Poof! This Spacecraft Could Get Under A Planet’s Skin

A subsurface spacecraft prototype is deliberately slammed into 10 tonnes of ice in a rocket facility. Credit: European Space Agency/YouTube (screenshot)

If you want to get inside a planet or moon fast, the European Space Agency says lobbing a spacecraft at the surface might be a good approach.

This concept may sound like suicide. A recent prototype test, however, shows the spacecraft structure is mostly okay. Next step is figuring out what can survive on the inside.

ESA, like NASA and other agencies, isn’t afraid to test out new landing concepts if they suit better than the traditional ones (which use rockets and/or parachutes to land a spacecraft softly on the surface). Witness the Curiosity rover’s “seven minutes of terror” concept as a successful example.

Imagine that you want to look at water below the surface of Mars, or (like the people in Europa Report) you wish to plumb into the ice of Jupiter’s moon, Europa. One option could be a drill. Another one could be a subsurface spacecraft.

“One benefit over landers and rovers is that penetrators provide access to the subsurface without the need for additional drilling or digging,” ESA stated.

To test this out, engineers put 12 solid-propellant boosters on to a 44-pound (20 kilogram) prototype and fired it at almost the speed of sound at sea level: 1,118 feet a second (341 meters/second). (More technical details on the test).

The 1.5-second test, shown in the video, saw the prototype careening into 10 tonnes of ice at a deceleration of 24,000 times the force of gravity. Astronauts, by contrast, usually only withstand 3-4 g when going into space.

The scuffed and dented spacecraft was retrieved successfully, and now ESA is reviewing how well the internal structure held up in the chaos. They also plan to develop battery and communications systems that could somehow survive intact.

High-speed tests are not only useful for spacecraft landings, but also for meteor simulations.

Most meteors are comet dust striking at the atmosphere at speeds so high, they vaporiz in a blaze of light. This is a meteor from the Leonid shower in 2001. Credit: Bob King
Most meteors are comet dust striking at the atmosphere at speeds so high, they vaporiz in a blaze of light. This is a meteor from the Leonid shower in 2001. Credit: Bob King

An article in Wired recently covered the progress of the NASA Ames Vertical Gun range in its nearly 50 years of operation.

“Though it’s called a gun, the facility doesn’t look much like any firearm you’ve ever seen,” wrote Adam Mann. “The main chassis is a long metal barrel as thick as a cannon mounted on an enormous red pole that forks at the end into two legs.”

Check out how it’s studying meteor impacts on Mars in the Wired article.

NASA & US Navy Test Demonstrates Water Recovery of Orion Crew Capsule

During the stationary recovery test of Orion at Norfolk Naval Base on Aug. 15, US Navy divers attached tow lines and led the test capsule to a flooded well deck on the USS Arlington. Credit: Ken Kremer/kenkremer.com

During the stationary recovery test of Orion at Norfolk Naval Base on Aug. 15, 2013, US Navy divers attached tow lines and led the test capsule to a flooded well deck on the USS Arlington. Credit: Ken Kremer/kenkremer.com.
Story updated with additional test Video and images[/caption]

NAVAL STATION NORFOLK,VA – When American astronauts again venture into deep space sometime in the next decade, their return trip to Mother Earth will end with the splashdown of their Orion capsule in the Pacific Ocean – much like the Apollo lunar landing crews of four decades ago.

But before that can happen, Orion must first pass through a myriad of milestones to insure the safe return of our human crews.

A NASA and U.S. Navy test successfully demonstrated the water recovery of the Orion crew module today (Aug. 15) at Naval Station Norfolk in Virginia – and Universe Today witnessed the entire operation.

“Today’s test was terrific,” Scott Wilson, NASA’s Orion Manager of Production Operations, told Universe Today in a post test interview at Naval Station Norfolk.

“We got all the data we needed and the test was very successful. This was exactly what we wanted to do and we don’t like surprises.”

US Navy divers on four boats attached tow lines and to the Orion test capsule and guide it to the well deck on the USS Arlington during Aug. 15 recovery test Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
US Navy divers on four boats attached tow lines and to the Orion test capsule and guide it to the well deck on the USS Arlington during Aug. 15 recovery test at Norfolk Naval Base, VA.

Credit: Ken Kremer/kenkremer.com

Today’s ‘Orion Stationary Recovery Test’ was conducted to support the upcoming first flight of Orion on the EFT-1 mission due to blastoff in September 2014 from Cape Canaveral, Florida.

“We completed all of our primary and secondary test objectives,” Wilson stated.

Teams of US Navy divers in a flotilla of amphibious boats launched from the USS Arlington approached a test version of the Orion capsule known as the boilerplate test article (BTA). The Arlington was docked against its pier during the test in a benign, controlled environment.

Dive teams attach tow lines to Orion test capsule during Aug. 15 recovery test at Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
Dive teams attach tow lines to Orion test capsule during Aug. 15 recovery test at Norfolk Naval Base, VA. Credit: Ken Kremer/kenkremer.com

Divers attached several tow lines to the capsule, in a coordinated operation with the Arlington, and led the capsule into the ship’s flooded well deck.

The Orion capsule was carefully towed inside the well deck and positioned over the recovery cradle. The sea water was drained and the capsule was attached to the recovery cradle.

Dive teams haul Orion onto the well deck of the USS Arlington during Aug. 15 recovery test at Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
Dive teams haul Orion onto the well deck of the USS Arlington during Aug. 15 recovery test at Norfolk Naval Base, VA. Credit: Ken Kremer/kenkremer.com

“During the test there is constant radio communications between the ship and the divers teams in the boats.”

“The operation within the well deck areas are also being controlled as well as the rope and winch handlers on the boat,” Wilson told me.

At the conclusion of the test, myself and the NASA social media participants boarded the USS Arlington and toured the Orion capsule for a thrilling up close look.

Myself and NASA social media participate observed Orion after hauled aboard the well deck and boarded the USS Arlington recovery ship.    Credit: Ken Kremer/kenkremer.com
Myself and NASA social media participants observed Orion after hauled aboard the well deck and boarded the USS Arlington recovery ship. Credit: Ken Kremer/kenkremer.com

“Today marks a significant milestone in the Navy’s partnership with NASA and the Orion Human Space Flight Program,” said Navy Commander Brett Moyes, Future Plans Branch chief, U.S. Fleet in a statement.

“The Navy is excited to support NASA’s continuing mission of space exploration. Our unique capabilities make us an ideal partner for NASA in the recovery of astronauts in the 21st century — just as we did nearly a half century ago in support of America’s quest to put a man on the moon.”

The ocean recovery of Orion will be far different from the Apollo era where the crew’s were first hoisted out of the floating capsule and the capsule then hoisted on deck of a US Navy aircraft carrier.

