It may sound like science fiction, or just odd even, but that is the idea behind a new proposal by NASA for an alternative to the solar and nuclear powered missions common today. The bacteria could provide a long-lived energy source which could sustain a tiny robotic probe; the amount of energy generated would also be small however, not enough to power larger probes like the Mars rovers for example. The microbial fuels cells could last a long time however, as long as the bacteria themselves had an adequate food supply.
The microbe being considered for the project is Geobacter sulfurreducens, which does not require oxygen for its survival.
A research team at the Naval Research Laboratory would like to have a working prototype of just such a robot within the next ten years that would weigh about 2 pounds (1 kilogram). There are technological hurdles, as with any new mission concept, to be overcome which will take several years.
Another major concern however, is the problem of contamination. Planetary probes, especially ones going to Mars, have been sterilized before launch according to a long-standing protocol, to minimize the introduction of earthly bacteria to the alien environments. So what would happen if a bacteria-powered probe was sent? It seems counter-productive then to deliberately send microbes which not only hitch a ride but are actually the fuel.
According to Gregory Scott at NSL: “There are planetary protection concerns, as well as concerns about protecting the microbes themselves from radiation. Sometime down the road we also have to consider whether the microbes we’re looking at are most effective for radiation environments or extreme temperatures.”
Any bacteria-based fuel system would have to take the contamination issue into account and be developed so as to try to minimize the chances of accidental leakage, especially in a place like Mars, where such organisms would have a decent chance at survival.
The concept is an innovative and exciting one, if the various technological and environmental concerns can be addressed. If so, our tiny friends may help to open a new chapter in space exploration.
Scott continues: “As we move forward in the utilisation of MFCs as an energy generation method, this research begins to lay the groundwork for low powered electronics with a long-term potential for space and robotic applications,” says Scott. Microbial fuel cells coupled with extremely low-power electronics and a low energy requirement for mobility addresses gaps in power technology applicable to all robotic systems, especially planetary robotics.”
SpaceX’s Dragon spacecraft has gotten its wings and is set to soar to the International Space Station (ISS) in about a month. NASA and SpaceX are currently targeting a liftoff on Feb. 7 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
Dragon is a commercially developed unmanned cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA. The Dragon spacecraft will launch atop a Falcon 9 booster rocket also built by SpaceX, or Space Exploration Technologies.
The Feb. 7 demonstration flight – dubbed COTS 2/3 – represents the first test of NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.
Following the forced retirement of the Space Shuttle after Atlantis final flight in July 2011, NASA has no choice but to rely on private companies to loft virtually all of the US share of supplies and equipment to the ISS.
The Feb. 7 flight will be the first Dragon mission actually tasked to dock to the ISS and is also the first time that the Dragon will fly with deployable solar arrays. The twin arrays are the primary power source for the Dragon. They will be deployed a few minutes after launch, following Dragon separation from the Falcon 9 second stage.
The solar arrays can generate up to 5000 watts of power on a long term basis to run the sensors and communications systems, drive the heating and cooling systems and recharge the battery pack.
SpaceX designed, developed and manufactured the solar arrays in house with their own team of engineers. As with all space hardware, the arrays have been rigorously tested for hundreds of hours under the utterly harsh conditions that simulate the unforgiving environment of outer space, including thermal, vacuum, vibration, structural and electrical testing.
The two arrays were then shipped to Florida and have been attached to the side of the Dragon’s bottom trunk at SpaceX’s Cape Canaveral launch processing facilities. They are housed behind protective shielding until commanded to deploy in flight.
Video Caption: SpaceX testing of the Dragon solar arrays. Credit: SpaceX
I’ve toured the SpaceX facilities several times and seen the Falcon 9 and Dragon capsule launching on Feb. 7. The young age and enthusiasm of the employees is impressive and quite evident.
NASA recently granted SpaceX the permission to combine the next two COTS demonstration flights into one mission and dock the Dragon at the ISS if all the rendezvous practice activities in the vicinity of the ISS are completed flawlessly.
The ISS crew is eagerly anticipating the arrival of Dragon, for whch they have long trained.
“We’re very excited about it,” said ISS Commander Dan Burbank in a televised interview from on board the ISS earlier this week.
The ISS crew will grapple the Dragon with the station’s robotic arm when it comes within reach and berth it to the Earth-facing port of the Harmony node.
“From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”
Burbank is a US astronaut and captured stunning images of Comet Lovejoy from the ISS just before Christmas, collected here.
