Once-active “supervolcanoes” in northern Mars likely spewed ash and dust thousands of miles away, producing powdery deposits noticed by the NASA’s Curiosity and Opportunity rovers closer to the equator, a new study suggests.
The scientists suspect that irregularly shaped craters in Arabia Terra, which is in the northern highlands of Mars, are leftovers of huge volcanoes from eons ago. Until now, those areas weren’t pegged as volcanoes at all.
“Discovering supervolcanic structures fundamentally changes how we view ancient volcanism on Mars,” stated Joseph Michalski, a Mars researcher at the Natural History Museum in London and the Planetary Institute in Tucson, Arizona.
“Many Martian volcanoes are easily recognized from their massive shield-shaped structure, similar to what we see in Hawaii. But these are relatively youthful features on Mars, and we have always wondered where the ancient volcanoes are. It is possible that the most ancient volcanoes were much more explosive and formed structures similar to what we now see in Arabia Terra.”
As some scientists believe that the crust of Mars was thinner than it is now, this would let magma erupt to the surface before it could release gases inside the crust, the team added. The finding also has implications for predicting the ancient atmosphere and looking at habitability.
“If future work shows that supervolcanoes were present more widely on ancient Mars, it would completely change estimates of how the atmosphere formed from volcanic gases, how sediments formed from volcanic ash and how
habitable the surface might have been,” Michalski added.
Be sure to check out the full paper in Nature. Author affiliations include the Planetary Science Institute in Arizona, the London Natural History Museum, and the NASA Goddard Space Flight Center.
The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter is threatened by today’s US Federal Government shutdown. Launch processing work has now ceased! Spacecraft preps had been in full swing when MAVEN was unveiled to the media, including Universe Today, inside the clean room at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through interplanetary space and orbiting Mars.
Credit: Ken Kremer/kenkremer.com[/caption]
KENNEDY SPACE CENTER, FL – The upcoming Nov. 18 blastoff of NASA’s next mission to Mars – the “breathtakingly beautiful” MAVEN orbiter – is threatened by today’s (Oct. 1) shutdown of the US Federal Government. And the team is very “concerned”, although not yet “panicked.”
MAVEN’s on time launch is endangered by the endless political infighting in Washington DC. And the bitter gridlock could cost taxpayers tens of millions of dollars or more on this mission alone!
Why? Because launch preparations at NASA’s Kennedy Space Center (KSC) have ceased today when workers were ordered to stay home, said the missions top scientist in an exclusive to Universe Today.
“MAVEN is shut down right now!” Prof. Bruce Jakosky, MAVEN’s principal Investigator, of the University of Colorado at Boulder, told Universe Today in an exclusive post shutdown update today.
“Which means that civil servants and work at government facilities [including KSC] have been undergoing an orderly shutdown,” Jakosky told me.
The nominal interplanetary launch window for NASA’s $650 Million MAVEN (Mars Atmosphere and Volatile EvolutioN Mission) mission to study the Red Planet’s upper atmosphere only extends about three weeks until Dec. 7.
If MAVEN misses the window of opportunity this year, liftoff atop the Atlas V rocket would have to be postponed until early 2016 because the Earth and Mars only align favorably for launches every 26 months.
Any launch delay could potentially add upwards of tens to hundreds of millions of dollars in unbudgeted costs to maintain the spacecraft and rocket – and that’s money that NASA absolutely does not have in these fiscally austere times.
MAVEN and much of NASA are not considered “essential” – despite having responsibility for hundreds of ongoing mission operations costing tens of billions of dollars that benefit society here on Earth. So about 97% of NASA employees were furloughed today.
What’s happening with the spacecraft right now?
“The hardware is being safed, meaning that it will be put into a known, stable, and safe state,” Jakosky elaborated.
Team members say there are about nine days of margin built into the processing schedule, which still includes fueling the spacecraft.
“We’ll turn back on when told that we can. We have some margin days built into our schedule,” Jakosky told me.
“We’re just inside of 7 weeks to launch, and every day is precious, so we’re certainly as anxious as possible to get back to work as quickly as possible.
And he said the team will do whatever necessary, including overtime, to launch MAVEN to the Red Planet by Dec. 7.
“The team is committed to getting to the launch pad at this opportunity, and is willing to work double shifts and seven days a week if necessary. That plus the existing margin gives us some flexibility. “
“That’s why I’m concerned but not yet panicked at this point.”
But a lengthy delay would by problematical.
“If we’re shut down for a week or more, the situation gets much more serious,” Jakosky stated.