The next Orion water recovery test will be conducted in the open waters of the Pacific Ocean in January 2014.

Inside up close look at the Orion attached to the recovery cradle in the drained well deck of the USS Arlington recovery ship.    Credit: Ken Kremer/kenkremer.com
Inside up close look at the Orion attached to the recovery cradle in the drained well deck of the USS Arlington recovery ship. Credit: Ken Kremer/kenkremer.com

NASA’s Langley Research Center in nearby Hampton, VA is conducting an extensive drop test program in support of the Orion project.

“The Orion capsule tested today has the same mold line and dimensions as the Orion EFT-1 capsule.”

“The Orion hardware and the Delta IV Heavy booster for the EFT-1 launch are on target for launch in 2014,” Wilson told me.

Watch this NASA Video of the Orion test:

During the unmanned Orion EFT-1 mission, the capsule will fly on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface, farther than any human spacecraft has gone in 40 years.

The EFT-1 mission will provide engineers with critical data about Orion’s heat shield, flight systems and capabilities to validate designs of the spacecraft before it begins carrying humans to new destinations in the solar system, including an asteroid and Mars.

It will return to Earth at a speed of approximately 20,000 mph for a splashdown in the Pacific Ocean.

Right now its T Minus 1 Year and counting to liftoff of Orion EFT-1.

Ken Kremer

…………….
Learn more about Orion, Cygnus, Antares, LADEE, MAVEN, Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Social media and media including Ken observe the Aug. 15 Orion water recovery test from the pier at Naval Station Norfolk, VA.  Credit: NASA
Social media and media including Ken observe the Aug. 15 Orion water recovery test from the pier at Naval Station Norfolk, VA. Credit: NASA
Scott Wilson, NASA’s Orion production manager and Ken Kremer, Universe Today discuss the Aug. 15 recovery test back dropped by Orion and the USS Arlington.  Credit: Ken Kremer/kenkremer.com
Scott Wilson, NASA’s Orion production manager and Ken Kremer, Universe Today discuss the Aug. 15 recovery test back dropped by Orion and the USS Arlington. Credit: Ken Kremer/kenkremer.com

Voyager 1: Is It In or Is It Out?

Has Voyager 1 actually left the Solar System? Some researchers are saying yes. (Image: NASA/JPL-Caltech)

Nearly 18.7 billion kilometers from Earth — about 17 light-hours away — NASA’s Voyager 1 spacecraft is just about on the verge of entering interstellar space, a wild and unexplored territory of high-energy cosmic particles into which no human-made object has ever ventured. Launched in September 1977, Voyager 1 will soon become the first spacecraft to officially leave the Solar System.

Or has it already left?

I won’t pretend I haven’t heard it before: Voyager 1 has left the Solar System! Usually followed soon after by: um, no it hasn’t. And while it might all seem like an awful lot of flip-flopping by supposedly-respectable scientists, the reality is there’s not a clear boundary that defines the outer limits of our Solar System. It’s not as simple as Voyager rolling over a certain mileage, cruising past a planetary orbit, or breaking through some kind of discernible forcefield with a satisfying “pop.” (Although that would be cool.)

The outer edge of the heliosphere has been found to contain many different regions, which Voyager 1 has been passing through since 2004. (NASA/JPL-Caltech)
The outer edge of the heliosphere has been found to contain many different regions, which Voyager 1 has been passing through since 2004. (NASA/JPL-Caltech)

Rather, scientists look at Voyager’s data for evidence of a shift in the type of particles detected. Within the transitionary zone that the spacecraft has most recently been traveling through, low-energy particles from the Sun are outnumbered by higher-energy particles zipping through interstellar space, also called the local interstellar medium (LISM). Voyager’s instruments have been detecting dramatic shifts in the concentrations of each for over a year now, unmistakably trending toward the high-energy end — or at least showing a severe drop-off in solar particles — and researchers from the University of Maryland are claiming that this, along with their model of a porous solar magnetic field, indicates Voyager has broken on through to the other side.

Read more: Voyagers Find Giant Jacuzzi-like Bubbles at Edge of Solar System

“It’s a somewhat controversial view, but we think Voyager has finally left the Solar System, and is truly beginning its travels through the Milky Way,” said Marc Swisdak, UMD research scientist and lead author of a new paper published this week in The Astrophysical Journal Letters.

According to Swisdak, fellow UMD plasma physicist James F. Drake, and Merav Opher of Boston University, their model of the outer edge of the Solar System  fits recent Voyager 1 observations — both expected and unexpected. In fact, the UMD-led team says that Voyager passed the outer boundary of the Sun’s magnetic influence, aka the heliopause… last year.

Read more: Winds of Change at the Edge of the Solar System

But, like some of last year’s claims, these conclusions aren’t shared by mission scientists at NASA.

“Details of a new model have just been published that lead the scientists who created the model to argue that NASA’s Voyager 1 spacecraft data can be consistent with entering interstellar space in 2012,” said Ed Stone, Voyager project scientist at Caltech, in a press release issued today. “In describing on a fine scale how magnetic field lines from the sun and magnetic field lines from interstellar space can connect to each other, they conclude Voyager 1 has been detecting the interstellar magnetic field since July 27, 2012. Their model would mean that the interstellar magnetic field direction is the same as that which originates from our sun.

The famous "Golden Record" carried aboard both Voyager 1 and 2 contains images, sounds and greetings from Earth. (NASA)
The famous “Golden Record” carried aboard both Voyager 1 and 2 contains images, sounds and greetings from Earth. (NASA)

“Other models envision the interstellar magnetic field draped around our solar bubble and predict that the direction of the interstellar magnetic field is different from the solar magnetic field inside. By that interpretation, Voyager 1 would still be inside our solar bubble.”

Stone says that further discussion and investigation will be needed to “reconcile what may be happening on a fine scale with what happens on a larger scale.”

Whether still within the Solar System — however it’s defined — or outside of it, the bottom line is that the venerable Voyager spacecraft are still conducting groundbreaking research of our cosmic neighborhood, 36 years after their respective launches and long after their last views of the planets. And that’s something nobody can argue about.

“The Voyager 1 spacecraft is exploring a region no spacecraft has ever been to before. We will continue to look for any further developments over the coming months and years as Voyager explores an uncharted frontier.”

– Ed Stone, Voyager project scientist

Built by JPL and launched in 1977, both Voyagers are still capable of returning scientific data from a full range of instruments, with adequate power and propellant to remain operating until 2020.

Read the full UMD news release here, and find out more about the Voyager mission on the NASA/JPL website here.

