly pulled the arm back to a distance 1.5 meters away from Cygnus, ground controllers issued a planned “abort” command to fire the ships thrusters and safely depart from the massive orbiting lab complex.

Space Station robotic arm releases Cygnus after detachment from the ISS Harmony node. Credit: NASA TV
Space Station robotic arm releases Cygnus after detachment from the ISS Harmony node. Credit: NASA TV

“It’s been a great mission. Nice work today!” radioed Houston Mission Control at NASA’s Johnson Space Center.

The vehicles were flying over the Atlantic Ocean and off the east coast of Argentina as Cygnus left the station some 250 miles (400 km) overhead in low Earth orbit.

The event was carried live on NASA TV and Cygnus was seen moving rapidly away.

Barely five minutes later Cygnus was already 200 meters away, appeared very small in the cameras view and exited the imaginary “Keep Out Sphere” – a strictly designated safety zone around the million pound station.

Cygnus commercial cargo craft rapidly departed the ISS this morning (Oct. 22) after release from the Canadarm2 robotic arm. Station modules visible at bottom. Credit: NASA TV
Cygnus commercial cargo craft rapidly departed the ISS this morning (Oct. 22) after release from the Canadarm2 robotic arm. Station modules visible at bottom. Credit: NASA TV

The Cygnus resupply ship delivered about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the six person Expedition 37 crew.

After the crew unloaded all that cargo, they packed the ship with 2,850 pounds of no longer needed trash.

On Wednesday (Oct. 23), a pair of deorbit burns with target Cygnus for a destructive reentry back into the Earth’s atmosphere at 2:18 p.m. EDT, to plummet harmlessly into the Pacific Ocean.

Cygnus was developed by Orbital Sciences Corp. with seed money from NASA in a public-private partnership between NASA and Orbital Sciences under NASA’s COTS commercial transportation initiative.

SpaceX Corp. was also awarded a COTS contract to develop the Dragon cargo carrier so that NASA would have a dual capability to stock up the station.

COTS was aimed at fostering the development of America’s commercial space industry to deliver critical and essential supplies to the ISS following the retirement of the Space Shuttle program.

“Congratulations to the teams at Orbital Sciences and NASA who worked hard to make this demonstration mission to the International Space Station an overwhelming success,” NASA Administrator Charles Bolden said in a statement.

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer (kenkremer.com)
Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)

“We are delighted to now have two American companies able to resupply the station. U.S. innovation and inspiration have once again shown their great strength in the design and operation of a new generation of vehicles to carry cargo to our laboratory in space. Orbital’s success today is helping make NASA’s future exploration to farther destinations possible.”

America completely lost its capability to send humans and cargo to the ISS when NASA’s space shuttles were forcibly retired in 2011. Orbital Sciences and SpaceX were awarded NASA contracts worth over $3 Billion to restore the unmanned cargo resupply capability over 20 flights totally.

Cygnus was launched to orbit on its inaugural flight on Sept. 18 atop Orbital’s commercial Antares rocket from NASA’s Wallops Flight Facility on the Eastern shore of Virginia.

The initially planned Sept. 22 berthing of the spacecraft at a port on the Earth facing Harmony node was delayed a week to Sept. 29 due to an easily fixed communications glitch. It was no worse for the wear and performed admirably.

“Antares next flight is scheduled for mid December,” according to Frank Culbertson, former astronaut and now Orbital’s executive Vice President responsible for the Antares and Cygnus programs.

Ken Kremer

After launching to orbit atop the Antares rocket on Sept. 18, the first ever Cygnus cargo spacecraft is chasing the ISS and set to dock on Sept 22. Until then you may be able to track it in the night skies. Here is full scale, high fidelity mockup of Cygnus to give a feel for its size being similar to a small room. Credit: Ken Kremer (kenkremer.com)
After launching to orbit atop the Antares rocket on Sept. 18, the first ever Cygnus cargo spacecraft chased the ISS and docked on Sept 29. Here is full scale, high fidelity mockup of Cygnus to give a feel for its size being similar to a small room. Credit: Ken Kremer (kenkremer.com)

Skeleton Crew gets LADEE in Orbit, Checked Out and Fires Revolutionary Laser During Gov’t Shutdown

An artist's concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft seen orbiting near the surface of the moon after successfully entering lunar orbit on Oct. 6, 2013. Credit: NASA Ames / Dana Berry

NASA’s new LADEE spacecraft successfully entered lunar orbit, is operating beautifully and has begun shooting its radical laser communications experiment despite having to accomplish a series of absolutely critical do-or-die orbital insertion engine firings with a “skeleton crew ” – all this amidst the NASA and US government shutdown, NASA Ames Research Center Director Pete Worden told Universe Today in a LADEE mission exclusive.

