Hadfield’s Return to Earth: ‘I’m Still Learning How To Walk Again’

Chris Hadfield, speaking from Houston May 16, 2013 in his first press conference after his five-month mission. Credit: Canadian Space Agency/Ustream

Astronaut Chris Hadfield described himself as a man who never looks back. Still, he spoke fondly of his five months in space during the first press conference with media today (May 16) after his return to Earth earlier this week.

“I don’t spend my life going gosh, I went to [space station] Mir in 1995 and now everything else is boring. That’s not how I ever felt,” the Canadian said in a wide-ranging conversation that talked about everything from his future, to the science he performed, his favorite tweets while up in space.

First, let’s get a big question off the plate. Hadfield says himself he doesn’t know what he wants to do next. “I’m still learning how to walk again!” he exclaimed to one journalist who asked if he wanted to be Canadian Space Agency president.

Rehabilitation is occupying a lot of his time, he added: “I’m trying to stand up straight, and I have to sit down in the shower so I don’t faint and fall down. It’s like asking an infant if they’re ready for their Ph.D. yet. I’ll get there, but it’s too early to say.”

 Hadfield getting checked out by doctors after his return. 'Wired head, chest, arms and feet, learning how the body works when it has been weightless for half a year,' Tweeted Hadfield.
Hadfield getting checked out by doctors after his return. ‘Wired head, chest, arms and feet, learning how the body works when it has been weightless for half a year,’ Tweeted Hadfield.

Hadfield brushed aside notions that he is famous for himself, saying it is a reflection of the hard work his crew put in on the station orbiting Earth. Expedition 35 was the most productive in terms of the science-to-maintenance ratio aboard the station, despite an ammonia leak gumming up the schedule very late in the mission.

He spoke most warmly of the science performed while aboard station. The Alpha Magnetic Spectrometer found possible hints of dark matter during his stay, for example. Hadfield and colleague Tom Marshburn also did aging research in space on behalf of the University of Waterloo, specifically looking at how blood pressure and blood flow changes among astronauts in orbit.

Canadian astronaut Chris Hadfield gives a thumbs up after landing safely in Kazahkstan. Via NASA TV.
Canadian astronaut Chris Hadfield gives a thumbs up after landing safely in Kazahkstan. Via NASA TV.

Education and outreach were also something Hadfield was proud of. “The purpose is to help people to understand what is possible on the space station, and the things we are doing,” he said of his prolific tweeting and video creation.

The results, in many cases, were incredible. More than 7,000 Canadian students took part in experiments linked to the International Space Station, he said. Thousands more took part in a nation-wide singalong starring Hadfield. (Watch it below.)

Once Hadfield gets his feet underneath him and the mission fades into the past, he said he’s hoping to resume his life normally.

Astronauts of yesteryear, he said, often had big missions thrust upon them early in their lives. At age 53, for example, Hadfield is roughly 15 years older than Neil Armstrong was during the first moon landing in 1969.

For Hadfield, with two decades under his belt as an astronaut — three missions, several backup crew assignments, and some management positions to boot — he treats his everyday life with the same enthusiasm as his high-flying job.

“I take just as much pride in the big dock that my neighbor Bob and I built at the cottage as I do in building Canadarm2 on the space station. Those were both very complex projects that required a lot of physical effort, planning, decision making, and the product is out there for everybody to see. I feel really good about them both.”

Canadian astronaut Chris Hadfield in the Cupola of the International Space Station. Credit: NASA/CSA
Canadian astronaut Chris Hadfield in the Cupola of the International Space Station. Credit: NASA/CSA

He acknowledged that in a budget-conscious environment, the Canadian Space Agency is facing uncertainty, but he added that to treat today’s uncertainty as something unique is the wrong thing. Every mission carries a real risk of death. Every budget vote can kill or revive a space program — the station itself was only funded by a vote in one crucial Congress session in its history, he added.

“To say that things are uncertain is to talk about the space business. We are always hostage to our next launch. There has never been a period of certainty in the space business, ever,” he said.

His advice to those wanting to follow in his footsteps?

“The key thing is within yourself. If you want to become something, you have to start turning yourself into that thing, step by step, as a demonstration of personal will. That’s what I did when I was nine. I started turning myself into an astronaut.”

Watch the entire video of his press conference here.

‘Star Trek into Darkness’ & NASA Station Crews Join Forces at Live NASA Webcast

NASA and Star Trek connect on NASA TV on May 16 for the premiere of “Star Trek Into Darkness” on May 17, 2013 to celebrate the wonders of Space Exploration. Still image of the fictional star ship ‘Enterprise’. Credit: Star Trek

Science Fact and Science Fiction join forces in space today for a one of a kind meeting turning science fiction into reality – and you can participate courtesy of NASA and Hollywood!

Fictional astronauts and crews from the newest Star Trek incarnation; “Star Trek into Darkness” and real life astronauts taking part from outer space and Earth get connected today (May 16) via a live ‘space bridge’ webcast hosted by NASA. The movies premieres today – May 16.

NASA Television broadcasts the face-to-face meeting as a Google+ Hangout from noon to 12:45 p.m. EDT, May 16. Watch live below!

The webcast includes “Captain Kirk” – played by actor Chris Pine, and NASA astronaut Chris Cassidy – fresh off from his real life ‘emergency spacewalk’ this past weekend that saved the critically important cooling system aboard the International Space Station (ISS). “Into Darkness” features dramatic life and death spacewalks.