_____________

Note: The definition of “Solar System” used in this article is in reference to the Sun’s magnetic influence, the heliosphere, and all that falls within its outermost boundary, the heliopause (wherever that is.) Objects farther out are still gravitationally held by the Sun, such as distant KBOs and Oort Cloud comets, but orbit within the interstellar medium. 

Student Science Thunders to Space from NASA Wallops

A Terrier-Improved Malemute suborbital rocket carrying experiments developed by university students nationwide in the RockSat-X program was successfully launched at 6 a.m. EDT August 13. Credit: NASA

A Terrier-Improved Malemute suborbital rocket carrying experiments developed by university students nationwide in the RockSat-X program was successfully launched at 6 a.m. EDT August 13. Credit: NASA/Allison Stancil
Watch the cool Video below
[/caption]

WALLOPS ISLAND, VA – A nearly 900 pound complex payload integrated with dozens of science experiments created by talented university students in a wide range of disciplines and from all across America streaked to space from NASA’s beachside Wallops launch complex in Virginia on August 13 – just before the crack of dawn.

The RockSat-X science payload blasted off atop a Terrier-Improved Malemute suborbital sounding rocket at 6 a.m. from NASA’s Wallops Flight Facility along the Eastern Shore of Virginia.

As a research scientist myself it was thrilling to witness the thunderous liftoff standing alongside more than 40 budding aerospace students brimming with enthusiasm for the chance to participate in a real research program that shot to space like a speeding bullet.

“It’s a hands on, real world learning experience,” Chris Koehler told Universe Today at the Wallops launch pad. Koehler is Director of the Colorado Space Grant Consortium that manages the RockSat-X program in a joint educational partnership with NASA.

The hopes and dreams of everyone was flying along.

Here’s a cool NASA video of the RockSat-X Aug. 13 launch:

The students are responsible for conceiving, managing, assembling and testing the experiments, Koehler told me. Professors and industrial partners mentor and guide the students.

RockSat-X is the third of three practical STEM educational programs where the students master increasingly difficult skills that ultimately result in a series of sounding rocket launches.

“Not everything works as planned,” said Koehler. “And that’s by design. Some experiments fail but the students learn valuable lessons and apply them on the next flight.”

“The RockSat program started in 2008. And it’s getting bigger and growing in popularity every year,” Koehler explained.

August 13 launch of RockSat-X student science payload atop a Terrier-Improved Malemute suborbital at 6 a.m. EDT from NASA Wallops.   Credit: Ken Kremer/kenkremer.com
August 13 launch of RockSat-X student science payload atop a Terrier-Improved Malemute suborbital at 6 a.m. EDT from NASA Wallops. Credit: Ken Kremer/kenkremer.com

The 2013 RockSat-X launch program included participants from seven universities, including the University of Colorado at Boulder; the University of Puerto Rico at San Juan; the University of Maryland, College Park; Johns Hopkins University, Baltimore, Md.; West Virginia University, Morgantown; University of Minnesota, Twin Cities; and Northwest Nazarene University, Nampa, Idaho.

We all watched as a group and counted down the final 10 seconds to blastoff just a few hundred yards (meters) away from the launch pad – Whooping and hollering as the first stage ignited with a thunderous roar. Then the second stage flash – and more yelling and screams of joy! – – listen to the video.

Moments later we saw the first stage plummeting and heard a loud thud as it crashed into the ocean just 10 miles or so offshore.

A Terrier-Improved Malemute suborbital rocket carrying experiments developed by university students nationwide in the RockSat-X program was successfully launched at 6 a.m. EDT August 13.  Credit: NASA/Brea Reeves
A Terrier-Improved Malemute suborbital rocket carrying experiments developed by university students nationwide in the RockSat-X program was successfully launched at 6 a.m. EDT August 13. Credit: NASA/Brea Reeves

For most of the students -ranging from freshman to seniors – it was their first time seeing a rocket launch.

“I’m so excited to be here at NASA Wallops and see my teams experiment reach space!” said Hector, one of a dozen aerospace students who journeyed to Wallops from Puerto Rico.

Local Wallops area spectators and tourists told me they could hear the rocket booming from viewing sites more than 10 miles away.

Others who ‘overslept’ were awoken by the rocket thunder and houses shaking.

Suborbital rockets still make for big bangs!

The Puerto Rican students very cool experiment aimed at capturing meteorite particles in space using 6 cubes of aerogel that were extended out from the rocket as it descended back to Earth, said Oscar Resto, Science Instrument specialist and leader of the Puerto Rican team during an interview at the launch complex.

“Seeing this rocket launch was the best experience of my life,” Hector told me. “This was my first time visiting the mainland. I hope to come back again!”

Another team of 7 students from Northwest Nazarene University (NNU), Idaho aimed to investigate the durability of the world’s first physically flexible integrated chips.

“Our experiment tested the flexibility of integrated circuit chips in the cryogenic environment of space,” Prof Stephen Parke of NNU, Idaho, told Universe Today in an interview at the launch pad.

“The two year project is a collaboration with chipmaker American Semiconductor, Inc based in Boise, Idaho.”

“The chips were mechanically and electrically exercised, or moved, during the flight under the extremely cold conditions in space – of below Minus 50 C – to test whether they would survive,” Parke told me.

The 44 foot long, two stage rocket flew on a parabolic arc and a southeasterly trajectory. The 20 foot RockSat-X payload soared to an altitude of approximately 94 miles above the Atlantic Ocean.

More than 40 University students and mentors participating in the Aug. 13 RockSat-X science payload pose for post launch photo op at NASA Wallops Island, VA, launch complex that launched their own developed experiments to space.  Credit: Ken Kremer/kenkremer.com
More than 40 University students and mentors participating in the Aug. 13 RockSat-X science payload pose for post launch photo op at NASA Wallops Island, VA, launch complex that launched their own developed experiments to space. Credit: Ken Kremer/kenkremer.com

Telemetry and science data was successfully transmitted and received from the rocket during the flight.

The payload then descended back to Earth, deployed a 24 foot wide parachute and splashed down in the Atlantic Ocean some 90 miles offshore from Wallops Flight Facility. Overall the mission lasted about 20 minutes.

A commercial fishing boat hauled in the payload and brought it back to Wallops about 7 hours later.

By 2 p.m. the RockSat-X payload was back onsite at the Wallops ‘Rocket Factory’.

Rocket science university students get ready to tear apart the RockSat-X science payload after recovery from Atlantic Ocean splashdown following Aug. 13 rocket blastoff from NASA Wallops Flight Facility, VA.  Credit: Ken Kremer/kenkremer.com
Rocket science university students get ready to tear apart the RockSat-X science payload after recovery from Atlantic Ocean splashdown following Aug. 13 rocket blastoff from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

And I was on-hand as the gleeful students began tearing it apart to disengage their individual experiments to begin a week’s long process of assessing the outcome, analyzing the data and evaluating what worked and what failed. See my photos.