During the two and a half week long NASA shutdown, engineers had to fire LADEE’s maneuvering thrusters three times over six days – first to brake into elliptical orbit about the Moon and then lower it significantly and safely into a circular commissioning orbit.

“All burns went super well,” Ames Center Director Worden told me exclusivly. And he is extremely proud of the entire team of “dedicated” professional men and women who made it possible during the shutdown.

“It says a lot about our people’s dedication and capability when a skeleton crew can get a new spacecraft into lunar orbit and fully commissioned in the face of a shutdown!” Worden said to Universe Today.

“I’m really happy that everyone’s back.”

After achieving orbit, a pair of additional engine burns reduced LADEE’s altitude and period into its initial commissioning orbit and teams began the month long activation and instrument checkout phase.

“We are at the commissioning orbit of 250 km,” said Worden.

And to top all that off, LADEE’s quartet of science instruments are checked out and the ground – breaking laser communications experiment that will bring about a quantum leap in transmitting space science data has already begun its work!

“All instruments are fully checked out with covers deployed.”

“We’ve begun the Lunar Laser Communications Demonstration (LLCD) tests and its working very well,” Worden explained.

NASA’s LADEE lunar orbiter will firing its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA
NASA’s LADEE lunar orbiter fired its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA

And that’s the whole point of the LADEE mission in the first place.

97% of NASA’s employees were furloughed during the utterly chaotic and wasteful partial shutdown of the US government that lasted from Oct. 1 to Oct. 17 and also temporarily threatened the upcoming launch of NASA’s next mission to Mars – the MAVEN orbiter.

However, orbital mechanics follows the natural laws of the Universe, continues unabated and waits for no one in Washington, D.C.

NASA’s Jupiter-bound Juno orbiter also flew by Earth amidst the DC shutdown showdown on Oct. 9 for a similarly critical do-or-die gravity assisted speed boost and trajectory targeting maneuver.

The stakes were extremely high for NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) mission because the spacecraft was on course for the Moon and absolutely had to ignite its main engine on the Sunday morning of Oct. 6.

There were no second chances. If anything failed, LADEE would simply sail past the Moon with no hope of returning later.

So, mission controllers at NASA Ames commanded LADEE to ignite its main engine and enter lunar orbit on Oct. 6 following the spectacular Sept. 6 night launch from NASA’s Wallops Island spaceport in Virginia.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

The approximately four minute long burn know as Lunar Orbit Insertion burn 1 (LOI-1) began with LADEE’s arrival at the Moon following three and a half long looping orbits of the Earth.

LOI-1 changed the spacecrafts velocity by 329.8 meters/sec so that the couch sized probe could be captured by the Moon’s gravity and be placed into a 24 hour polar elliptical orbit.

The LOI-2 maneuver on Oct. 9 put LADEE into a 4-hour elliptic lunar orbit. The third and final LOI-3 burn occurred on Oct. 12, and put the spacecraft into the 2-hour commissioning orbit (roughly 235 Km x 250 Km), according to a NASA statement.

The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

“LADEE is the first NASA mission with a dedicated laser communications experiment,” said Don Cornwell, mission manager for the Lunar Laser Communications Demonstration (LLCD), NASA’s Goddard Space Flight Center, Greenbelt, Md, during an interview with Universe Today at the LADEE launch.

“With the LLCD experiment, we’ll use laser communications to demonstrate at least six times more data rate from the moon than what we can do with a radio system with half the weight and 25 percent less power,” said Cornwell.

The LADEE satellite in lunar orbit.   The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine.  Credit: NASA
The LADEE satellite in lunar orbit. The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine. Credit: NASA

The LLCD will be operated for about 30 days during the time of the commissioning orbit period.

The purpose of LADEE is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface. In turn this will lead to a better understanding of other planetary bodies in our solar system and beyond.

The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Worden told Universe Today. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

Stay tuned here for continuing LADEE news

Ken Kremer

LADEE_Poster_01

Students: Want To Get An Experiment Into Space? You Know You Want To

The International Space Station. Credit: NASA

Beer brewing in space? That’s what a preteen student will ask astronauts to do on the International Space Station soon. “By combining the four main ingredients (malt barley, hops, yeast, and water) of beer in space, will we be able to produce alcohol?” reads the research proposal from Michal Bodzianowski. If you follow the link, you can see how this also has medical applications on station, as alcohol can disinfect wounds.

Michal was a selectee in last year’s Student Spaceflight Experiments Program, which we’ve written about before. The program now has a new call for proposals.