Until today, all of the spacecraft and launch preparations had been in full swing and on target – since it arrived on Aug. 2 after a cross country flight from the Colorado assembly facility of prime contractor Lockheed Martin.
Indeed it was all smiles and thumbs up when I was privileged to personally inspect MAVEN inside the clean room at KSC a few days ago on Friday, Sept 27 during a media photo opportunity day held for fellow journalists.
Until now, “MAVEN was on schedule and under budget” said Jakosky in an interview as we stood a few feet from the nearly fully assembled spacecraft.
See my MAVEN clean room photos herein.
And in an ultra rare viewing opportunity, the solar panels were fully unfurled.
“The solar panels look exactly as they will be when MAVEN is flying in space and around Mars.”
“To be here with MAVEN is breathtaking,” Jakosky told me. “
“Its laid out in a way that was spectacular to see!”
If absolutely necessary it might be possible to extend the launch window a little bit beyond Dec. 7, but its uncertain and would require precise new calculations of fuel margins.
“The nominal 20-day launch period doesn’t take into account the fact that our actual mass is less than the maximum allowable mass,” Jakosky explained.
“The last day we can launch has some uncertainty, because it also requires enough fuel to get into orbit before our mission would begin to be degraded.”
It sure was breathtaking for me and all the media to stand beside America’s next Mission to Mars. And to contemplate it’s never before attempted science purpose.
“MAVENS’s goal is determining the composition of the ancient Martian atmosphere and when it was lost, where did all the water go and how and when was it lost,” said Jakosky.
That’s the key to understanding when and for how long Mars was much more Earth-like compared to today’s desiccated Red Planet.
Following a 10 month interplanetary voyage, MAVEN would fire thrusters and brake into Mars orbit in September 2014, joining NASA’s Red Planet armada comprising Curiosity, Opportunity, Mars Odyssey and Mars Reconnaissance Orbiter.
Lets all hope and pray for a short government shutdown – but the outlook is not promising at this time.
Learn more about MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, LADEE, the Govt shutdown and more at Ken’s upcoming presentations
Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM
Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM
50 million light-years away a quasar resides in the hub of galaxy NGC 4438, an incredibly bright source of light and radiation that’s the result of a supermassive black hole actively feeding on nearby gas and dust (and pretty much anything else that ventures too closely.) Shining with the energy of 1,000 Milky Ways, this quasar — and others like it — are the brightest objects in the visible Universe… so bright, in fact, that they are used as beacons for interplanetary navigation by various exploration spacecraft.
“I must go down to the seas again, to the lonely sea and the sky,
And all I ask is a tall ship and a star to steer her by.”
Deep-space missions require precise navigation, especially when approaching bodies such as Mars, Venus, or comets. It’s often necessary to pinpoint a spacecraft traveling 100 million km from Earth to within just 1 km. To achieve this level of accuracy, experts use quasars – the most luminous objects known in the Universe – as beacons in a technique known as Delta-Differential One-Way Ranging, or delta-DOR.
Delta-DOR uses two antennas in distant locations on Earth (such as Goldstone in California and Canberra in Australia) to simultaneously track a transmitting spacecraft in order to measure the time difference (delay) between signals arriving at the two stations.
Unfortunately the delay can be affected by several sources of error, such as the radio waves traveling through the troposphere, ionosphere, and solar plasma, as well as clock instabilities at the ground stations.
Delta-DOR corrects these errors by tracking a quasar that is located near the spacecraft for calibration — usually within ten degrees. The chosen quasar’s direction is already known extremely well through astronomical measurements, typically to closer than 50 billionths of a degree (one nanoradian, or 0.208533 milliarcsecond). The delay time of the quasar is subtracted from that of the spacecraft’s, providing the delta-DOR measurement and allowing for amazingly high-precision navigation across long distances.
“Quasar locations define a reference system. They enable engineers to improve the precision of the measurements taken by ground stations and improve the accuracy of the direction to the spacecraft to an order of a millionth of a degree.”
– Frank Budnik, ESA flight dynamics expert
So even though the quasar in NGC 4438 is located 50 million light-years from Earth, it can help engineers position a spacecraft located 100 million kilometers away to an accuracy of several hundred meters. Now that’s a star to steer her by!
A forthcoming NASA launch to Mars could be in danger of losing its launch window should a shutdown in the United States federal government that began today (Oct. 1) continue for a while. That’s just one of the ways in which NASA is affected amid a lapse of funding that is affecting all government agencies and an untold number of government contractors.
Around 97% of NASA’s 18,000 employees are off the job. Twitter, Facebook, Google Plus and other social media accounts are going dark. NASA’s website is being pulled offline. NASA Television has also ceased broadcasting.