Rocket science university students from Puerto Rico pose for post flight photo op with their disengaged science experiment seeking to capture meteorite particles from space aboard Terrier-Improved Malemute sounding rocket that launched  on Aug. 13 at 6 a.m. from NASA Wallops Flight Facility, VA.  Credit: Ken Kremer/kenkremer.com
Rocket science university students from Puerto Rico pose for post flight photo op with their disengaged science experiment seeking to capture meteorite particles from space aboard Terrier-Improved Malemute sounding rocket that launched on Aug. 13 at 6 a.m. from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

Included among the dozens of custom built student experiments were HD cameras, investigations into crystal growth and ferro fluids in microgravity, measuring the electron density in the E region (90-120km), aerogel dust collection on an exposed telescoping arm from the rockets side, effects of radiation damage on various electrical components, determining the durability of flexible electronics in the cryogenic environment of space and creating a despun video of the flight.

Indeed we already know that not every experiment worked. But that’s the normal scientific method – ‘Build a little, fly a little’.

New students are already applying to the 2014 RockSat program. And some of these students will return next year with thoughtful upgrades and new ideas!

The launch was dedicated in memory of another extremely bright young student named Brad Mason, who tragically passed away two weeks ago. Brad was a beloved intern at NASA Wallops this summer and a friend. Brad’s name was inscribed on the side of the rocket. Read about Brad at the NASA Wallops website.

Ken Kremer

…………….
Learn more about Suborbital science, Cygnus, Antares, LADEE, MAVEN and Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

The USAF’s ‘Space Fence’ Surveillance System: Another Victim of Sequestration

Space fence... Credit:

Times are getting tougher in the battle to track space debris. A key asset in the fight to follow and monitor space junk is getting the axe on October 1st of this year. United States Air Force General and commander of Air Force Space Command William Shelton has ordered that the Air Force Space Surveillance System, informally known as Space Fence will be deactivated. The General also directed all related sites across the southern United States to prepare for closure.

This shutdown will be automatically triggered due to the U.S. Air Force electing not to renew its fifth year contract with Five Rivers Services, the Colorado Springs-based LLC that was awarded the contract for the day-to-day management of the Space Fence surveillance system in 2009.

To be sure, the Space Fence system was an aging one and is overdue for an upgrade and replacement.

The Space Fence system was first brought on line in the early days of the Space Age in the 1961. Space Fence was originally known as the Naval Space Surveillance (NAVSPASUR) system until passing into the custody of the U.S. Air Force’s 20th Space Control Squadron in late 2004. Space Fence is a series of multi-static VHF receiving and transmitting sites strung out across the continental United States at latitude 33° north ranging from California to Georgia.

The Worldwide Space Surveillance Network, including Space Fence across the southern United States. (Credit: the U.S. Department of Defense).
The Worldwide Space Surveillance Network, including Space Fence across the southern United States. (Credit: the U.S. Department of Defense).

Space Fence is part of the greater Space Surveillance Network, and comprises about 40% of the overall observations of space debris and hardware in orbit carried out by the U.S. Air Force. Space Fence is also a unique asset in the battle to track space junk and dangerous debris, as it gives users an “uncued” tracking ability. This means that it’s constantly “on” and tracking objects that pass overhead without being specifically assigned to do so.

Space Fence also has the unique capability to track objects down to 10 centimeters in size out to a distance of 30,000 kilometres. For contrast, the average CubeSat is 10 centimetres on a side, and the tracking capability is out to about 67% of the distance to geosynchronous orbit.

Exact capabilities of the Space Fence have always been classified, but the master transmitter based at Lake Kickapoo, Texas is believed to be the most powerful continuous wave facility in the world, projecting at 768 kilowatts on a frequency of 216.97927 MHz. The original design plans may have called for a setup twice as powerful.

A replacement for Space Fence that will utilize a new and upgraded S-Band radar system is in the works, but ironically, that too is being held up pending review due to the sequestration. Right now, the Department of Defense is preparing for various scenarios that may see its budget slashed by 150 to 500 billion dollars over the next 10 years.

The control center display of the prototype for the next generation Space Fence. (Credit: Lockheed Martin).
The control center display of the prototype for the next generation Space Fence. (Credit: Lockheed Martin).

The U.S. Air Force has already spent $500 million to design the next generation Space Fence, and awarded contracts to Raytheon, Northrop Grumman and Lockheed Martin in 2009 for its eventual construction.

The eventual $3 billion dollar construction contract is on hold, like so many DoD programs, pending assessment by the Strategic Choices and Management Review, ordered by Secretary of Defense Chuck Hagel earlier this year.

“The AFSSS is much less capable than the space fence radar planned for Kwajalein Island in the Republic of the Marshall Islands,” stated General Shelton in a recent U.S. Air Force press release. “In fact, it’s apples and oranges in trying to compare the two systems.”

One thing’s for certain. There will be a definite capability gap when it comes to tracking space debris starting on October 1st until the next generation Space Fence comes online, which may be years in the future.

In the near term, Air Force Space Command officials have stated that a “solid space situational awareness” will be maintained by utilizing the space surveillance radar at Eglin Air Force Base in the Florida panhandle and the Perimeter Acquisition Radar Characterization System at Cavalier Air Force Station in North Dakota.

We’ve written about the mounting hazards posed by space debris before. Just earlier this year, two satellites were partially damaged due to space debris. Space junk poses a grave risk to the residents of the International Space Station, which must perform periodic Debris Avoidance Maneuvers (DAMs) to avoid collisions. Astronauts have spotted damage on solar arrays and handrails on the ISS due to micro-meteoroids and space junk. And on more than one occasion, the ISS crew has sat out a debris conjunction that was too close to call in their Soyuz spacecraft, ready to evacuate if necessary.

In 2009, a collision between Iridium 33 and the defunct Cosmos 2251 satellite spread debris across low Earth orbit. In 2007, a Chinese anti-satellite missile test also showered low Earth orbit with more of the same. Ironically, Space Fence was crucial in characterizing both events.

Satellites, such as NanoSail-D2, have demonstrated the capability to use solar sails to hasten reentry at the end of a satellites’ useful life, but we’re a long ways from seeing this capability standard on every satellite.

Amateurs will be affected by the closure of Space Fence as well. Space Weather Radio relies on ham radio operators, who listen for the “pings” generated by the Space Fence radar off of meteors, satellites and spacecraft.