Michal Bodzianowski with his experiment, which is intended to produce beer in space (if possible.) The experiment has medical applications as alcohol can be used for sterilization. Credit: SSEP
Michal Bodzianowski with his experiment, which is intended to produce beer in space (if possible.) The experiment has medical applications as alcohol can be used for sterilization. Credit: SSEP

“Each participating community will be provided a real microgravity research mini-laboratory capable of supporting a single experiment, and all launch services to fly it to the space station in fall 2014,” a press release stated.

The design competition, the release added, “allows student teams to design and formally propose real experiments vying for their community’s reserved mini-lab on space station. Content resources for teachers and students support foundational instruction on science in microgravity and experimental design.”

Inquiries must be sent by Nov. 20, and participating communities must sign up by Feb. 17, 2014. Final selection will take place in May.

For more information, you can visit the Student Spaceflight Experiments Program website. The program has participation from the National Center for Earth and Space Science Education, the Arthur C. Clarke Institute for Space Education, and NanoRacks.

Below is SSEP’s description of the five categories of participation:

  • Pre-College (the core focus for SSEP) in the U.S., (grades 5-12), with school districts—even individual schools—providing a stunning, real, on-orbit RESEARCH opportunity to their upper elementary, middle, and high school students (Explore the 60 communities that participated in the first six flight opportunities to date)
  • 2-Year Community Colleges in the U.S., (grades 13-14), where the student body is typically from the local community, providing wonderful pathways for community-wide engagement
  • 4-Year Colleges and Universities in the U.S., (grades 13-16), with an emphasis on Minority-Serving Institutions, where the program fosters interdisciplinary collaboration across schools and departments, and an opportunity for formal workforce development for science majors
  • Communities in the U.S. led by Informal Education or Out-of-School Organizations, (e.g., a museum or science center, a home school network, a scout troop), because high caliber STEM education programs must be accessible to organizations that promote effective learning beyond the traditional classroom
  • Communities Internationally: in European Space Agency (ESA) member nations, European Union (EU) member nations, Canada, and Japan, with participation through NCESSE’s Arthur C. Clarke Institute for Space Education. Communities in other nations should explore the potential for their participation by contacting the Institute at http://clarkeinstitute.org

India’s First Mars Mission Set to Blast off Seeking Methane Signature

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). It could liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

India is gearing up for its first ever space undertaking to the Red Planet – dubbed the Mars Orbiter Mission, or MOM – which is the brainchild of the Indian Space Research Organization, or ISRO.

Among other objectives, MOM will conduct a highly valuable search for potential signatures of Martian methane – which could stem from either living or non living sources. The historic Mars bound probe also serves as a forerunner to bolder robotic exploration goals.

If all goes well India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA).

The 1,350 kilogram (2,980 pound) orbiter, also known as ‘Mangalyaan’, is slated to blast off as early as Oct. 28 atop India’s highly reliable Polar Satellite Launch Vehicle (PSLV) from a seaside launch pad in Srihanikota, India.

India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM), is due to liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM), is due to liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

MOM is outfitted with an array of five science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.

ISRO officials are also paying close attention to the local weather to ascertain if remnants from Tropical Cyclone Phaillin or another developing weather system in the South Pacific could impact liftoff plans.

The launch target date will be set following a readiness review on Friday, said ISRO Chairman K. Radhakrishnan according to Indian press reports.

India’s Mars Orbiter Mission (MOM) spacecraft being prepared for a prelaunch test at Satish Dhawan Space Centre SHAR, Srihairkota. Credit: ISRO
India’s Mars Orbiter Mission (MOM) spacecraft being prepared for a prelaunch test at Satish Dhawan Space Centre SHAR, Srihairkota. Credit: ISRO

‘Mangalyaan’ is undergoing final prelaunch test and integration at ISRO’s Satish Dhawan Space Centre SHAR, Srihairkota on the east coast of Andhra Pradesh state following shipment from ISRO’s Bangalore assembly facility on Oct. 3.

ISRO has already assembled the more powerful XL extended version of the four stage PSLV launcher at Srihairkota.

MOM’s launch window extends about three weeks until Nov. 19 – which roughly coincides with the opening of the launch window for NASA’s next mission to Mars, the MAVEN orbiter.

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1.  Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN  was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space.  Credit: Ken Kremer/kenkremer.com
The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1. Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space. Credit: Ken Kremer/kenkremer.com

MAVEN’s on time blastoff from Florida on Nov. 18, had been threatened by the chaos caused by the partial US government shutdown that finally ended this morning (Oct. 17), until the mission was granted an ‘emergency exemption’ due to the critical role it will play in relaying data from NASA’s ongoing pair of surface rovers – Curiosity and Opportunity.

NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

As India’s initial mission to Mars, ISRO says that the mission’s objectives are both technological and scientific to demonstrate the nation’s capability to design an interplanetary mission and carry out fundamental Red Planet research with a suite of indigenously built instruments.

MOM’s science complement comprises includes the tri color Mars Color Camera to image the planet and its two moon, Phobos and Diemos; the Lyman Alpha Photometer to measure the abundance of hydrogen and deuterium and understand the planets water loss process; a Thermal Imaging Spectrometer to map surface composition and mineralogy, the MENCA mass spectrometer to analyze atmospheric composition, and the Methane Sensor for Mars to measure traces of potential atmospheric methane down to the ppm level.

It will be of extremely great interest to compare any methane detection measurements from MOM to those ongoing from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s planned 2016 ExoMars Trace Gas Orbiter.

MOM’s design builds on spacecraft heritage from India’s Chandrayaan 1 lunar mission that investigated the Moon from 2008 to 2009.

The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,000 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars by late November, assuming an Oct. 28 liftoff.

Following a 300 day interplanetary cruise phase, the do or die orbital insertion engine will fire on September 14, 2014 and place MOM into an 377 km x 80,000 km elliptical orbit.

NASA’s MAVEN is also due to arrive in Mars orbit during September 2014.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and perhaps ten months or longer.

Ken Kremer

Topsy-Turvy Aurora Caught On Astronaut’s Camera

"The pic doesn't do the northern lights justice. Covered the whole sky. Truly amazing!" wrote NASA astronaut Mike Hopkins on Twitter Oct. 9.

Isn’t that aurora facing the wrong way? Not if you’re in space!

NASA astronaut Mike Hopkins tweeted this picture from his perch on the International Space Station a few days ago. He sounds jazzed to be on his first mission: “Can’t believe this is really me from the Cupola and that I’ve been in space for almost 3 weeks now!” he wrote on Twitter Oct. 15.

We’d be pretty excited, too! Luca Parmitano (from the European Space Agency) is also on his first trip into space. In between their many experiments, the rookies must relish the opportunity to take pictures of the view. Which image of theirs below is your favorite? Did we miss any notable shots? Let us know in the comments.

"Blue liquid silk folds and unfolds in the #Caribbean." European Space Agency astronaut Luca Parmitano, Oct. 16, 2013. (Twitter)
“Blue liquid silk folds and unfolds in the #Caribbean.” European Space Agency astronaut Luca Parmitano, Oct. 16, 2013. (Twitter)
"Not something you see every day first hand.  With features like this, Dubai stands out from 260 miles up." NASA astronaut Mike Hopkins, Oct. 14, 2013. (Twitter)
“Not something you see every day first hand. With features like this, Dubai stands out from 260 miles up.” NASA astronaut Mike Hopkins, Oct. 14, 2013. (Twitter)
"The sculpted mountains of the Iranian deserts." European Space Agency astronaut Luca Parmitano, Oct. 15, 2013. (Twitter)
“The sculpted mountains of the Iranian deserts.” European Space Agency astronaut Luca Parmitano, Oct. 15, 2013. (Twitter)
"What remains of Hurricane Phailin after it reached land." European Space Agency astronaut Luca Parmitano, Oct. 13, 2013. (Twitter)
“What remains of Hurricane Phailin after it reached land.” European Space Agency astronaut Luca Parmitano, Oct. 13, 2013. (Twitter)

And of course, they’re grinning like crazy up there.

"Impossible not to smile with such a view!" European Space Agency astronaut Luca Parmitano, Oct. 16, 2013.
“Impossible not to smile with such a view!” European Space Agency astronaut Luca Parmitano, Oct. 16, 2013. (Twitter)
"Can't believe this is really me from the Cupola and that I've been in space for almost 3 weeks now!" NASA astronaut Mike Hopkins, Oct. 15, 2013. (Twitter)
“Can’t believe this is really me from the Cupola and that I’ve been in space for almost 3 weeks now!” NASA astronaut Mike Hopkins, Oct. 15, 2013. (Twitter)

NASA Celebrates Return To Work, But Shutdown’s Shadow Could Linger

A message on the NASA 360 Twitter feed the day employees returned to work after a 16-day government shutdown in October 2013.

After 16 days off the job, most employees at NASA returned to work today (Oct. 17). The good news came after a late-night deal by U.S. politicians to reopen government activities until Jan. 15 and raise the debt limit — originally expected to expire today — until Feb. 7. Democrats and Republicans were battling over the implementation of a new health care law; more details on how the deal was reached are available in this New York Times article.