Jan 11: Free Lecture by Ken at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL
[/caption]Following up on our successful “Ask Dr. Alan Stern” interview, we’re continuing our “Ask” series. This time, Universe Today readers will be able to Ask an Astronaut!
Here’s how it works: Readers can submit questions they would like Universe Today to ask the guest responder. Simply post your question in the comments section of this article. We’ll take the top five (or so) questions, as ranked by “likes” on the discussion posts. If you see a question you think is good, click the “like” button to give it a vote.
Keep in mind that final question acceptance is based on the discretion of Universe Today and in some cases, the responder and/or their employer.
This installment features International Space Station Expedition 29 commander, Mike Fossum.
Fossum served as an Air Force test pilot until 1992, when he joined NASA. Officially selected for the Astronaut Corps in 1998, His first space flight was on July 4, 2006 as an STS-121 mission specialist.
According to NASA, Fossum completed 167 days in space as a member of the Expedition 28 and 29 crews during his third space flight. Altogether, Fossum has spent 194 days in space and performed seven spacewalks. He ranks seventh on the all-time list for cumulative spacewalking time.
Fossum and his crewmates, Expedition 29 Flight Engineers Sergei Volkov of the Russian Space Agency and Satoshi Furukawa of the Japan Aerospace Exploration Agency, returned to Earth in their Soyuz TMA-02M spacecraft at 8:26 p.m. on Nov. 21, 2011. Fossum was aboard the station during the final space shuttle mission, STS-135, which delivered supplies and equipment to the outpost. During most of his time aboard the ISS, Fossum performed science experiments and routine maintenance.
Has the International Space Station (ISS) secretly joined NASA’s newly arrived GRAIL lunar twins orbiting the Moon?
No – but you might think so gazing at these dazzling new images of the Moon and the ISS snapped by a NASA photographer yesterday (Jan. 4) operating from the Johnson Space Center in Houston, Texas.
Check out this remarkable series of NASA photos above and below showing the ISS and her crew of six humans crossing the face of Earth’s Moon above the skies over Houston, Texas. And see my shot below of the Moon near Jupiter – in conjunction- taken just after the two GRAIL spacecraft achieved lunar orbit on New Year’s weekend.
In the photo above, the ISS is visible at the upper left during the early evening of Jan. 4, and almost looks like it’s in orbit around the Moon. In fact the ISS is still circling about 248 miles (391 kilometers) above Earth with the multinational Expedition 30 crew of astronauts and cosmonauts hailing from the US, Russia and Holland.
The amazing photo here is a composite image showing the ISS transiting the Moon’s near side above Houston in the evening hours of Jan 4.
The ISS is the brightest object in the night sky and easily visible to the naked eye if it’s in sight.
With a pair of binoculars, it’s even possible to see some of the stations structure like the solar panels, truss segments and modules.
Check this NASA Website for ISS viewing in your area.
How many of you have witnessed a sighting of the ISS?
It’s a very cool experience !
NASA says that some especially good and long views of the ISS lasting up to 6 minutes may be possible in the central time zone on Friday, Jan 6 – depending on the weather and your location.
And don’t forget to check out the spectacular photos of Comet Lovejoy recently shot by Expedition 30 Commander Dan Burbank aboard the ISS – through the Darth Vader like Cupola dome, and collected here
It’s only a few days into 2012 and already some new exoplanet discoveries have been announced. As 2011 ended, there were a total of 716 confirmed exoplanets and 2,326 planetary candidates, found by both orbiting space telescopes like Kepler and ground-based observatories. The pace of new discoveries has accelerated enormously in the past few years. Now there are four more confirmed exoplanets to add to the list.
The four planets, HAT-P-34b, HAT-P-35b, HAT-P-36b, HAT-P-37b all have very tight orbits around their (four different) stars, taking only 5.5, 3.6, 1.3 and 2.8 days to complete an orbit. Compare that to Mercury, which takes 87.969 days and 365 days of course for Earth.
They were found by astronomers with the Harvard-Smithsonian Center for Astrophysics which operates a network of ground-based telescopes known as the HATNet project. The first exoplanet discovery by HATNet, the planet HAT-P-1b, was in 2006.
They are all “hot jupiter” type planets, gas giants which orbit very close to their stars and so are much hotter than Earth, like Mercury in our own solar system. Mercury though, of course, is a small rocky world, but in some alien solar systems, gas giants have been found orbiting just as close to their stars, or even closer, than Mercury does here. HAT-P-34b however, may have an “outer component” and is in a very elongated orbit. The other three are more typical hot Jupiters. They were discovered using the transit method, when a planet is aligned in its orbit so that it passes in front of its star, from our viewpoint.