Beyond the agency’s public face, activities ranging from certain commercial crew payouts, to conference attendance, to scientific work will cease. Awards and scholarship approvals will be delayed.
“NASA will shut down almost entirely,” said President Barack Obama in a speech late Monday (Sept. 30).
In addition to the agency’s public relations activities, NASA is planning to launch the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to Mars in November to examine the Red Planet’s atmosphere. There are all sorts of questions vexing scientists concerning that planet, with one of the most prominent ones being why the atmosphere thinned over the years.
Media reports indicate that if the shutdown is lengthy, MAVEN could miss the launch window and have to try again in 2016.
“A shutdown could delay the pre-launch processing currently under way with a possible impact to the scheduled Nov. 18 launch date,” Dwayne Brown, a NASA senior public affairs officer at NASA, told The Planetary Society in a story published yesterday (Sept. 30). The launch window extends for several weeks beyond that time, however.
The 3% of NASA employees who are deemed essential will work without pay until the situation is resolved. These are some of the things that will continue:
International Space Station monitoring will be maintained, but with the bare minimum of ground crew. (NASA will cease regular updates of the astronauts’ activities during the furlough, although we presume if something urgent happened there would be an update.)
Robotic missions that are already in operation — think the Cassini spacecraft circling Saturn, or the Lunar Atmosphere and Dust Environment Explorer (LADEE) winging its way to the moon — will have small crews making sure that they are functioning properly. No scientific analysis will be conducted, though.
Certain other programs will continue if a shutdown would be detrimental to their performance. Space News reports that the much-delayed James Webb Space Telescope will be among them, as some of its instruments are undergoing cryogenic vacuum testing at the Goddard Space Flight Center.
Update, 1:09 p.m. EDT: Several missions run out of the Jet Propulsion Laboratory and Applied Physics Laboratory are running as usual for at least the next week because these facilities are running under contracted money from NASA and still have funds in the bank. According to the Planetary Society’s Emily Lakdawalla: “At JPL, that includes: Curiosity; Opportunity; Odyssey; Mars Reconnaissance Orbiter; Cassini; Dawn; Juno; Spitzer; the Voyagers; and WISE, among many others. At APL, that includes MESSENGER and New Horizons. It also includes the Deep Space Network.”
Additional Update, 2:09 p.m. EDT: The HiRISE twitter account just replied to inquiries from several space journalists that they will be “open for business” as usual, which is great news since the Mars Reconnaissance Orbiter made an audacious attempt to take images of Comet ISON during the comet’s closest approach to Mars today. We’ll provide any news and updates on images as they become available, but the HiRISE team said getting the images back to Earth and processing them may take a day or two.
HiRISE is still open for business and updates will continue as usual.
Many observers noted that NASA is marking its 55th anniversary today by shutting down its activities. There’s no word yet on when the deadlock in Congress will be resolved. The last two shutdowns in 1995 and 1996 (which began in the middle of the STS-74 shuttle mission to Mir) lasted several weeks.
The Cygnus cargo spacecraft is just a few feet away from the International Space Station’s Canadarm2 during rendezvous and berthing on Sept 29, 2013. Credit: NASA
Updated – See Falcon 9 launch video below[/caption]
Today (Sept. 29) was a doubly historic day for private spaceflight! And a boon to NASA as well!
Early this morning the Orbital Sciences Cygnus commercial cargo ship docked at the International Space Station (ISS) speeding along some 250 miles (400 km) overhead in low Earth orbit.
Barely a few hours later the Next Generation commercial SpaceX Falcon 9 rocket soared to space on a demonstration test flight from the California coast carrying a Canadian satellite to an elliptical earth orbit.
These missions involved the dramatic maiden flights for both Cygnus and the upgraded Falcon 9.
And both were high stakes endeavors, with literally billions of dollars and the future of commercial spaceflight, as well as the ISS, on the line. Their significance cannot be overstated!
Both Cygnus and Falcon 9 were developed with seed money from NASA in a pair of public-private partnerships between NASA and Orbital Sciences and SpaceX under NASA’s COTS commercial transportation initiative aimed at fostering the development of America’s private space industry to deliver critical and essential supplies to the ISS.
The powerful new Falcon 9 will also be used to send cargo to the ISS.
America completely lost its capability to send humans and cargo to the ISS when NASA’s space shuttles were retired in 2011. Orbital Sciences and SpaceX were awarded NASA contracts worth over $3 Billion to restore the unmanned cargo resupply capability over 20 flights totally.
The Cygnus spacecraft put on a spectacular space ballet – and was no worse for the wear after its docking was delayed a week due to an easily fixed communications glitch.