“When combined with the new Joint Space Operations Center’s high-performance computing environment, the new fence will truly represent a quantum leap forward in space situational awareness for the nation,” General Shelton said.

But for now, it’s a brave and uncertain world, as Congress searches for the funds to bring this new resource online. Perhaps the old system will be rescued at the 11th hour, or perhaps the hazards of space junk will expedite the implementation of the new system. Should we pass the hat around to “Save Space Fence?”

Aerospace Students Shoot for the Stars and Space Flight Dreams

Rocket science university students from Puerto Rico pose for photo op with the Terrier-Improved Malemute sounding rocket that will launch their own developed RockSat-X science experiments to space on Aug. 13 at 6 a.m. from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

Rocket science university students from Puerto Rico pose for photo op with the Terrier-Improved Malemute sounding rocket that will launch their own developed RockSat-X science experiments to space on Aug. 13 at 6 a.m. from NASA Wallops Flight Facility, VA.
Credit: Ken Kremer/kenkremer.com[/caption]

WALLOPS ISLAND, VA – How many of you have dreamed of flying yourselves or your breakthrough experiments to the High Frontier? Well if you are a talented student, NASA may have a ticket for you.

A diverse group of highly motivated aerospace students from seven universities spread across the United States have descended on NASA’s Wallops Flight Facility along the Eastern Shore of Virginia to fulfill the dream of their lifetimes – launching their very own science experiments aboard a rocket bound for space.

I met the thrilled students and professors today beside their rocket at the Wallops Island launch pad.

On Aug 13, after years of hard work, an impressive array of research experiments developed by more than 40 university students will soar to space on the RockSat-X payload atop a 44-foot tall Terrier-Improved Malemute suborbital sounding rocket at 6 a.m. EDT.

Students from Northwest Nazarene University observe the pre-integration of their experiment into the RockSat-X payload at the NASA Wallops Flight Facility in June. Students from seven universities are participating in the program and will attend the launch on August 13.  Credit: NASA/K. Koehler
Students from Northwest Nazarene University observe the pre-integration of their experiment into the RockSat-X payload at the NASA Wallops Flight Facility in June. Students from seven universities are participating in the program and will attend the launch on August 13. Credit: NASA/K. Koehler

The two stage rocket will rapidly ascend on a southeasterly trajectory to an altitude of some 97 miles and transmit valuable data in-flight during the 12-minute mission.

The launch will be visible to spectators in parts of Virginia, Maryland and Delaware, and perhaps a bit beyond. Check out the visibility map below.

The RockSat-X flight profile and visibility map. RockSat-X is scheduled to launch from NASA's Wallops Flight Facility, VA on Aug. 13 at 6.a.m. EDT  Credit: NASA
The RockSat-X flight profile and visibility map. RockSat-X is scheduled to launch from NASA’s Wallops Flight Facility, VA on Aug. 13 at 6.a.m. EDT Credit: NASA

If you’re available, try venturing out to watch it. The available window lasts until 10 a.m. EDT if needed.

The students will put their classroom learning to the test with experiments and instruments built by their own hands and installed on the 20 foot long RockSat-X payload. The integrated payload accounts for nearly half the length of the Terrier Malamute suborbital rocket. It’s an out of this world application of the scientific method.

Terrier-Improved Malemute sounding rocket erected for launch of student experiments  on RockSat-X payload on Aug. 13 at 6 a.m. from NASA Wallops Flight Facility, VA.  Credit: Ken Kremer/kenkremer.com
Terrier-Improved Malemute sounding rocket erected for launch of student experiments on RockSat-X payload on Aug. 13 at 6 a.m. from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com
Included among the dozens of custom built student experiments are HD cameras, investigations into crystal growth and ferro fluids in microgravity, measuring the electron density in the E region (90-120km), aerogel dust collection on an exposed telescoping arm from the rockets side, effects of radiation damage on various electrical components, determining the durability of flexible electronics in the cryogenic environment of space and creating a despun video of the flight.

At the conclusion of the flight, the payload will descend to Earth via a parachute and splash down in the Atlantic Ocean approximately 86 miles offshore from Wallops.

Commercial fishing ships under contract to NASA will then recover the RockSat-X payload and return it to the students a few hours later, NASA spokesman Keith Koehler told Universe Today.

They will tear apart the payload, disengage their experiments and begin analyzing the data to see how well their instruments performed compared to the preflight hypotheses’.

RockSat-X is a joint educational activity between NASA and the Colorado Space Grant Consortium. It is the third of three practical STEM educational programs where the students must master increasingly difficult skill level requirements leading to a series of sounding rocket liftoffs.

In mid-June, some 50 new students participated in the successful ‘RockOn’ introductory level payload launch from Wallops using a smaller Terrier-Improved Orion rocket.

“The goal of the RockSat-X program is to provide students a hands-on experience in developing experiments for space flight,” said Chris Koehler, Director of the Colorado Space Grant Consortium.

“This experience allows these students to apply what they have learned in the classroom to a real world hands-on project.”

The students participating in this year’s RockSat-X launch program hail from the University of Colorado at Boulder; the University of Puerto Rico at San Juan; the University of Maryland, College Park; Johns Hopkins University, Baltimore, Md.; West Virginia University, Morgantown; University of Minnesota, Twin Cities; and Northwest Nazarene University, Nampa, Idaho.

Panoramic view of the NASA Wallops Flight Facility launch range at Virginia’s Eastern Shore during prior launch of two suborbital sounding rockets as part of the Daytime Dynamo mission. RockSat-X payload will launch on a Terrier-Improved Malemute sounding rocket.   Credit: Ken Kremer/kenkremer.com
Panoramic view of the NASA Wallops Flight Facility launch range at Virginia’s Eastern Shore during prior launch of two suborbital sounding rockets as part of the Daytime Dynamo mission. RockSat-X payload will launch on a Terrier-Improved Malemute sounding rocket. Credit: Ken Kremer/kenkremer.com

Some of these students today could well become the pioneering aerospace industry leaders of tomorrow!

In the event of a delay forced by weather or technical glitches, August 14 is the backup launch day.

A great place to witness the blastoff is from the NASA Wallops Visitor Center, offering a clear view to the NASA launch range.

It opens at 5 a.m. on launch day and is a wonderful place to learn about NASA missions – especially the pair of exciting and unprecedented upcoming launches of the LADEE lunar science probe to the moon and the Cygnus cargo carrier to the ISS in September.

Both LADEE and Cygnus are historic first of their kind flights from NASA Wallops.