Astronaut Chris Cassidy during the May 11, 2013 emergency spacewalk at the ISS. Credit: NASA
Astronaut Chris Cassidy during the May 11, 2013 emergency spacewalk at the ISS. Credit: NASA

Also participating in the live NASA webcast are ‘Star Trek’ director J.J. Abrams, screenwriter and producer Damon Lindelof; and actors Alice Eve (Dr. Carol Marcus) and John Cho (Sulu) and astronauts Michael Fincke and Kjell Lindgren at NASA’s Johnson Space Center in Houston.

Fincke flew on the Space Shuttle and the ISS and made a guest appearance on the finale of the TV series – “Star Trek: Enterprise”. See photo below.

‘Star Trek Into Darkness’ movie still image. Credit: Star Trek
‘Star Trek Into Darkness’ movie still image. Credit: Star Trek

The ISS is a sort of early forerunner for the fictional ‘Federation’ in the ‘Star Trek’ Universe – constructed in low Earth orbit by the combined genius and talents of 5 space agencies and 16 nations of Earth to forge a united path forward for the peaceful exploration of Outer Space.

Cassidy will provide insights about everyday life aboard the real space station – like eating, sleeping, exercising and fun ( think Chris Hadfield’s guitar strumming ‘Space Oddity’ -watch the YouTube video below) – as well as the myriad of over 300 biological, chemical and astronomical science experiments performed by himself and the six person station crews during their six-month stints in zero gravity.

Astronaut Terry Virts, left, Actor Scott Bakula and Astronaut Mike Fincke, right, beam on the set of Star Trek's final Enterprise voyage. Credit: NASA
Astronaut Terry Virts, left, Actor Scott Bakula and Astronaut Mike Fincke, right, beam on the set of Star Trek’s final Enterprise voyage. Credit: NASA

The participants will ask questions of each other and take questions from the Intrepid Sea, Air & Space Museum in New York City (home of the space shuttle Enterprise), the Smithsonian’s National Air and Space Museum in Washington, and social media followers, says NASA.

Social media followers were allowed to submit 30 sec video questions until early this morning.

And you can submit questions today and during the live broadcast using the hashtag #askNASA on YouTube, Google+, Twitter and Facebook.

Captain Kirk and Mr. Spock in ‘Star Trek Into Darkness’. Credit: Star Trek
Captain Kirk and Mr. Spock in ‘Star Trek Into Darkness’. Credit: Star Trek

Watch the hangout live on NASA’s Google+ page, the NASA Television YouTube channel, or NASA TV starting at Noon EDT, May 16.

As a long time Star Trek fan (since TOS) I can’t wait to see ‘Into Darkness’

Ken Kremer

…………….
Learn more about NASA missions, Mars, Curiosity and more at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

NASA’s real life Space Shuttle Enterprise transits the NYC Skyline at Dusk on a barge on June 3, 2012 during a two stage seagoing  journey to her permanent  new home at the Intrepid Sea, Air and Space Museum. Enterprise is bracketed by the Empire State Building, The Freedom Tower (still under construction) and the torch lit Statue of Liberty. Credit: Ken Kremer
NASA’s real life Space Shuttle Enterprise transits the NYC Skyline at Dusk on a barge on June 3, 2012 during a two stage seagoing journey to her permanent new home at the Intrepid Sea, Air and Space Museum. Enterprise is bracketed by the Empire State Building, The Freedom Tower (still under construction) and the torch lit Statue of Liberty. Credit: Ken Kremer

Skylab: NASA Commemorates 40th Anniversary of America’s First Space Station – Photo Gallery/Broadcast

View of the Skylab Orbital Workshop in Earth orbit as photographed during departure of its last astronaut crew on Slylab 4 mission for the return home in Apollo capsule. Credit: NASA

View of NASA’s Skylab Orbital Workshop in Earth orbit as photographed during departure of its last astronaut crew on Slylab 4 mission for the return home in Apollo capsule.
Credit: NASA
See photo gallery below
Watch the recorded NASA Skylab 40th Anniversary discussion on YouTube – below[/caption]

Skylab was America’s first space station. The massive orbital workshop was launched unmanned to Earth orbit 40 years ago on May 14, 1973 atop the last of NASA’s Saturn V rockets that successfully lofted American’s astronauts on the historic lunar landings of the Apollo-era.

Three manned Apollo crews comprising three astronauts each ultimately lived and worked and conducted groundbreaking science experiments aboard Skylab for a total of 171 days from May 1973 to February 1974. Skylab paved the way for long duration human spaceflight and the ISS (International Space Station)

On May 13, NASA commemorated the 40th anniversary of Skylab’s liftoff with a special roundtable discussion broadcast live on NASA TV. The event started at 2:30 PM EDT and originated from NASA Headquarters in Washington, DC. Participants included Skylab and current ISS astronauts and NASA human spaceflight managers.

Watch the recorded NASA Skylab 40th Anniversary briefing on YouTube – below.

The Skylab project was hugely successful in accomplishing some 300 science experiments despite suffering a near death crisis in its first moments.

Shortly after blastoff of the Saturn V from Launch Complex 39A the station was severely crippled when launch vibrations completely ripped off one of the stations two side mounted power generating solar panels.

The micrometeoroid shield that protected the orbiting lab from intense solar heating was also torn away and lost. This caused the workshop’s internal temperatures to skyrocket to an uninhabitable temperature of 52 degrees Celsius (126 degrees F).

Furthermore, a piece of the shield had wrapped around the other solar panel which prevented its deployment, starving the station of desperately required electrical power.

View of crippled Skylab complex during ‘fly around’ by the first crew shows missing  micrometeoroid shield and stuck solar panel which luckily was not ripped off during launch. Credit: NASA
View of crippled Skylab complex during ‘fly around’ by the first crew shows missing micrometeoroid shield and stuck solar panel which luckily was not ripped off during launch. Credit: NASA

All nine astronauts that worked on Skylab were launched on the smaller Saturn 1B rocket from Pad 39B at the Kennedy Space Center.