Cygnus is a privately developed resupply vessel built by Orbital Sciences Corp and Thales Alenia Space that is a crucial railroad to orbit for keeping the massive orbital lab complex well stocked with everyday essentials and science experiments that are the purpose of the ISS.
Cygnus was grappled in free drift by Expedition 37 space station astronauts Luca Parmitano and Karen Nyberg at about 7 a.m. EDT Sunday morning.
The pair were working at two robotics work stations from inside the Cupola and Destiny modules. They used the stations 57 foot long Canadarm2 to snare Cygnus at a distance of about 30 feet (10 meters). They gradually motioned the arm closer.
Running a bit ahead of schedule they successfully berthed Cygnus at the earth facing port of the Harmony module by about 8:44 a.m. EDT.
Cygnus was launched to orbit on its inaugural flight on Sept. 18 atop Orbital’s commercial Antares rocket from NASA’s Wallops Flight Facility on the Eastern shore of Virginia.
Hatches to Cygnus will be opened on Monday, Sept. 30 after completing leak checks.
“Today, with the successful berthing of the Orbital Sciences Cygnus cargo module to the ISS, we have expanded America’s capability for reliably transporting cargo to low-Earth orbit, “ said NASA Admisistrator Charles Bolden in a statement.
“It is an historic milestone as this second commercial partner’s demonstration mission reaches the ISS, and I congratulate Orbital Sciences and the NASA team that worked alongside them to make it happen.”
“Orbital joins SpaceX in fulfilling the promise of American innovation to maintain America’s leadership in space. As commercial partners demonstrate their new systems for reaching the Station, we at NASA continue to focus on the technologies to reach an asteroid and Mars,” said Bolden.
Cygnus delivers about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the Expedition 37 crew.
The upgraded SpaceX Falcon 9 blasted off from Space Launch Complex 4 at Vandenberg Air Force Base in California at 9 a.m. PDT (12 p.m. EDT).
Here’s a video of the launch:
It successfully deployed Canada’s 1,060 pound (481 kg) Cascade, Smallsat, and Ionospheric Polar Explorer (CASSIOPE) weather satellite and several additional small satellites.
This powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of the new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines and can therefore boost a much heavier cargo load to the ISS and beyond.
The next generation Falcon 9 is a monster. It’s much taller than a standard Falcon 9 – some 22 stories vs. 13.
It could launch from Cape Canaveral as early as this Fall.
Learn more about Cygnus, Antares, SpaceX, Curiosity, Mars rovers, MAVEN, Orion, LADEE and more at Ken’s upcoming presentations
Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM
Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM
Opportunity starts scaling Solander Point – her 1st mountain climbing goal
See the tilted terrain and rover tracks in this look-back mosaic view from Solander Point peering across the vast expanse of huge Endeavour Crater. Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment. This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com). See the complete panoramic view below[/caption]
NASA’s intrepid Opportunity rover has begun an exciting new phase in her epic journey – the ascent of Solander Point, the first mountain she will ever climb, after roving the Red Planet for nearly a decade. See the rovers tilted look-back view in our Sol 3431 mosaic above.
Furthermore, ground breaking discoveries providing new clues in search of the chemical ingredients required to sustain life are sure to follow as the rover investigates intriguing stratographic deposits distributed amongst Solander’s hills layers.
Why ? Because NASA’s powerful Mars Reconnaissance Orbiter (MRO) circling overhead has also recently succeeded in collecting “really interesting” new high resolution survey scans of Solander Point! Read my prior pre-survey account – here.
So says Ray Arvidson, the mission’s deputy principal scientific investigator, in an exclusive Opportunity news update to Universe Today. The new MRO data are crucial for targeting the rover’s driving in coming months.
After gaining approval from NASA, engineers successfully aimed the CRISM mineral mapping spectrometer aboard MRO at Solander Point and captured reams of new high resolution measurements that will inform the scientists about the mineralogical make up of Solander.
“CRISM data were collected,” Arvidson told Universe Today.
“They show really interesting spectral features in the [Endeavour Crater] rim materials.”
Solander Point is an eroded ridge located along the western rim of huge Endeavour Crater where Opportunity is currently located.
“Opportunity is on the bench at the tip of Solander Point,” Ray Arvidson told Universe Today exclusively. Arvidson is the mission’s deputy principal scientific investigator from Washington University in St. Louis, Mo.
At the bench, the long lived rover has begun scaling Solander in search of science and life giving sun.
“The CRISM data are being discussed by the MER [Mars Exploration Rover] Team this week,” Arvidson told me.