Live coverage of the launch is available via UStream beginning at 5 a.m. on launch day at:
http://www.ustream.tv/channel/nasa-tv-wallops

Ken Kremer

…………….
Learn more about Suborbital Science, Cygnus, Antares, LADEE, MAVEN and Mars rovers and more at Ken’s upcoming presentations

Aug 12/13: “RockSat-X Suborbital Launch, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Sep 5/6/16/17: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

More than 40 University students participating in the Aug. 13 RockSat-X science payload pose for photo op with the Terrier-Improved Malemute sounding rocket that will launch their own experiments to space from NASA Wallops Flight Facility, VA.  Credit: Ken Kremer/kenkremer.com
More than 40 University students participating in the Aug. 13 RockSat-X science payload pose for photo op with the Terrier-Improved Malemute sounding rocket that will launch their own experiments to space from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

Opportunity Mountain Goal Dead Ahead as Mars Orbiter Restarts Critical Targeting Hunt for Habitability Signs

Opportunity rover’s 1st mountain climbing goal is dead ahead in this up close view of Solander Point along the eroded rim of Endeavour Crater. Opportunity will soon ascend the mountain in search of minerals signatures indicative of a past Martian habitable environment. This navcam panoramic mosaic was assembled from raw images taken on Sol 3385 (Aug 2, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com)

Opportunity rover’s 1st mountain climbing goal is dead ahead in this up close view of Solander Point at Endeavour Crater. Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment. This navcam panoramic mosaic was assembled from raw images taken on Sol 3385 (Aug 2, 2013).
Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com)[/caption]

NASA’s most powerful Mars orbiter has been given the green light today (Aug. 5) to capture new high resolution spectral scans that are absolutely crucial for directing the long lived Opportunity rover’s hunt for signatures of habitability atop the intriguing mountain she will soon ascend.

In a plan only recently approved by NASA, engineers are aiming the CRISM mineral mapping spectrometer aboard the Mars Reconnaissance Orbiter (MRO) circling overhead to collect high resolution survey scans of Solander Point – Opportunity’s 1st mountain climbing goal along the rim of huge Endeavour Crater.

“New CRISM observations centered over Solander Point will be acquired on Aug. 5, 2013,” Ray Arvidson told Universe Today exclusively. Arvidson is the mission’s deputy principal scientific investigator from Washington University in St. Louis, Mo.

NASA’s decade old rover Opportunity is about to make ‘landfall’ at the base of Solander Point, the Martian mountain she will scale in search of the chemical ingredients that could sustain Martian microbes.

So the new spectral data can’t come back to Earth soon enough.

And all this is taking place as NASA’s Curiosity rover celebrates her 1st Birthday on the Red Planet. Read that story – here.

Currently, the science team lacks the same quality of high resolution CRISM data from Solander Point that they had at a prior stop at Cape York. And that data was crucial because it allowed the rover to be precisely targeted – and thereby discover a habitable zone, Arvidson told me.

“CRISM collected lots of overlapping measurements at Cape York to sharpen the image resolution to 5 meters per pixel to find the phyllosilicate smectite [clay minerals] signatures at Matejivic Hill on Cape York.”

“We don’t have that at Solander Point. We only have 18 meters per pixel data. And at that resolution you can’t tell if the phyllosilicate smectite [clay minerals] outcrops are present.”

Today’s new survey from Mars orbit will vastly improve the spectral resolution – from 18 meters per pixel down to 5 meters per pixel.

“5 meter per pixel CRISM resolution is expected in the along-track direction over Solander Point by commanding the gimbaled optical system to oversample that much,” Arvidson explained.

Opportunity rover’s view from very near the foothills of Solander Point looking along the rim and vast expanse of Endeavour Crater.  Solander Point is the 1st Martian Mountain NASA’s Opportunity will climb and the rovers next destination.  Solander Point may harbor clay minerals indicative of a past Martian habitable environment. This navcam mosaic was assembled from raw images taken on Sol 3374 (July 21, 2013).  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com)  See complete  panoramic mosaic below
Opportunity rover’s view from very near the foothills of Solander Point looking along the rim and vast expanse of Endeavour Crater. Solander Point is the 1st Martian Mountain NASA’s Opportunity will climb and the rovers next destination. Solander Point may harbor clay minerals indicative of a past Martian habitable environment. This navcam mosaic was assembled from raw images taken on Sol 3374 (July 21, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com)

The new CRISM spectral survey from Mars is essential to enable the science team to carefully study the alien, unexplored terrain in detail and locate the clay minerals and other water bearing minerals, even before the rover arrives.

Clay minerals form in neutral pH water conducive to life.

Opportunity would then be commanded to drive to preselected sites to conduct “ground truth” forays at Solander.

That’s just like was done at Cape York and the “Esperance” rock loaded with clay minerals that turned into one of the “Top 5 discoveries of the mission” according to Arvidson and Steve Squyres, Opportunity’s Science Principal Investigator of Cornell.

But it took some cajoling and inter team negotiations to convince everyone to move forward with the special but crucial CRISM imaging plan.

Since MRO is getting on in age – it launched in 2005 – NASA and the spacecraft managers have to carefully consider special requests such as this one which involves slewing the MRO spacecraft instruments and therefore entails some health risks to the vehicle.

“CRISM has been operating at Mars since 2006 and sometimes the optics on a gimble have actuators that get stuck a little bit and don’t sweep as fully as planned.”

Nevertheless, Arvidson told me a few weeks ago he was hopeful to get approval.

“I suspect I can talk the team into it.”

And eventually he did! And informed me for the readers of Universe Today.

The fact that the Opportunity scientists already scored a ‘Science Home Run’ with their prior CRISM targeting request at Cape York certainly aided their cause immensely.

The new approved CRISM measurements due to be captured today will give Opportunity the best chance to be targeted to the most promising mineral outcrops, and as quickly as possible.

“With the coordinated observations from CRISM and Opportunity we will go into Solander Point a lot smarter!”

“And we’ll have a pretty good idea of what to look for and where,” Arvidson told me.

Opportunity snap up close view of the base of Solander Point and mountain slopes she will ascend soon. This hi res pancam camera mosaic was assembled from raw images taken on Sol 3385 (Aug 2, 2013).  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer (kenkremer.com)
Opportunity snap up close view of the base of Solander Point and mountain slopes she will ascend soon. This hi res pancam camera mosaic was assembled from raw images taken on Sol 3385 (Aug 2, 2013). Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer (kenkremer.com)

Today marks Opportunity’s 3389th Sol or Martian day roving Mars. Merely 90 days were expected!

Having completed her investigation of the rocky crater plains, the rover continues to drive south.

Any day now Opportunity will drive onto the Bench surrounding Solander and start a new phase of the mission.

Since she basically arrived at Solander with plenty of power and ahead of schedule prior to the onset of the 6th Martian winter, the robot has some spare time to investigate the foothills before ascending the north facing slopes.