The launch of the first crew was delayed by 10 days while teams of engineers at NASA devised a rescue plan to save the station. Engineers also ‘rolled’ Skylab to an attitude that minimized the unrelenting solar baking.

Owen Garriott Performs a Spacewalk During Skylab 3 Astronaut Owen Garriott performs a spacewalk at the Apollo Telescope Mount (ATM) of the Skylab space station cluster in Earth orbit, photographed with a hand-held 70mm Hasselblad camera. Garriott had just deployed the Skylab Particle Collection S149 Experiment. The experiment was mounted on one of the ATM solar panels. The purpose of the S149 experiment was to collect material from interplanetary dust particles on prepared surfaces suitable for studying their impact phenomena. Earlier during the spacewalk, Garriott assisted astronaut Jack Lousma, Skylab 3 pilot, in deploying the twin pole solar shield.  Credit: NASA
Owen Garriott Performs a Spacewalk During Skylab 3. Garriott performs a spacewalk at the Apollo Telescope Mount (ATM) of the Skylab space station cluster in Earth orbit, photographed with a hand-held 70mm Hasselblad camera. Garriott had just deployed the Skylab Particle Collection S149 Experiment. The experiment was mounted on one of the ATM solar panels. The purpose of the S149 experiment was to collect material from interplanetary dust particles on prepared surfaces suitable for studying their impact phenomena. Earlier during the spacewalk, Garriott assisted astronaut Jack Lousma, Skylab 3 pilot, in deploying the twin pole solar shield. Credit: NASA

The first crew aboard Skylab 2 launched on May 25, 1973 and successfully carried out three emergency spacewalks that salvaged the station and proved the value of humans in space. They freed the one remaining stuck solar panel and deployed a large fold out parasol sun shade through a science airlock that cooled the lab to a livable temperature of 23.8 degrees C (75 degrees F).

The Skylab 2 crew of Apollo 12 moon walker Charles Conrad, Jr., Paul J. Weitz, and Joseph P. Kerwin spent 28 days and 50 minutes aboard the complex.

The outpost became fully operational on June 4, 1973 allowing all three crews to fully carry out hundreds of wide ranging science experiments involving Earth observations and resources studies, solar astronomy and biomedical studies on human adaption to zero gravity.

The second crew launched on the Skylab 3 mission on July 28, 1973. They comprised Apollo 12 moon walker Alan L. Bean, Jack R. Lousma and Owen K. Garriott and spent 59 days and 11 hours aboard the orbiting outpost. They conducted three EVAs totaling 13 hours, 43 minutes and deployed a larger and more stable sun shade.

The 3rd and last crew launched on Skylab 4 on Nov. 16, 1973. Astronauts Gerald P. Carr, William R. Pogue, Edward G. Gibson spent 84 days in space. Their science observations included Comet Kohoutek. They conducted four EVAs totaling 22 hours, 13 minutes.

Skylab was the size of a 3 bedroom house and far more spacious then the tiny Apollo capsules. The complex was 86.3 ft (26.3 m) long and 24.3 ft (7.4 m) in diameter. It weighed 169,950 pounds.

“Skylab took the first step of Americans living in space and doing useful science above the atmosphere at wavelengths not possible on the ground and for long duration periods,” said astronaut Owen Garriot, science pilot, Skylab 3.

Skylab was also the first time student experiments flew into space – for example the spiders ‘Anita and Arabella’ – and later led to a many educational initiatives and programs and innovative ideas.

The Skylab project taught NASA many lessons in designing and operating the ISS, said NASA astronaut Kevin Ford who was the Commander of the recently completed Expedition 34.

NASA had hoped to revisit Skylab with Space Shuttle crews in the late 1970’s. But the massive lab’s orbit degraded faster than expected and Skylab prematurely plummeted back to Earth and disintegrated on July 11, 1979.

See a photo gallery of views from the Skylab missions herein.

Be sure to follow today’s (May 13) undocking of the ISS Expedition 35 crew (Commander ‘extraordinaire’ Chris Hadfield, Tom Marshburn and Roman Romanenko) and return to Earth tonight aboard a Russian Soyuz capsule.

The ISS is a fantastic measure of just have far we have come in space since Skylab – with the US and Russia peacefully cooperating to accomplish far more than each can do alone.

Ken Kremer

…………….
Learn more about NASA missions, Mars, Antares and Curiosity at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “Antares Rocket Launch from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Skylab 3 crew photographs Skylab space station with dramatic Earth backdrop during rendezvous and docking maneuvers in 1973.  Credit: NASA
Skylab 3 crew photographs Skylab space station with dramatic Earth backdrop during rendezvous and docking maneuvers in 1973. Credit: NASA
Undergoing a Dental Exam in Space Skylab 2 commander Pete Conrad undergoes a dental examination by medical officer Joseph Kerwin in the Skylab Medical Facility. In the absence of an examination chair, Conrad simply rotated his body to an upside down position to facilitate the procedure. Credit: NASA
Undergoing a Dental Exam in Space Skylab 2 commander Pete Conrad undergoes a dental examination by medical officer Joseph Kerwin in the Skylab Medical Facility. In the absence of an examination chair, Conrad simply rotated his body to an upside down position to facilitate the procedure. Credit: NASA
Skylab program patch
Skylab program patch

What is Your Favorite Chris Hadfield-ism?

Just a sample of Chris Hadfield's creativity in sharing his space experience. 'Weightless water. This picture is fun no matter what direction you spin it,' he said via Twitter.