And it will take some time to review and interpret the bountiful new spectral data and decide on a course of action.
“For the CRISM data analysis we will have the MER Team see the results and agree.”
Expect that analysis to take a “couple of weeks” said Arvidson.
The new CRISM survey from Mars orbit will vastly improve the spectral resolution – from 18 meters per pixel down to 5 meters per pixel.
Another important point about ‘Solander Point’ is that it also offers northerly tilted slopes that will maximize the power generation during Opportunity’s upcoming 6th Martian winter.
In order to survive those Antarctic like, ‘bone chilling” winter temperatures on the Red Planet and continue with her epic mission, the engineers must drive the rover so that the solar wings are pointed favorably towards the sun.
And don’t forget that winter’s last six full months – that’s twice as long on Mars as compared to Earth.
The daily solar power output has been declining as Mars southern hemisphere enters late fall.
After traversing several months across the crater floor from the Cape York rim segment to Solander, Opportunity arrived at the foothills of Solander Point.
Solander and Cape York are part of a long chain of eroded segments of the crater wall of Endeavour crater which spans a humongous 14 miles (22 kilometers) wide.
Solander Point may harbor deposits of phyllosilicate clay minerals – which form in neutral pH water – in a thick layer of rock stacks indicative of a past Martian habitable zone.
The science team is looking at the new CRISM measurements, hunting for signatures of phyllosilicate clay minerals and other minerals and features of interest.
“Opportunity is on the bench on the northwest side of the tip of Solander Point,” Arvidson explained.
Since pulling up to Solander, the robot has spent over a month investigating the bench surrounding the mountain to put it the entire alien Martian terrain in context for a better understanding of Mars geologic history over billions of years.
Eons ago, Mars was far warmer and wetter and more hospitable to life.
“The rover is finishing up work on defining the stratigraphy, structure, and composition of the bench materials.”
“We are working our way counterclockwise on the bench to reach the steep slopes associated with the Noachian outcrops that are part of the Endeavour rim,” Arvidson elaborated.
“Opportunity is slightly tipped to the north to catch the sun.”
“Probably this week we will direct the rover to head south along the western boundary between the bench and the rim materials, keeping on northerly tilts,” Arvidson told me.
How does the bench at Solander compare to other areas investigated at Endeavour crater, I asked.
“The Solander Bench looks like the bench we saw around Cape York and around Sutherland Point and Nobbys Head,” replied Arvidson.
The rover recently investigated an outcrop target called ‘Poverty Bush’. She deployed her 3 foot long (1 meter) robotic arm and collected photos with the Microscopic Imager (MI) and collected several days of spectral measurements with the Alpha Particle X-ray Spectrometer (APXS).
Thereafter she resumed driving to the west/northwest around Solander.
“On September 13, Opportunity finally landed on the bed rock of Solander Point,” wrote Larry Crumpler, a science team member from the New Mexico Museum of Natural History & Science, in his latest field report about the MER mission.
“The terrain right here is awesome,” according to Crumpler.
“There are several geologic units that are overlapping here. And Opportunity is sitting on the contact.”
“On the east side of the contact are rocks maybe a billion years older than those on the west side of the contact. This sort of age progression is what geologists look for when trying to understand the past by reading the rocks.”
“Opportunity is allowing us for the first time to do not only fundamental geographic exploration, but it is enabling on the ground geologic study of past climatic history on Mars,” notes Crumpler.
Today marks Opportunity’s 3441st Sol or Martian Day roving Mars – for what was expected to be only a 90 Sol mission.
So far she has snapped over 184,500 amazing images on the first overland expedition across the Red Planet.
Her total odometry stands at over 23.82 miles (38.34 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.
Meanwhile on the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp and just discovered water altered pebbles at the intriguing ‘Darwin’ outcrop.
And NASA is in the final stages of processing of MAVEN, the agencies next orbiter, scheduled to blast off from Cape Canaveral on Nov.18 – see my upcoming up close article.
Learn more about Curiosity, Mars rovers, MAVEN, Orion, Cygnus, Antares, LADEE and more at Ken’s upcoming presentations
Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM
Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM
NASA’s Curiosity rover has discovered a new patch of pebbles formed and rounded eons ago by flowing liquid water on the Red Planet’s surface along the route she is trekking across to reach the base of Mount Sharp – the primary destination of her landmark mission.
Curiosity made the new finding at a sandstone outcrop called ‘Darwin’ during a brief science stopover spot called ‘Waypoint 1’.
Before arriving at Waypoint 1, the question was- “Did life giving water once flow here on the Red Planet?