So what does this mean? If exoplanet discoveries continue to grow exponentially as expected, then 2012 should be a good year, not only for yet more new planets being found, but also for our understanding of these alien worlds and how such a wide variety of solar systems came to be. We’ve come a long way from 1992 and the first exoplanet discoveries and things promise to only get more exciting in the future.
If you want to get your exoplanet news quickly this year, I recommend the Exoplanet App for iPhone, iPad and iPod Touch. You can also follow @ExoplanetApp on Twitter.
Take a good close look at the Moon today and consider this; Two new Moon’s just reached orbit.
NASA is ringing in the New Year with a double dose of champagne toasts celebrating the back to back triumphal insertions of a pair of tiny probes into tandem lunar orbits this weekend that seek to unravel the hidden mysteries lurking deep inside the Moon and figure out how the inner solar system formed eons ago.
Following closely on the heels of her twin sister, NASA’s GRAIL-B spacecraft ignited her main braking rockets precisely as planned on New Year’s Day (Jan.1) to go into a formation flying orbit around the Moon, chasing behind GRAIL-A which arrived on New Year’s Eve (Dec. 31).
“Now we have them both in orbit. What a great feeling!!!!” NASA manager Jim Green told Universe Today just minutes after the thruster firing was done. Green is NASA’s Director of Planetary Science and witnessed the events inside Mission Control at the Jet Propulsion Laboratory (JPL) in Pasadena, Ca.
“It’s the best New Year’s ever!!” Green gushed with glee.
The new lunar arrivals of GRAIL-A and GRAIL-B capped a perfect year for NASA’s Planetary Science research in 2011.
“2011 began the Year of the Solar System – which is a Mars year (~670 Earth days long)… and includes Grail B insertion, Dawn leaving Vesta this summer … And the landing of MSL! ,” Green said.
“Cheers in JPL mission control as everything is looking good for GRAIL-B. It’s going to be a great 2012!!” JPL tweeted shortly after confirming the burn successfully placed GRAIL-B into the desired elliptical orbit.
After years of hard work, GRAIL principal investigator Maria Zuber of MIT told Universe Today that she was very “relieved”, soon after hearing the good news at JPL Mission Control.
“Since GRAIL was originally selected I’ve believed this day would come,” Zuber told me shortly after the GRAIL-B engine firing was declared a success on New Year’s Day.
“But it’s difficult to convey just how relieved I am right now. Time for the Science Team to start their engines !”
At 2:43 p.m. PST (5:43 p.m. EST) on New Year’s Day, the main thruster aboard GRAIL-B automatically commenced firing to slow down the spacecraft’s approach speed by about 430 MPH (691 kph) and allow it to be captured into orbit by the Moon’s gravity. The preprogrammed maneuver lasted about 39 minutes and was nearly identical to the GRAIL-A firing 25 hours earlier.
The hydrazine fueled main thrusters placed the dynamic spacecraft duo into near-polar, highly elliptical orbits.
Over the next two months, engineers will trim the orbits of both spacecraft to a near-polar, near-circular formation flying orientation. Their altitudes will be lowered to about 34 miles (55 kilometers) and the orbital periods trimmed from their initial 11.5 hour duration to about two hours.
The science phase begins in March 2012. For 82 days, the mirror image GRAIL-A and GRAIL-B probes will be flying in tandem with an average separation of about 200 kilometers as the Moon rotates beneath.
“GRAIL is a Journey to the Center of the Moon,” Zuber explained at a media briefing. “It will use exceedingly precise measurements of gravity to reveal what the inside of the Moon is like.”
As one satellite follows the other, in the same orbit, they will perform high precision range-rate measurements to precisely measure the changing distance between each other to within 1 micron, the width of a red blood cell, using a Ka-band instrument.
When the first satellite goes over a higher mass concentration, or higher gravity, it will speed up slightly. And that will increase the distance. Then as the second satellite goes over, that distance will close again.
The data returned will be translated into gravitational field maps of the Moon that will help unravel information about the makeup of the Moon’s mysterious core and interior composition. GRAIL will gather three complete gravity maps over the three month mission.
“There have been many missions that have gone to the Moon, orbited the Moon, landed on the Moon, brought back samples of the Moon,” said Zuber. “But the missing piece of the puzzle in trying to understand the Moon is what the deep interior is like.”