During the past five months, Canadian astronaut Chris Hadfield has been providing a steady flow of strikingly beautiful images, as well as concisely sharing his experiences via social media sites like Twitter. Hadfield has become an internet sensation, and with his eloquence, wit, and ebullience he can certainly turn a phrase, as well as educate and elucidate.

During his Expedition, Hadfield has performed experiments with schoolchildren, chatted with people via amateur radio, and serenaded us with songs, including singing along with nearly 1 million students via webcast. He’s also exchanged tweets with Star Trek captains, first officers and engineers, as well as several averages Joe who asked a question. Hadfield has set a new standard of incredible.

Here are a few of our favorite quotes and Tweets from Hadfield during his mission. Feel free to add your own favorites in the comments.

Over the weekend, the ISS crew needed to do an emergency EVA, which could have been a tense situation. Instead, Hadfield tweeted about how fun this was going to be:

As the air was let out of the Quest airlock to allow Tom Marshburn and Chris Cassidy to step outside to do their EVA, Hadfield radioed to Mission Control that the depressurization was underway by saying, “We’re now doing our best to pressurize the rest of the Universe.”

On May 4, widely considered Star Wars Day around the world, Hadfield posted this fun picture, demonstrating some ‘Jedi skills’ on the ISS (and yes, we know its not an exactly correct quote from Yoda):

Being in space is such a great experience, Hadfield said, that he didn’t want to miss a minute, even to sleep:

“This is a marvelous, marvelous human experience,” Hadfield said in his first news conference after assuming command of the ISS in March. “The only thing that gets me mad is I have to sleep. My resolution has been to make the absolute most of it — to spend as little time sleeping as I can.”

During that same news conference, he expressed his excitement at taking command: “Thank you very much for giving me the keys to the family car… we’re going to put some miles on it, but we’ll bring it back in good shape.”

Hadfield talked to students several times from space – and performed some great show and tell, including the infamous ‘wringing out a washcloth in space’ video. He also coined some gems during these talks, such as:

“The cool things about space is when you put your pants on here, you can put them on two legs at a time.”

But he also gave some great advice. During a Q&A on Reddit, one student asked if Hadfield had any advice for an aspiring astronaut. Hadfeild replied:

“Decide in your heart what really excites and challenges you, and start moving your life in that direction. Every decision you make, from what you eat to what you do with your time tonight, turns you into who you are tomorrow and the day after that.” “Look at who you want to be, and start sculpting yourself into that person. You may not get exactly where you thought you’d be, but you will be doing things that suit you in a profession you believe in. “Don’t let life randomly kick you into the adult you don’t want to become.”

Gavin Aung Than, who pens Zen Pencils website, created a wonderful comic strip, “An astronaut’s advice” based on Hadfield’s response. See it here.

Hadfield quipped on the challenges and special clothing needed for their Soyuz landing – taking place tonight: “On landing we wear the Centaur G-suit, squeezes our calves, thighs and gut so that our blood stays in our heads. Space Spanx 🙂 “

On what it is like to sleep in space:

It is sort of like being inside your mother’s womb where your body is floating, your knees come up your arms go out, your head comes down. You are completely relaxed, it’s a wonderful way to sleep.

His description of how he felt during the Soyuz launch back in December:

“It is spectacular. From about five minutes in, when we knew for sure that we were going to have the weather to go, the smile on my face just got bigger and bigger, and I was just beaming through the whole launch. I mean, it is just an amazing ride.”

Then later during a press conference:

“Going to space and going from acceleration to weightlessness is like you’re being beaten and pummeled by a big gorilla on your chest and suddenly he throws you off a cliff.”

Then there were all the images of Earth from space, providing such a unique perspective of our humanity. For example, just this morning:

Here Hadfield summed up his thoughts on getting ready to head for home:

The amount of images Hadfield has taken during his mission is incredible and impressive. Here you can see an interactive graphic of all the images taken or tweeted by Chris Hadfield during his Expedition.

With over 833,000 followers on Twitter, will Hadfield keep up his social media presence once he returns back to Earth?

His son Evan, who has been Hadfield’s social media manager since Hadfield was chosen for this mission, assured that his father will keep the conversation going.

“A lot of people think that when he comes back he’ll stop, but I don’t really understand why because it’s not an end to something,” Evan said in an interview with the CBC. “It’s going to be so much greater when he comes home and people can interact with him face to face now that they know what he’s achieved and what it’s possible to achieve.”

Curiosity Reaches Out with Martian Handshake and Contemplates New Drilling at Habitable Site

NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2) and shows her flexing the robotic arm with Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret. Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo

NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2, 2013) and shows her flexing the robotic arm with dramatic scenery of Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret where she discovered a habitable site.
Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo[/caption]

NASA’s Curiosity rover has reached out in a Martian ‘handshake’ like gesture welcoming the end of solar conjunction that marks the resumption of contact with her handlers back on Earth – evidenced in a new photo mosaic of images captured as the robot and her human handlers contemplate a short traverse to a 2nd drilling target in the next few days.

“We’ll move a small bit and then drill another hole,” said John Grotzinger to Universe Today. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

The rover science team and Grotzinger have selected that 2nd drill location and are itching to send the rover on her way to the bumpy spot called “Cumberland.”

Cumberland lies about nine feet (2.75 meters) west of the “John Klein’ outcrop where Curiosity conducted humanity’s first ever interplanetary drilling on the alien Martian surface in February 2013.

“We’ll confirm what we found in the John Klein hole,” Grotzinger told me.

Curiosity discovered a habitable zone at the John Klein drill site.