The answer now is clearly ‘Yes!’ – And it demonstrates the teams wisdom in pausing to inspect ‘Darwin’.
The discovery at Darwin is significant because it significantly broadens the area here that was altered by flowing liquid water.
The presence of water is an essential prerequisite for the formation and evolution of life.
“Curiosity has arrived at Waypoint 1,” project scientist John Grotzinger, of the California Institute of Technology in Pasadena, told Universe Today at the time.
The robot pulled into ‘Waypoint 1’ on Sept. 12 (Sol 392).
“It’s a chance to study outcrops along the way,” Grotzinger told me.
The six wheeled rover is in the initial stages of what is sure to be an epic trek across the floor of her landing site inside the nearly 100 mile wide Gale Crater – that is dominated by humongous Mount Sharp that reaches over 3 miles (5 Kilometers) into the red Martian Sky.
“We examined pebbly sandstone deposited by water flowing over the surface, and veins or fractures in the rock,” said Dawn Sumner of University of California, Davis, a Curiosity science team member with a leadership role in planning the stop, in a NASA statement about Darwin and Waypoint 1.
“We know the veins are younger than the sandstone because they cut through it, but they appear to be filled with grains like the sandstone.”
Waypoint 1 is the first of up to five waypoint stops planned along the roving route that stretches about 5.3 miles (8.6 kilometers) between the “Glenelg” area, where Curiosity worked for more than six months through the first half of 2013, and the currently planned entry point at the base of Mount Sharp.
To date, the robot has now driven nearly 20% of the way towards the base of the giant layered Martian mountain she will eventually scale in search of life’s ingredients.
“Darwin is named after a geologic formation of rocks from Antarctica,” Grotzinger informed Universe Today.
‘Waypoint 1’ was an area of intriguing outcrops that was chosen based on high resolution orbital imagery taken by NASA’s Mars Reconnaissance Orbiter (MRO) circling some 200 miles overhead.
Investigation of the conglomerate rock outcrop dubbed ‘Darwin’ was the top priority of the Waypoint 1 stop.
The finding of a cache of watery mineral veins was a big added science bonus that actually indicates a more complicated story in Mars past – to the delight of the science team.
“We want to understand the history of water in Gale Crater,” Sumner said.
“Did the water flow that deposited the pebbly sandstone at Waypoint 1 occur at about the same time as the water flow at Yellowknife Bay? If the same fluid flow produced the veins here and the veins at Yellowknife Bay, you would expect the veins to have the same composition.’
“We see that the veins are different, so we know the history is complicated. We use these observations to piece together the long-term history.”
The Rover inspected Darwin from two different positions over 4 days, or Martian Sols and conducted ‘contact science’ by deploying the robotic arm and engaging the science instrument camera and spectrometer mounted on the turret at the arms terminus.
The Alpha Particle X-ray Spectrometer (APXS) collected spectral measurements of the elemental chemistry and the Mars Hand Lens Imager is a camera showing the outcrops textures, shapes and colors.
What’s the origin of Darwin’s name?
“Darwin comes from a list of 100 names the team put together to designate rocks in the Mawson Quadrangle – Mawson is the name of a geologist who studied Antarctic geology,” Grotzinger told me.
“We’ll stay just a couple of sols at Waypoint 1 and then we hit the road again,” Grotzinger told me.
And indeed on Sept. 22, the rover departed Darwin and Waypoint 1 on a westward heading to resume the many months long journey to Mount Sharp.
Learn more about Curiosity, Mars rovers, MAVEN, Orion, Cygnus, Antares, LADEE and more at Ken’s upcoming presentations
Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM
Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM
Can’t find asteroid 2010 QW1 in the Minor Planet Database? No, the “Men in Black” didn’t secretly remove this Earth-orbiting asteroid from the listing… but recent top-notch detective work by astronomers did.
The mystery of this object all started back on August 23rd of this year, when the PanSTARRS sky survey based on the summit of Haleakala on the island of Maui in Hawai’i spotted an asteroid that was given the provisional designation of 2013 QW1.
The object was in a wide-ranging orbit around the Earth, leading astronomers to wonder if it was a naturally captured asteroid or perhaps space debris from a previous launch. Either solution to the dilemma would be fascinating. Our large Moon keeps the Earth pretty well swept clear of debris, though a “second Moon,” however small, would be an interesting find. And if 2013 QW1 were to prove artificial, it just might be a piece of history.
The European Space Agency’s NEO Coordination Centre decided to take up the challenge. A call went out to track and observe the 2013 QW1, and a team led by Elisabetta Dotto of INAF-Observatorio di Roma & Maria Barucci & Davide Perna of the Observatoire de Paris managed to get time on the Italian Telescopio Nazaionale Galileo based at La Palma to obtain a spectrum of the object.