“Is there a core? How did the core form? How did the interior convect? What are the impact basins on the near-side flooded with magma and give us this Man-in-the-Moon shape whereas the back side of the Moon doesn’t have any of this? These are all mysteries that despite the fact we’ve studied the Moon before, we don’t understand how that has happened. GRAIL is a mission that is going to tell us that.”
“We think the answer is locked in the interior,” Zuber elaborated.
How will the twins be oriented in orbit to gather the data ?
“The probes will be pointed at one another to make the highly precise measurements,” said GRAIL co-investigator Sami Asmar of JPL to Universe Today. “The concept has heritage from the US/German GRACE earth orbiting satellites which mapped Earth’s gravity field. GRACE required the use of GPS satellites for exactly knowing the position, but there is no GPS at the Moon. So GRAIL was altered to compensate for no GPS at the Moon.”
GRAIL will map the gravity field by 100 to 1000 times better than ever before.
“We will learn more about the interior of the Moon with GRAIL than all previous lunar missions combined,” says Ed Weiler, the recently retired NASA Associate Administrator of the Science Mission Directorate in Washington, DC.
The GRAIL twins blasted off from Florida mounted side by side atop a Delta II booster on September 10, 2011 and took a circuitous 3.5 month low energy path to the Moon to minimize the overall costs.
So when you next look at the sky tonight and in the coming weeks just imagine those mirror image GRAIL twins circling about seeeking to determine how we all came to be !
Cheers erupted after the first of NASA’s twin $496 Million Moon Mapping probes entered orbit on New Year’s Eve (Dec. 31) upon completion of the 40 minute main engine burn essential for insertion into lunar orbit. The small GRAIL spacecraft will map the lunar interior with unprecedented precision to deduce the Moon’s hidden interior composition.
“Engines stopped. It’s in a great initial orbit!!!! ”
NASA’s Jim Green told Universe Today, just moments after verification of a successful engine burn and injection of the GRAIL-A spacecraft into an initial eliptical orbit. Green is the Director of Planetary Science at NASA HQ and was stationed inside Mission Control at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Ca (see photos below).
“Pop the bubbly & toast the moon! NASA’s GRAIL-A spacecraft is in lunar orbit,” NASA tweeted shortly after verifying the critical firing was done. “Burn complete! GRAIL-A is now orbiting the moon and awaiting the arrival of its twin GRAIL-B on New Year’s Day.”
The firing of the hydrazine fueled thruster was concluded at 5 PM EST (2 PM PST) today, Dec. 31, 2011 and was the capstone to a stupendous year for science at NASA.
“2011 was definitely the best year ever for NASA Planetary Science,” Green told me today. “2011 was the “Year of the Solar System”.
“GRAIL-A is in a highly elliptical polar orbit that takes about 11.5 hours to complete.”
“We see about the first eight to ten minutes of the start of the burn as it heads towards the Moon’s southern hemisphere, continues as GRAIL goes behind the moon and the burn ends about eight minutes or so after it exits and reappears over the north polar region.”
“So we watch the beginning of the burn and the end of the burn via the Deep Space Network (DSN). The same thing will be repeated about 25 hours later with GRAIL-B on New Year’s Day [Jan 1, 2012],” Green explained.
The orbit is approximately 56-miles (90-kilometers) by 5,197-miles (8,363-kilometers around the moon. The probe barreled towards the moon at 4400 MPH and skimmed to within about 68 miles over the South Pole.
“My resolution for the new year is to unlock lunar mysteries and understand how the moon, Earth and other rocky planets evolved,” said Maria Zuber, GRAIL principal investigator at the Massachusetts Institute of Technology in Cambridge. “Now, with GRAIL-A successfully placed in orbit around the moon, we are one step closer to achieving that goal.”
Zuber witnessed the events in Mission Control along with JPL Director Charles Elachi (see photos).
The mirror twin, known as GRAIL-B, was less than 30,000 miles (48,000 km) from the moon as GRAIL A achieved orbit and closing at a rate of 896 mph (1,442 kph). GRAIL-B’s insertion burn is slated to begin on New Year’s Day at 2:05 p.m. PST (5:05 p.m. EST) and will last about 39 minutes.
GRAIL-B is about 25 hours behind GRAIL-A, allowing the teams enough time to rest and prepare, said David Lehman, GRAIL project manager at JPL.
“With GRAIL-A in lunar orbit we are halfway home,” said Lehman. “Tomorrow may be New Year’s everywhere else, but it’s another work day around the moon and here at JPL for the GRAIL team.”