After pulverizing and carefully sifting the John Klein drill tailings, a powered, aspirin sized portion of the gray rock was fed into a trio of inlet ports atop the rovers deck and analyzed by Curiosity’s duo of miniaturized chemistry labs named SAM and Chemin inside her belly to check for the presence of organic molecules and determine the inorganic chemical composition.

‘Cumberland’ and ‘John Klein’ are patches of flat-lying bedrock shot through with pale colored calcium sulfate hydrated mineral veins and a bumpy surface texture at her current location inside the ‘Yellowknife Bay’ basin.

This patch of bedrock, called "Cumberland," has been selected as the second target for drilling by NASA's Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS
This patch of bedrock, called “Cumberland,” has been selected as the second target for drilling by NASA’s Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS

“The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water,” NASA said in a statement.

Curiosity snapped high resolution color images of Cumberland on Sol 192 (Feb. 19, 2013) as part of the ongoing data collection campaign to put Yellowknife Bay into scientific context and search for future drill targets.

The John Klein bore hole (drilled on Feb 8, 2013, Sol 182) is visible in our new photo mosaic above created by myself and my imaging partner Marco Di Lorenzo. It was stitched from a ‘Martian baker’s dozen’ of raw images captured on May 2 (Sol 262). and shows the hand-like tool turret positioned above the first pair of drill holes.

Our new Sol 262 mosaic illustrates that Curiosity is again fully functional and flexing the miracle arm following a relaxing month long period of ‘Spring Break’ when there was no two- way communication with Earth during April’s solar conjunction.

The Sol 262 photo mosaic was originally featured at NBC News by Cosmic Log science editor Alan Boyle who likened it to a future Martian handshake in this cleverly titled story; “Curiosity’s ‘hand’ outstretched on Mars: Will humans ever shake it?”

See below our Sol 169 panoramic context view of Curiosity inside Yellowknife Bay collecting spectroscopic science measurements at the John Klein outcrop.

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) - back dropped with Mount Sharp - where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer -(kenkremer.com)/Marco Di Lorenzo

Curiosity found that the fine-grained, sedimentary mudstone rock at the John Klein worksite inside the shallow depression known as Yellowknife Bay possesses significant amounts of phyllosilicate clay minerals; indicating the flow of nearly neutral liquid water and a habitat friendly to the possible origin of simple Martian microbial life forms eons ago.

Grotzinger also explained to Universe Today that Curiosity will soon to more capable than ever before.

“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities’” said Grotzinger.

“Then we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”

Curiosity will spend a month or more at the Cumberland site to collect and completely analyze the drill tailings.

Then she’ll resume her epic trek to mysterious Mount Sharp, the 3.5 mile (5 km) high mountain that dominates her landing site and is her ultimate driving inside Gale Crater according to Grotzinger.

“After that [Cumberland] we’re likely to begin the trek to Mt. Sharp, though we’ll stop quickly to look at a few outcrops that we passed by on the way into Yellowknife Bay,” Grotzinger explained to Universe Today.

The Shaler outcrop passed by on the path into Yellowknife Bay is high on the list of stops during the year long journey to Mount Sharp, says Grotzinger. Read more details about Shaler in a new BBC story by Jonathan Amos – here – featuring our Shaler outcrop mosaic.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity and NASA missions at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “Antares Rocket Launch from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

This map shows the location of "Cumberland," the second rock-drilling target for NASA's Mars rover Curiosity, in relation to the rover's first drilling target, "John Klein," within the southwestern lobe of a shallow depression called "Yellowknife Bay." Cumberland, like John Klein, is a patch of flat-lying bedrock with pale veins and bumpy surface texture. The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water. Image credit: NASA/JPL-Caltech/Univ. of Arizona
This map shows the location of “Cumberland,” the second rock-drilling target for NASA’s Mars rover Curiosity, in relation to the rover’s first drilling target, “John Klein,” within the southwestern lobe of a shallow depression called “Yellowknife Bay.” Cumberland, like John Klein, is a patch of flat-lying bedrock with pale veins and bumpy surface texture. The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water. Image credit: NASA/JPL-Caltech/Univ. of Arizona

Send Your Name and a Haiku Poem to Mars on a Solar Winged MAVEN

The MAVEN missions ‘Going to Mars’ campaign invites the public to submit names and poems which will be included on a special DVD. The DVD will be adhered to the MAVEN spacecraft and launched to Mars on Nov. 18, 2013. Credit: NASA/GSFC

Do you want to go to Mars?

Well here’s your chance to get connected for a double barreled dose of Red Planet adventure courtesy of MAVEN – NASA’s next ‘Mission to Mars’ which is due to liftoff this November from the Florida Space Coast.

For a limited time only, NASA is offering the general public two cool ways to get involved and ‘Go to Mars’ aboard a DVD flying on the solar winged MAVEN (Mars Atmosphere and Volatile Evolution) orbiter.

You can send your name and a short poetic message to Mars via the ‘Going to Mars’ campaign being managed by the University of Colorado at Boulder’s Laboratory for Atmospheric and Space Physics (CU/LASP).

“Anybody on planet Earth is welcome to participate!” says NASA.

“The Going to Mars campaign offers people worldwide a way to make a personal connection to space, space exploration, and science in general, and share in our excitement about the MAVEN mission,” said Stephanie Renfrow, lead for the MAVEN Education and Public Outreach program at CU/LASP.

Signing up to send your name is easy. Simply click on the MAVEN mission website – here.

The MAVEN missions ‘Going to Mars’ campaign invites submissions from the public; artwork, messages, and names will be included on a special DVD. The DVD will be adhered to the MAVEN spacecraft and launched into orbit around Mars. (Courtesy Lockheed Martin)
The MAVEN missions ‘Going to Mars’ campaign invites submissions from the public; artwork, messages, and names will be included on a special DVD. The DVD will be adhered to the MAVEN spacecraft and launched into orbit around Mars. (Courtesy Lockheed Martin)

Everyone who submits their name will be included on a DVD that will be attached to the winged orbiter. And you can print out a beautiful certificate of participation emblazoned with your name!