“It was a bit of a challenge, because the object was moving fast with respect to a typical NEO,” said Dr. Perna in a recent ESA press release.
The team used an instrument known as DOLORES to make the crucial measurements. DOLORES stands for the Device Optimized for LOw RESolution. The spectrum obtained in the early morning hours of August 25th shows something much brighter than your typical asteroid, but is characteristic of a painted metallic object.
And thus, 2013 QW1 was removed from the ledger of NEO asteroids maintained by the IAU Minor Planet Center (MPEC). And the leading suspect? The third stage booster of a Chinese Long March 3C rocket that launched the Chang’e 2 spacecraft from Xichang, China on October 1st, 2010.
Chang’e-2 entered lunar orbit 8 days after launch, and departed on June 8th of the following year after studying and mapping the Moon. Chang’e-2 then went on to become the first spacecraft to directly reach the L2 Lagrange point 1.5 million kilometres beyond Earth from lunar orbit. The spacecraft also made the first flyby of NEO asteroid 4179 Toutatis on December 13th of last year. The probe is estimated to continue functioning into 2014, and will be used to hone China’s ability to track objects in deep space.
The NORAD tracking identification assigned to the 3rd stage booster that launched Chan’ge-2 is 2010-50B.
This sort of discovery is not without precedent.
On September 3rd, 2002, amateur astronomer Bill Yeung discovered an asteroid tentatively designated J002E3. Subsequent studies revealed that the asteroid had a spectrum consistent with that of titanium oxide paint, a decidedly unasteroid-like coating for a space rock to sport. This was, however, a common veneer in use during the Apollo era, and it is now known that J002E3 is the S-IVB third stage booster that launched the second mission to land men on the Moon on November 14th, 1969. Unlike other boosters, such as the one that launched Apollo 14, the Apollo 12 3rd stage did not impact the Moon as part of seismic experiments. After a brief period as a “pseudo-moon” of the Earth, J002E3 was kicked out into solar orbit in June 2003 and may return to our neighborhood once again in the 2040s.
NASA’s Lunar Reconnaissance Orbiter has documented the lunar crash sites of these historic boosters. It’s of note that the Apollo 10 Lunar Module Snoopy remains discarded out in solar orbit as well, having been used as a dress rehearsal for the historic Apollo 11 landing. Apollo 10 never landed on the Moon. Efforts have been made by UK astronomer Nick Howes to recover it as well.
And there are more relics of the Space Age awaiting discovery. One of the first things we always check in the case of a pass by a newly discovered NEO closer than the Moon to the Earth is its history, to see if it matches up with any launches headed out beyond Earth orbit in the past.
And the upcoming Mars launches of MAVEN and India’s Mars Orbiter Mission in October & November will be the first to depart Earth orbit since 2011. These will give future generations of asteroid hunters new human-made space hardware to ponder.
The B612 Foundation’s asteroid-hunting Sentinel Space Telescope will also “up the game,” scouting for asteroids from a vantage point interior to the Earth’s orbit. Sentinel is slated for launch in 2016 atop a SpaceX Falcon 9 rocket.
And no, the fabled “Black Knight” satellite of UFO conspiracy buffs’ dreams is nowhere to be found.
What other fascinating relics of the Space Age lie are out there in the solar system, waiting to tell their tale?
China’s human spaceflight program may soon be opening the door to foreign astronauts. The Asian nation has so far been forging ahead with a small space station and its own flights, independent of the multinational collaboration taking place with the International Space Station, although it has done work with Russia and France.
Last week, however, a Chinese official said the country is considering bringing foreign astronauts on board its spacecraft and also providing training for them.
“We would like to train astronauts from other countries and organizations that have such a demand, and we would be glad to provide trips to foreign astronauts,” said Yang Liwei, deputy director of China Manned Space Agency, in a report from China Daily.
“We will also welcome foreign astronauts who have received our training to work in our future space station.”
Yang’s remarks came at the United Nations/China Workshop on Human Space Technology. The director also pointed out that European astronauts have visited the Chinese facilities, and vice versa, which could point the way forward to more work between the nations.
China’s most recent spaceflight took place in June. Shenzhou 10 docked with a small space station in orbit (Tiangong-1.) The country is reportedly planning a larger space station in the coming years and possibly, some manned lunar missions.
Meet Abigail Harrison. This teenager’s enthusiasm about space so impressed Luca Parmitano — who just happens to be a European Space Agency astronaut on the space station right now — that the two have a social media collaboration going.