“We will be examining the bench and then working our way counterclockwise to reach the steep slopes associated with the Noachian outcrops that are part of the Endeavour rim,” Arvidson said.

Ken Kremer

Opportunity rover location in the latest MRO/HiRISE color image. The green line shows more or less the route we hope to take to the base of Solander point. Since it is only a couple of hundred meters away, we could be there is a couple of drives. Maybe by the end of next week. The label say "3374" but this is also roughly the location through 3379.
Opportunity rover location in the latest MRO/HiRISE color image. The green line shows more or less the route we hope to take to the base of Solander point. Since it is only a couple of hundred meters away, we could be there is a couple of drives. Maybe by the end of next week. The label say “3374” but this is also roughly the location through 3379. Credit: NASA/JPL/Larry Crumpler

Traverse Map for NASA’s Opportunity rover from 2004 to 2013. This map shows the entire path the rover has driven during more than 9 years and over 3387 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location near foothills of Solander Point at the western rim of Endeavour Crater.  Opportunity discovered clay minerals at Esperance - indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013
This map shows the entire path the rover has driven during more than 9 years and over 3387 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location near foothills of Solander Point at the western rim of Endeavour Crater. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer

Curiosity rover Celebrates 1 Year on Mars with Dramatic Discoveries

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp.
Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Story updated with further details[/caption]

NASA’s mega Mars rover Curiosity is celebrating 1 Year on the Red Planet since the dramatic landing on Aug. 6, 2012 by reveling in a string of groundbreaking science discoveries demonstrating that Mars could once have supported past life – thereby accomplishing her primary science goal – and with a promise that the best is yet to come!

“We now know Mars offered favorable conditions for microbial life billions of years ago,” said the mission’s project scientist, John Grotzinger of the California Institute of Technology in Pasadena.

“Curiosity has landed in an ancient river or lake bed on Mars,” Jim Green, Director of NASA’s Planetary Science Division, told Universe Today.

Curiosity is now speeding onwards towards Mount Sharp, the huge 3.4 mile (5. 5 km) mountain dominating the center of her Gale Crater landing site – and which is the primary destination of the mission.

During Year 1, Curiosity has transmitted over 190 gigabits of data, captured more than 71,000 images, fired over 75,000 laser shots to investigate the composition of rocks and soil and drilled into two rocks for sample analysis by the pair of state-of-the-art miniaturized chemistry labs housed in her belly – SAM & CheMin.

“From the sophisticated instruments on Curiosity the data tells us that this region could have been habitable in Mars’ distant past,” Green told me.

“This is a major step forward in understanding the history and evolution of Mars.”

And just in the nick of time for her 1 year anniversary, the car sized robot just passed the 1 mile (1.6 kilometer) driving mark on Aug. 1, or Sol 351.

Mount Sharp still lies roughly 5 miles (8 kilometers) distant – as the Martian crow flies.

“We will be on a general heading of southwest to Mount Sharp,” Jim Erickson, Curiosity Project Manager of NASA’s Jet Propulsion Laboratory (JPL), told Universe Today in an exclusive interview. See the NASA JPL route maps below.

“We have been going through various options of different planned routes.”

How long will the journey to Mount Sharp take?

“Perhaps about a year,” Erickson told me.

“We have put some new software – called autonav, or autonomous navigation – on the vehicle right after the conjunction period back in March 2013. This will increase our ability to drive.”

The total distance driven by NASA's Mars rover Curiosity passed the one-mile mark a few days before the first anniversary of the rover's landing on Mars.  This map traces where Curiosity drove between landing at "Bradbury Landing" on Aug. 5, 2012, PDT, (Aug. 6, 2012 (Universal Time and EDT) and the position reached during the mission's 351st Martian day, or sol, (Aug. 1, 2013). The Sol 351 leg added 279 feet (85.1 meters) and brought the odometry since landing to about 1.05 miles (1,686 meters).  Credit: NASA/JPL-Caltech/Univ. of Arizona
The total distance driven by NASA’s Mars rover Curiosity passed the one-mile mark a few days before the first anniversary of the rover’s landing on Mars. This map traces where Curiosity drove between landing at “Bradbury Landing” on Aug. 5, 2012, PDT, (Aug. 6, 2012 (Universal Time and EDT) and the position reached during the mission’s 351st Martian day, or sol, (Aug. 1, 2013). The Sol 351 leg added 279 feet (85.1 meters) and brought the odometry since landing to about 1.05 miles (1,686 meters). Credit: NASA/JPL-Caltech/Univ. of Arizona

“We are trying to make that significantly faster by bringing the new autonav online. That will help. But how much it helps really depends on the terrain.”

So far the terrain has not been problematical.

“Things are going very well and we have a couple of drives under our belt,” said Erickson, since starting the long trek to Mount Sharp about a month ago.

The lower reaches of Mount Sharp are comprised of exposed geological layers of sedimentary materials that formed eons ago when Mars was warmer and wetter, and much more hospitable to microscopic life.

“It has been gratifying to succeed, but that has also whetted our appetites to learn more,” says Grotzinger. “We hope those enticing layers at Mount Sharp will preserve a broad diversity of other environmental conditions that could have affected habitability.”

Indeed, Curiosity’s breakthrough discovery that the surface of Mars possesses the key chemical ingredients required to sustain microbial life in a habitable zone, has emboldened NASA to start mapping out the future of Mars exploration.

NASA announced plans to start work on a follow on robotic explorer launching in 2020 and develop strategies for returning Martian samples to Earth and dispatching eventual human missions to Mars in the 2030’s using the new Orion capsule and SLS Heavy lift rocket.

“NASA’s Mars program is back on track with the 2016 InSight lander and the 2020 rover,” Jim Green, Director of NASA’s Planetary Science Division, told Universe Today in an interview.

“Successes of our Curiosity — that dramatic touchdown a year ago and the science findings since then — advance us toward further exploration, including sending humans to an asteroid and Mars,” said NASA Administrator Charles Bolden in a statement.

“Wheel tracks now, will lead to boot prints later.”

Following the hair-raising touchdown using with the never before used sky-crane descent thrusters, the science team directed the 1 ton robot to drive to a nearby area of interesting outcrops on the Gale crater floor – at a place called Glenelg and Yellowknife Bay.

Along the way, barely 5 weeks after landing, Curiosity found a spot laden with rounded pebbles at the Hottah outcrop of concretions that formed in an ancient stream bed where hip deep liquid water once flowed rather vigorously.

In February 2013, Curiosity conducted the historic first ever interplanetary drilling into Red Planet rocks at the ‘John Klein’ outcrop inside Yellowknife Bay that was shot through with hydrated mineral veins of gypsum.