Over 1 million folks signed up to send their names to Mars with NASA’s Curiosity rover. So they are all riding along as Curiosity continues making ground breaking science discoveries and already found habitats that could support potential Martian microbes.

Writing the haiku poem will require thought, inspiration and creativity and involves a public contest – because only 3 poems will be selected and sent to Mars. The public will vote for the three winning entries.

Haiku’s are three line poems. The rules state that “the first and last lines must have exactly five syllables each and the middle line must have exactly seven syllables. All messages must be original and not plagiarized in any way.”

The complete contest rules are found at the mission website – here:

This is a simple way for kids and adults alike to participate in humanity’s exploration of the Red Planet. And it’s also a great STEM activity for educators and school kids of all ages before this year’s school season comes to a close.

470505_10150721848592868_1231281550_o[1]

“This new campaign is a great opportunity to reach the next generation of explorers and excite them about science, technology, engineering and math,” said Bruce Jakosky, MAVEN principal investigator from CU/LASP. “I look forward to sharing our science with the worldwide community as MAVEN begins to piece together what happened to the Red Planet’s atmosphere.”

MAVEN is slated to blast off atop an Atlas V rocket from Cape Canaveral Florida on Nov. 18, 2013. It will join NASA’s armada of four robotic spacecraft when it arrives at Mars during 2014.

MAVEN is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. The spacecraft will investigate how the loss of Mars’ atmosphere to space determined the history of water on the surface.

But don’t dawdle- the deadline for submissions is July 1.

So, sign up to ‘Go to Mars’ – and do it NOW!

Juice up your inner poet and post your ‘Haiku’ here – if you dare

Ken Kremer

Astronaut Hadfield’s Music Unites Schools in Song

Students at St. Emily Catholic School in Ottawa perform "Is Somebody Singing" on the same day astronaut Chris Hadfield sang it in space. Credit: Elizabeth Howell

OTTAWA, CANADA – Last time Chris Hadfield went up in space in 2001, most of them were infants. In 1995, during his first mission, none of them were even born. Hundreds of elementary school students at an Ottawa school, however, sang enthusiastically along with his music — and along with thousands of other students throughout Canada — during a nationwide performance May 6.

See the video of the event below:

The 860 children at St. Emily Catholic School added their voices to the throng as Hadfield led a rendition of “Is Somebody Singing” from the International Space Station.

Ranging in ages between 4 and 12, the students at this school spent six weeks practicing in their individual classrooms before performing together for the first time.

Music is a big part of the school’s life. There are regular masses and liturgies. Some of the older students have their own bands and do performances. Saint Emily also hosts local bands in Ottawa, including Junkyard Symphony.

But this performance was something different. Hadfield, Barenaked Ladies frontman Ed Robertson and others reprised the January premiere of the song and invited every school in Canada to take part. Some sang directly with the live broadcast. Others assembled on front lawns, or in gyms, to sing at their own pace.

“We all listened to [the song] and thought it as a great way for the school to come together as a community,” said Roisin Philippe, a kindergarten teacher at Saint Emily who co-organized the school’s performance. Several teachers brought their own instruments — guitars, harps, and the like — to the performance. Others handed out tambourines.

Teachers took the opportunity to integrate the performance into the school’s curriculum where possible. Jenny Ng, who teaches Grade 1, would show students some of Hadfield’s videos (such as how to brush one’s teeth in space.)  Others downloaded the sheet music to distribute to the class and teach them how to read music.

The performance is an initiative of the Canadian Broadcast Corp.’s Music Monday. It was the last live event with Hadfield, who currently commands Expedition 35, before he returns to Earth.

Hadfield and two of his crewmates — Tom Marshburn and Roman Romanenko — are scheduled to come back May 13.

Virgin Galactic: We Don’t Anticipate Motion Sickness

SpaceShipTwo durings its test flight on May 4, 2011. Suborbital science experiments fly aboard this craft, as well as on Blue Origin's New Shepard, and other suborbital flights, providing scientists, students, and others with valuable microgravity access. Credit: Virgin Galactic Credit: Clay Observator

When the spaceship Enterprise — Virgin Galactic’s SpaceShipTwo, not the Star Trek spacecraft — fired its rocket engines for the first time in flight last week, it set off a new frenzy of talk about tourists flying in space.

More than 500 people have made their $200,000 reservations; the price is actually going up to $250,000 in the near future, according to media reports, to adjust for inflation.

Among those hundreds of people, it’s possible that a few could be susceptible to motion sickness.

In space, particularly when you’re floating around freely, it’s hard for your body to tell up from down. This can happen even if you’re sitting still; one astronaut once told NASA how freaked out his body was when he woke up in the morning, expecting to be lying on the right as usual. He was in that position, but staring at the ceiling.

When SpaceShipTwo goes to space, it will make one big parabola — soaring arc — before returning to Earth. It’s a similar trajectory to one cycle flown by the “Vomit Comet”, an infamous program run by NASA to do experiments and research on an airplane in temporarily weightless conditions. The aircraft dives up and down a few dozen times in a typical run, and the environment flips from microgravity to a pull that is much stronger than usual. This can create some heaving stomachs.