Abby collects questions from readers of her blog (AstronautAbby.com) and sends them up to the station for Parmitano to read and respond to.
Parmitano’s first mission in space, which he calls Volare (“Fly”), has been a busy one. He’s driven a rover, practiced grappling techniques for the Cygnus spacecraft — which was delayed in its docking to Tuesday (now Saturday) — and experienced two spacewalks (one went to plan, and the other was cut short due to a spacesuit leak).
Meanwhile, Abby had a space-y summer of her own. She fundraised thousands of dollars to see Parmitano’s launch in May. Then she went to Space Camp and toured several NASA and international agency centers. We caught up with Abby to find out how things are going — and if this brings her any closer to her dream of going to space herself. Below is a slightly edited e-mail conversation about her adventures.
Universe Today: How’s it going with the partnership?
Abigail Harrison: Working with Luca has been a lot of fun! I have really enjoyed being able to e-mail with him on station and especially the opportunity I had to talk to him while visiting Marshall Space Flight Center in Huntsville, AL at the end of July. The AstronautAbby community has been very active sharing images of the Space Station flying by for my #CatchLuca weekly blog post, and the #AskLuca questions submitted by my community have been great. It’s fun to hear how Luca answers these questions each week.
UT: What are the best things that you have been doing specifically to spread the message of Volare?
AH: I think my #CatchLuca blog series has been a real hit! So many people from around the world have taken photos of the ISS passing overhead and decided to submit them and share with the world. It’s been great! I think this helps to spread the message as it is people on Earth getting excited about the space station and sharing their own pictures. The more sharing that happens, the more aware people get about the mission and the more they learn.
The #AskLuca series has also been very successful. It’s true, anyone can jump on social media and ask a question of Luca or any astronaut and they most likely will answer it, but this series has allowed people who may not be socially savvy to ask questions, as well as people to ask longer questions. The fact that all the answers are published on my blog is also great as people can read it in a published article versus on a social media update.
UT: Tell us more about these NASA tours you’ve been doing lately. What is your goal in doing them?
AH: I have been fortunate to be in the right places at the right time. This summer I was in Houston for a gymnastics camp, and therefore I was able to tour the Johnson Space Center – but not just tour the center, I got to see the Neutral Buoyancy Lab and compare it to the Russian counterpart that I saw in May during my visit to Star City [astronaut training complex in Russia] when attending Luca’s launch. I also was able to go on the floor of Mission Control and see a specialized robotics lab, along with a lot of other cool things.
After Houston, I headed to Huntsville for Space Camp. While in Huntsville I was able to tour the Marshall Space Flight Center and specifically see some of the work NASA is doing along with ATK to build the Space Launch System, which is the rocket system that will take me to Mars someday (similar but much bigger than the Saturn V rockets that took Apollo to the moon).
Finally, I visited Lockheed Martin’s facilities in Colorado to see the production of the Orion, which is the spacecraft currently being developed to go to Mars, the moon and asteroids. These visits have tremendous value as I have been able to share pictures, write about the visits and talk about what I have seen with people everywhere.
The goal is to learn about what is being done right now to realize the future American missions to Mars, the moon and asteroids and continue human space flight. The more I learn and understand about our current efforts to realize the future of human space exploration, the easier it is for me to talk about the future and educate the general public. Part of my mission is to help spread the word to people around the world about the future of human space flight and get the public excited for what we will do next.
UT: I’m sure you’ve been talking to Luca regularly. What do you talk about?
AH: We e-mail and tweet quite a bit. We have only talked once. To be honest, I follow his mission very closely through his online updates and ESA and NASA updates for my role as his Earth Liaison, and therefore I am up to date on what he is doing, probably more up to date than most people.
When we e-mail and talk it is usually about other things like advice on school, travel (he lives in Houston so gave me some good tips on what to see while visiting), and generally asking him how he is doing and what it is like to live and work on the ISS. It’s not that different from when he was training for his mission on Earth, except for now he is flying in space overhead and his e-mails and tweets come from space. 🙂
UT: Do you feel any closer to being in space as a result of this partnership?
AH: Yes, I do. How could I not? I would guess that anyone who personally knows an astronaut living on the ISS would feel closer to being in space. The personal connection means you are paying close attention to everything the astronaut is doing, and following the mission very closely.
The fact that I am sharing so much of what Luca is doing as part of my role as his Earth Liaison also helps me feel closer to being in space, because I am sharing with so many people and they in turn offer me support everyday towards my goals. I watch Luca and can imagine the day when it’s my turn to go into space. It’s been an incredible experience to get to be part of his mission.