Engineers will then gradually lower the tandem flying satellites into a near-polar near-circular orbital altitude of about 34 miles (55 kilometers) with an average separation of about 200 km. The 82 day science phase will begin in March 2012.
“GRAIL will globally map the moon’s gravity field to high precision to deduce information about the interior structure, density and composition of the lunar interior. We’ll evaluate whether there even is a solid or liquid core or a mixture and advance the understanding of the thermal evolution of the moon and the solar system,” explained GRAIL co-investigator Sami Asmar to Universe Today. Asmar is from JPL.
New names for the dynamic duo may be announced on New Year’s Day. Zuber said that the winning names of a student essay contest drew more than 1000 entries.
The GRAIL team is making a major public outreach effort to involve school kids in the mission and inspire them to study science. Each spacecraft carries 4 MoonKAM cameras. Middle school students will help select the targets.
“Over 2100 Middle schools have already signed up to participate in the MoonKAM project,” Zuber told reporters.
“We’ve had a great response to the MoonKAM project and we’re still accepting applications.”
MoonKAM is sponsored by Dr. Sally Ride, America’s first female astronaut. The first images are expected after the science mission begins in March 2012.
The GRAIL twins blasted off from Florida on September 10, 2011 for a 3.5 month low energy path to the moon so a smaller booster rocket could be used to cut costs.
A year ago, 2011 was proclaimed as the “Year of the Solar System” by NASA’s Planetary Science division. And what a year of excitement it was indeed for the planetary science community, amateur astronomers and the general public alike !
NASA successfully delivered astounding results on all fronts – On the Story of How We Came to Be.
“2011 was definitely the best year ever for NASA Planetary Science!” said Jim Green in an exclusive interview with Universe Today. Green is the Director of Planetary Science for the Science Mission Directorate at NASA HQ. “The Search for Life is a significant priority for NASA.”
This past year was without doubt simply breathtaking in scope in terms of new missions, new discoveries and extraordinary technical achievements. The comprehensive list of celestial targets investigated in 2011 spanned virtually every type of object in our solar system – from the innermost planet to the outermost reaches nearly touching interplanetary space.
There was even a stunningly evocative picture showing “All of Humanity” – especially appropriate now in this Holiday season !
Three brand new missions were launched and ongoing missions orbited a planet and an asteroid and flew past a comet.
“NASA has never had the pace of so many planetary launches in such a short time,” said Green.
And three missions here were awarded ‘Best of 2011’ for innovation !
Here’s the Top NASA Planetary Science Stories of 2011 – ‘The Year of the Solar System’ – in chronological order
1. Stardust-NExT Fly By of Comet Tempel 1
Starting from the first moments of 2011 at the dawn of Jan. 1, hopes were already running high for planetary scientists and engineers busily engaged in setting up a romantic celestial date in space between a volatile icy comet and an aging, thrusting probe on Valentine’s Day.
The comet chasing Stardust-Next spacecraft successfully zoomed past Comet Tempel 1 on Feb. 14 at 10.9 km/sec (24,000 MPH) after flying over 6 Billion kilometers (3.5 Billion mi).
The craft approached within 178 km (111mi) and snapped 72 astonishingly detailed high resolution science images over barely 8 minutes. It also fulfilled the teams highest hopes by photographing the human-made crater created on Tempel 1 in 2005 by a cosmic collision with a penetrator hurled by NASA’s Deep Impact spacecraft. The probe previously flew by Comet Wild 2 in 2004 and returned cometary coma particles to Earth in 2006
Tempel 1 is the first comet to be visited by two spaceships from Earth and provided the first-ever opportunity to compare observations on two successive passages around the Sun.
Don Brownlee, the original Principal Investigator, summarized the results for Universe Today; “A great bonus of the mission was the ability to flyby two comets and take images and measurements. The wonderfully successful flyby of Comet Tempel 1 was a great cap to the 12 year mission and provided a great deal of new information to study the diversity among comets.”
“The new images of Tempel showed features that form a link between seemingly disparate surface features of the 4 comets imaged by spacecraft. Combining data on the same comet from the Deep Impact and Stardust missions has provided important new insights in to how comet surfaces evolve over time and how they release gas and dust into space”.
2. MESSENGER at Mercury
On March 18, the Mercury Surface, Space Environment, Geochemistry, and Ranging, or MESSENGER, spacecraft became the first spacecraft inserted into orbit around Mercury, the innermost planet.