Trajectory of the Vomit Comet. Credit: NASA
Trajectory of the Vomit Comet. Credit: NASA

But let’s put space adaptation syndrome into perspective. Senator Jake Garn, when he flew on shuttle Discovery in 1985, famously became quite ill for reasons often attributed to motion sickness. After his return, there were those within NASA that began measuring the amount of space sickness in “Garns”, according to NASA physician Robert Stevenson in a 1999 interview with NASA. By that scale, illness problems are generally pretty mild.

Jake Garn, he has made a mark in the astronaut corps because he represents the maximum level of space sickness that anyone can ever attain, and so the mark of being totally sick and totally incompetent is one Garn. Most guys will get maybe to a tenth Garn, if that high. And within the astronaut corps, he forever will be remembered by that.

According to Virgin, though, they anticipate practically no Garns at all. Here’s what Virgin spokesperson Jessica Ballard (who is with Griffin Communications Group) told Universe Today:

Virtually no customers on board parabolic aircraft experience any motion effects on the first parabola. Since our experience could be thought of as one large single parabola, we expect very low incidence of any motion effects. In addition, our experience will also have significantly slower transitions between zero-g and positive G than parabolic flight, which we expect to improve our customers’ experience.

Thus, we anticipate that most of our passengers will not require motion sickness medication. The decision to use prophylactic [preventative] medication, and which form of medication should be used, will be made on a case by case basis with each passenger. Because of this, we’re confident that our customers will be both ready and eager to get up out of their seats once they reach space. Additionally, we are expecting there to be instances where many on board experience pain, inflammation, and general discomfort. In anticipation, we have prepared kratom strains from a number of different companies, including Kona Kratom, for all aboard. The following kratom strains for pain relief will be freely available to all on board who are experiencing discomfort: white maeng da, super green malay, red thai, red malay, red indo, red horn, red dragon, red borneo, and red bali. A special thanks for Kona Kratom and their staff for their assistance on the kratom front. Kratom is extremely helpful when used by passengers because it’s natural and does not have the side effects traditional painkillers come with.

How susceptible are you to motion sickness, and does it occur for you in flight? Let us know in the comments.

Mars Armada Resumes Contact with NASA – Ready to Rock ‘n Roll n’ Drill

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) - back dropped with Mount Sharp - where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
See drill hole and conjunction videos below[/caption]

After taking a well deserved and unavoidable break during April’s solar conjunction with Mars that blocked two way communication with Earth, NASA’s powerful Martian fleet of orbiters and rovers have reestablished contact and are alive and well and ready to Rock ‘n Roll ‘n Drill.

“Both orbiters and both rovers are in good health after conjunction,” said NASA JPL spokesman Guy Webster exclusively to Universe Today.

Curiosity’s Chief Scientist John Grotzinger confirmed to me today (May 1) that further drilling around the site of the initial John Klein outcrop bore hole is a top near term priority.

The goal is to search for the chemical ingredients of life.

“We’ll drill a second sample,” Grotzinger told Universe Today exclusively. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

“We’ll move a small bit, either with the arm or the wheels, and then drill another hole to confirm what we found in the John Klein hole.”

Earth, Mars and the Sun have been lined up in nearly a straight line for the past several weeks, which effectively blocked virtually all contact with NASA’s four pronged investigative Armada at the Red Planet.

NASA’s Red Planet fleet consists of the Curiosity (MSL) and Opportunity (MER) surface rovers as well as the long lived Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO) robotic orbiters circling overhead. ESA’s Mars Express orbiter is also exploring the Red Planet.

“All have been in communications,” Webster told me today, May 1.

The NASA spacecraft are functioning normally and beginning to transmit the science data collected and stored in on board memory during the conjunction period when a commanding moratorium was in effect.

“Lots of data that had been stored on MRO during conjunction has been downlinked,” Webster confirmed to Universe Today.

Curiosity and Mount Sharp: Curiosity's elevated robotic arm and drill are staring back at you - back dropped by Mount Sharp, her ultimate destination.  The rover team anticipates new science discoveries following the resumption of contact with NASA after the end of solar conjunction.  This panoramic vista of Yellowknife Bay basin was snapped on March 23, Sol 223 prior to conjunction and assembled from several dozen raw images snapped by the rover's navigation camera system.  These images were snapped after the robot recovered from a computer glitch in late Feb and indicated she was back alive and functioning working normally. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/KenKremer (kenkremer.com).
Curiosity and Mount Sharp: Curiosity’s elevated robotic arm and drill stare back at you at the John Klein drill site – back dropped by mysterious Mount Sharp. The rover has resumed contact with NASA following the end of solar conjunction. This panoramic vista was snapped on March 23, 2013, Sol 223. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/KenKremer (kenkremer.com)

And NASA is already transmitting and issuing new marching orders to the Martian Armada to resume their investigations into unveiling the mysteries of the Red Planet and determine whether life ever existed eons ago or today.

“New commanding, post-conjunction has been sent to both orbiters and Opportunity.”

“And the sequence is being developed today for sending to Curiosity tonight (May 1), as scheduled more than a month ago,” Webster explained.

“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities,” said Grotzinger.

“After that we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”

Curiosity is at work inside the Yellowknife Bay basin just south of the Martian equator. Opportunity is exploring the rim of Endeavour crater at the Cape York rim segment.

Opportunity Celebrates 9 Years and 3200 Sols on Mars snapping this panoramic view from her current location on ‘Matijevic Hill’ at Endeavour Crater. The rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013). “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer
Opportunity Celebrates 9 Years and 3200 Sols on Mars snapping this panoramic view from her current location on ‘Matijevic Hill’ at Endeavour Crater. The rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013). “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer

Mars Solar Conjunction is a normal celestial event that occurs naturally about every 26 months. The science and engineering teams take painstaking preparatory efforts to insure no harm comes to the spacecraft during the conjunction period when they have no chance to assess or intervene in case problems arise.