During the shutdown, only mission-essential functions at NASA were completed except at areas such as the Jet Propulsion Laboratory, which are run by contractors. Twitter, Facebook and social media updates went silent. Missions were run on a needs-only basis, and for a while it looked as though the upcoming MAVEN mission to Mars might be delayed (although it got an exception due to its role as a communications relay for NASA’s rovers.)

So you can imagine the happiness on social media when NASA employees returned to work.

nasa_langley

Given the length of the shutdown,  not all work can just start immediately. Experiments have been left unattended for more than two weeks. Equipment needs to be powered back on. Cancelled meetings and travel arrangements need to, as it is possible, be rebooked.

At NASA’s Marshall Space Flight Center, spokesperson Don Amatore asked employees to be mindful of safety precautions, according to All Alabama. He also stated that “liberal leave” is in effect for employees today and on Friday, meaning that employees are able to take time off without requesting it beforehand — as long as their supervisors know.

Several Twitter reports from NASA contractors on Thursday also indicated that they were unsure if they would be coming back to work on that day, or at some point in the near future. The agency, however, was reportedly sending automated telephone updates to employees and contractors advising them to check with their supervisors for information.

The Stratospheric Observatory for Infrared Astronomy, or SOFIA, 747SP basks in the light of a full moon shining over California’s Mojave Desert. NASA photographer Tom Tschida shot this telephoto image on October 22, 2010 NASA Photo / Tom Tschida
The Stratospheric Observatory for Infrared Astronomy, or SOFIA, 747SP basks in the light of a full moon shining over California’s Mojave Desert. Photo / Tom Tschida

The long-term effects of the shutdown are still coming to light. Certain NASA researchers who planned Antarctic work this year may lose their entire field season. Also, some researchers using NASA or government telescopes missed their “window” of telescope time. “SOFIA remains grounded as a testament to stupidity. Europa keeps her secrets,” wrote Mike Brown,  a professor of planetary astronomy at the California Institute of Technology, on Twitter Oct. 13 about NASA’s Stratospheric Observatory for Infrared Astronomy.

Additionally, the S&P ratings agency noted that the U.S. economy lost $24 billion due to the shutdown, which is more than the initial $17.7 billion request for NASA’s budget in fiscal 2014. Given the agency is in the midst of budget negotiations and is worried about the viability of the commercial crew program, among other items, any long-term economic damage could hurt NASA for a while.

NASA and other government agencies also have only three months of relative stability until the government reaches another funding deadline. What do you think will happen next? Let us know in the comments.

To The Moon! Crowdfunded Solar Sail Shoots For Lunar Launch

This Lunarsail concept from the Aerospace Research and Engineering Systems Institute successfully met its crowdfunding goal and is applying to get on a NASA rocket in the next few years. Source: Kickstarter (screenshot)

It’s a tiny satellite with ambitious goals: to zip all the way from the Earth to the Moon using a solar sail. A typical “cubesat” satellite sticks around Earth’s orbit to do a science, but the team behind Lunarsail convinced dozens of crowfunding donors that their concept can go even further.

The team asked for $11,000 on Kickstarter and actually received more than $15,000. The next step is to submit a formal proposal to NASA to hitch a ride on a rocket and get into space. (An announcement of opportunity was on NASA’s website in mid-August, but the link is currently unavailable as the agency’s site is shut down amid the government furlough. The posted deadline was Nov. 26).

“Common sense seems to suggest that cubesats don’t have the power or the huge rocket they would need to reach the Moon. Common sense can be deceptive, though,” the team wrote on their crowdfunding campaign page.

NCube-2 cubesat, a typical configuration for this kind of satellite (although the outer skin is missing.) Credit: ARES Institute
NCube-2 cubesat, a typical configuration for this kind of satellite (although the outer skin is missing.) Credit: ARES Institute

“It doesn’t take a more powerful spacecraft … the satellite doesn’t care what orbit it’s in — it just does its thing. It also doesn’t require a more powerful rocket. All we need is a rocket powerful enough to put the spacecraft into an appropriate orbit around the Earth, and then we can take over and get ourselves to the Moon.”

The Aerospace Research & Engineering Systems (ARES) Institute, which is the entity behind Lunarsail, further plans to involve students in the campaign. It’s asking around to see if there are any interested parties who could “bring mission-related science activities to thousands of students, particularly those in minority and at-risk communities.” If this goes forward, students could participate through experiments, observations and also with mobile apps.

While the team acknowledges it takes time to get a concept on a rocket and into space, they have a goal of having everything “flight-ready” by December 2016. Follow updates on the project at its web page.