The Yellowknife Bay basin looks like a dried up river bed.

This scene combines seven images from the telephoto-lens camera on the right side of the Mast Camera (Mastcam) instrument on NASA's Mars rover Curiosity   on Sol 343 of the rover's work on Mars (July 24, 2013).  Credit: NASA/JPL-Caltech/Malin Space Science Systems
This scene combines seven images from the telephoto-lens camera on the right side of the Mast Camera (Mastcam) instrument on NASA’s Mars rover Curiosity on Sol 343 of the rover’s work on Mars (July 24, 2013). The center of the scene is toward the southwest. Credit: NASA/JPL-Caltech/Malin Space Science Systems

Analysis of pulverized portions of the gray colored rocky powder cored from the interior of ‘John Klein’ revealed evidence for phyllosilicates clay minerals that typically form in pH neutral water. These starting findings on the crater floor were unexpected and revealed habitable environmental conditions on Mars – thus fulfilling the primary science goal of the mission.

See herein our context panoramic mosaic from Sol 169 showing the robotic arm touching and investigating the Martian soil and rocks at ‘John Klein’.

And if you take a visit to Washington, DC, you can see our panorama (assembled by Ken Kremer and Marco Di Lorenzo) on permanent display at a newly installed Solar System exhibit at the US National Mall in front of the Smithsonian National Air & Space Museum- details here.

A mosaic by the Mars Science Laboratory Curiosity rover, assembled by Ken Kremer and Marco Di Lorenzo is now part of the permanent Solar System Exhibit outside the National Air and Space Museum on the US National Mall in Washington, D.C. Image courtesy Ken Kremer.
A mosaic by the Mars Science Laboratory Curiosity rover, assembled by Ken Kremer and Marco Di Lorenzo is now part of the permanent Solar System Exhibit outside the National Air and Space Museum on the US National Mall in Washington, D.C. Image courtesy NCESSE.

“We have found a habitable environment [at John Klein] which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” says Grotzinger, summing up the mission.

Curiosity captured unique view of Martian moon Phobos & Diemos together on Sol 351 (Aug 1, 2013). Credit: NASA/JPL/MSSS, contrast enhanced by Marco Di Lorenzo and Ken Kremer
Curiosity captured unique and rare view of tiny Martian moons Phobos & Deimos together on Sol 351 (Aug 1, 2013). Look close and see craters on pockmarked Phobos. Credit: NASA/JPL/MSSS, contrast enhanced by Marco Di Lorenzo and Ken Kremer
On the long road to Mount Sharp, Curiosity will make occasional stops for science.

This past week she captured rare sky watching images of the diminutive Martian moons – Phobos and Deimos – together!

Meanwhile, Curiosity’s 10 year old sister rover Opportunity Is trundling merrily along and will arrive shortly at her own mountain climbing goal on the opposite of Mars.

And NASA’s next Mars orbiter called MAVEN (for Mars Atmosphere and Volatile Evolution), has just arrived intact at the Kennedy Space Center after a cross country trip aboard a USAF C-17.

Technicians at Kennedy will complete final preparations for MAVEN’s blastoff to the Red Planet on Nov. 18 from the Florida Space Coast atop an Atlas V rocket.

On Tuesday, Aug 6, NASA will broadcast a half day of new programming on NASA TV commemorating the landing and discussing the science accomplished so far and what’s coming next.

And stay tuned for more astonishing discoveries during ‘Year 2’ on the Red Planet from our intrepid rover Curiosity – Starting Right Now !

Ken Kremer

Curiosity Route Map From 'Glenelg' to Mount Sharp. This map shows where NASA's Mars rover Curiosity landed in August 2012 at "Bradbury Landing"; the area where the rover worked from November 2012 through May 2013 at and near the "John Klein" target rock in the "Glenelg" area; and the mission's next major destination, the entry point to the base of Mount Sharp.  Credit: NASA/JPL-Caltech/Univ. of Arizona
Curiosity Route Map From ‘Glenelg’ to Mount Sharp
This map shows where NASA’s Mars rover Curiosity landed in August 2012 at “Bradbury Landing”; the area where the rover worked from November 2012 through May 2013 at and near the “John Klein” target rock in the “Glenelg” area; and the mission’s next major destination, the entry point to the base of Mount Sharp. Credit: NASA/JPL-Caltech/Univ. of Arizona

What’s The Asteroid Capture Mission Going to Look Like? NASA’s Starting Its Review

An artist's conception of a spacecraft designed to pick up an asteroid. Credit: NASA/Advanced Concepts Laboratory

It’s still unclear if NASA will receive Congressional funding or authorization to do an asteroid retrieval proposal backed by President Barack Obama’s administration, but as missions take time to plan, the agency is moving ahead with its work for now.

NASA just did a mission formulation review this week to look at some internal studies on the mission. It also is starting to wade through hundreds of ideas the space community submitted concerning the mission.

“With the mission formulation review complete, agency officials now will begin integrating the most highly-rated concepts into an asteroid mission baseline concept to further develop in 2014,” NASA stated. The agency was light on details, but more information should be forthcoming when the process is further along.

Concept of Spacecraft with Asteroid Capture Mechanism Deployed. Credit: NASA.
Concept of Spacecraft with Asteroid Capture Mechanism Deployed. Credit: NASA.

The agency’s fiscal 2014 budget proposal suggests robotically picking up an asteroid, steering it closer to Earth, and putting it in a safe orbit where probes and possibly astronauts could visit. The budget is still being moved through Congressional committees and we won’t know until later this year just how much money will be available for NASA, and what initiatives the agency will be allowed to do.

For more information, be sure to read this past article from Universe Today editor Nancy Atkinson looking in detail at NASA’s asteroid retrieval mission. It includes information on what technology could be used, and the history of NASA’s quest to explore asteroids.

Space rocks have hit the headlines several times this year, particularly when one exploded over the area of Chelyabinsk, Russia earlier in 2013. NASA and several other groups have ongoing searches for asteroids and other small bodies in our solar system to catalog and calculate the orbits for as many as they can find. No imminent threats are known.

Why Teleportation Could Be Far Slower Than Walking

It always looked so easy in the Star Trek episodes. “Two to beam up,” Captain James T. Kirk would say from the planet’s surface. A few seconds later, the officers would materialize on the Enterprise — often missing a few red-shirts that went down with them.

A new analysis says the teleportation process wouldn’t take a few seconds. It could, in fact, stretch longer than the history of the universe! “It would probably be quicker to walk,” a press release said laconically.

Continue reading “Why Teleportation Could Be Far Slower Than Walking”