So it’s great news and a huge relief to the large science and operations teams handling NASA’s Martian assets to learn that all is well.

Since the sun can disrupt and garble communications, mission controllers suspended transmissions and commands so as not to inadvertently create serious problems that could damage the fleet in a worst case scenario.

So what’s on tap for Curiosity and Opportunity in the near term ?

“For the first few days for Curiosity we will be installing a software upgrade.”

“For both rovers, the science teams will be making decisions about how much more to do at current locations before moving on,” Webster told me.

The Opportunity science team has said that the long lived robot has pretty much finished investigating the Cape York area at Endeavour crater where she made the fantastic discovery of phyllosilicates clay minerals that form in neutral water.

Signals from Opportunity received a few days ago on April 27 indicated that the robot had briefly entered a standby auto mode while collecting imagery of the sun.

NASA reported today that all operations with Opportunity was “back under ground control, executing a sequence of commands sent by the rover team”, had returned to normal and the robot exited the precautionary status.

Opportunity Celebrates 9 Years on Mars snapping this panoramic view of the vast expanse of 14 mile (22 km) wide Endeavour Crater from atop ‘Matijevic Hill’ on Sol 3182 (Jan. 5, 2013). The rover then drove 43 feet to arrive at ‘Whitewater Lake’ and investigate clay minerals. Photo mosaic was stitched from Navcam images and colorized. Credit: NASA/JPL-Caltech/Cornell/Ken Kremer/Marco Di Lorenzo
Opportunity Celebrates 9 Years on Mars snapping this panoramic view of the vast expanse of 14 mile (22 km) wide Endeavour Crater from atop ‘Matijevic Hill’ on Sol 3182 (Jan. 5, 2013). The rover then drove 43 feet to arrive at ‘Whitewater Lake’ and investigate clay minerals. Photo mosaic was stitched from Navcam images and colorized. Credit: NASA/JPL-Caltech/Cornell/Ken Kremer/Marco Di Lorenzo

“The Curiosity team has said they want to do at least one more drilling in Yellowknife Bay area,” according to Webster.

Curiosity has already accomplished her primary task and discovered a habitable zone that possesses the key ingredients needed for potential alien microbes to once have thrived in the distant past on the Red Planet when it was warmer and wetter.

The robot found widespread evidence for repeated episodes of flowing liquid water, hydrated mineral veins and phyllosilicates clay minerals on the floor of her Gale Crater landing site after analyzing the first powder ever drilled from a Martian rock.

Video Caption: Historic 1st bore hole drilled by NASA’s Curiosity Mars rover on Sol 182 of the mission (8 Feb 2013). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/Ken Kremer (http://www.kenkremer.com/)

During conjunction Curiosity collected weather, radiation and water measurements but no imagery.

Check out this wonderful new story at Space.com featuring Curiosity mosaics by me and my imaging partner Marco Di Lorenzo and an interview with me.

Ken Kremer

Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com).
Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera – accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com).

Watch this brief NASA JPL video for an explanation of Mars Solar Conjunction.

Space Robotics Dominate New $5 Bill in Canada

Canadarm2, Dextre and an unidentified astronaut will all feature on Canada's new $5 bill. Credit: Bank of Canada

In a world first, Canada’s Chris Hadfield unveiled a new money note — while in space.

Hadfield spun a fiver before the camera Tuesday as part of a ceremony to announce new $5 and $10 bills that will be distributed in Canada this year. The $5 bill will feature two pieces of Canadian technology that helped build the station: Canadarm2, which is a mobile robotic arm, and the hand-like Dextre.

The bill also shows an unidentified astronaut. That said, the choice to use Hadfield in the press conference was likely not a coincidence: Hadfield assisted with Canadarm2’s installation in 2001 when he became the first Canadian to walk in space.

“These bills will remind Canadians, every time they buy a sandwich and a coffee and a donut, what we are capable of achieving,” said Hadfield, who is in command of Expedition 35 on the International Space Station. His comments were carried on a webcast from the Bank of Canada.

The money note travelled with Hadfield in his Soyuz when he rocketed to the station in December, the Canadian Space Agency told Universe Today.

The polymer notes are intended to be more secure than the last generation of bills issued in Canada. Polymer $20, $50 and $100 bills are already available, but the smaller currencies won’t hit consumer pocketbooks until November.

Canadian astronaut Chris Hadfield holds a version of the $5 bill on the International Space Station. Credit: Bank of Canada (webcast)
Canadian astronaut Chris Hadfield holds a version of the $5 bill on the International Space Station. Credit: Bank of Canada (webcast)

“Featuring a sophisticated combination of transparency and holography, this is the most secure bank note series ever issued by the Bank of Canada. The polymer series is more economical, lasting at least two and half times longer than cotton-based paper bank notes, and will be recycled in Canada,” the Bank of Canada stated in a press release.

As with the past $5 bill, the opposite face of the new bill shows a drawing of past prime minister Wilfrid Laurier. Also shown at the ceremony: the $10 bill, with a Via Canada train on one side and John A. Macdonald, the first Canadian prime minister, on the other.

Both Jim Flaherty, Canada’s minister of finance, and Bank of Canada governor Mark Carney wore Expedition 35 pins at the press conference.

“I hope that’s not London calling,” Flaherty quipped to laughing reporters when NASA’s Mission Control phoned in with Hadfield on the line.

Hadfield is no stranger to space-themed currency. In 2006, the Royal Mint of Canada released two coins featuring him and Canadarm2. Hadfield and several other Canadian astronauts were also put on to Canadian stamps in 2003.

You can check out the full set of polymer bills on this Flickr series uploaded by the Bank of Canada.