So far MESSENGER has completed 1 solar day – 176 Earth days- circling above Mercury. The probe has collected a treasure trove of new data from the seven instruments onboard yielding a scientific bonanza; these include global imagery of most of the surface, measurements of the planet’s surface chemical composition, topographic evidence for significant amounts of water ice, magnetic field and interactions with the solar wind.
“MESSENGER discovered that Mercury has an enormous core, larger than Earth’s. We are trying to understand why that is and why Mercury’s density is similar to Earth’s,” Jim Green explained to Universe Today.
“The primary mission lasts 2 solar days, equivalent to 4 Mercury years.”
“NASA has granted a 1 year mission extension, for a total of 8 Mercury years. This will allow the team to understand the environment at Mercury during Solar Maximum for the first time. All prior spacecraft observations were closer to solar minimum,” said Green.
MESSENGER was launched in 2004 and the goal is to produce the first global scientific observations of Mercury and piece together the puzzle of how Mercury fits in with the origin and evolution of our solar system.
NASA’s Mariner 10 was the only previous robotic probe to explore Mercury, during three flyby’s back in the mid-1970’s early in the space age.
3. Dawn Asteroid Orbiter
The Dawn spacecraft achieved orbit around the giant asteroid Vesta in July 2011 after a four year interplanetary cruise and began transmitting the history making first ever close-up observations of the mysteriously diverse and alien world that is nothing short of a ‘Space Spectacular’.
“We do not have a good analog to Vesta anywhere else in the Solar System,” Chris Russell said to Universe Today. Russell, from UCLA, is the scientific Principal Investigator for Dawn.
Before Dawn, Vesta was just another fuzzy blob in the most powerful telescopes. Dawn has completely unveiled Vesta as a remarkably dichotomous, heavily battered and pockmarked world that’s littered with thousands of craters, mountains and landslides and ringed by mystifying grooves and troughs. It will unlock details about the elemental abundances, chemical composition and interior structure of this marvelously intriguing body.
Cataclysmic collisions eons ago excavated Vesta so it lacks a south pole. Dawn discovered that what unexpectedly remains is an enormous mountain some 16 miles (25 kilometers) high, twice the height of Mt. Everest.
Dawn is now about midway through its 1 year mission at Vesta which ends in July 2012 with a departure for Ceres, the largest asteroid. So far the framing cameras have snapped more than 10,000 never-before-seen images.
“What can be more exciting than to explore an alien world that until recently was virtually unknown!. ” Dr. Marc Rayman said to Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.
“Dawn is NASA at its best: ambitious, exciting, innovative, and productive.”
4. Juno Jupiter Orbiter
The solar powered Juno spacecraft was launched on Aug. 5 at Cape Canaveral Air Force Station in Florida, to embark on a five year, 2.8 billion kilometer (1.7 Billion mi) trek to Jupiter, our solar system’s largest planet. It was the first of three NASA planetary science liftoffs scheduled in 2011.
Juno’s goal is to map to the depths of the planets interior and elucidate the ingredients of Jupiter’s genesis hidden deep inside. These measurements will help answer how Jupiter’s birth and evolution applies to the formation of the other eight planets.
The 4 ton spacecraft will arrive at the gas giant in July 2016 and fire its braking rockets to go into a polar orbit and circle the planet 33 times over about one year.
The suite of nine instruments will scan the gas giant to find out more about the planets origins, interior structure and atmosphere, measure the amount of water and ammonia, observe the aurora, map the intense magnetic field and search for the existence of a solid planetary core.
“Jupiter is the Rosetta Stone of our solar system,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”
5. Opportunity reaches Endeavour Crater on Mars
The long lived Opportunity rover finally arrived at the rim of the vast 14 mile (22 kilometer) wide Endeavour Crater in mid-August 2011 following an epic three year trek across treacherous dune fields – a feat once thought unimaginable. All told, Opportunity has driven more than 34 km ( 21 mi) since landing on the Red Planet way back in 2004 for a mere 90 sol mission.
In November, the rover discovered the most scientifically compelling evidence yet for the flow of liquid water on ancient Mars in the form of a water related mineral vein at a spot dubbed “Homestake” along an eroded ridge of Endeavour’s rim.
Read my story about the Homestake discovery here, along with our panoramic mosaic showing the location – created by Ken Kremer and Marco Di Lorenzo and published by Astronomy Picture of the Day (APOD) on 12 Dec. 2011.
Watch for my upcoming story detailing Opportunity’s accomplishments in 2011.
6. GRAIL Moon Mappers
The Gravity Recovery and Interior Laboratory, or GRAIL mission is comprised of twin spacecraft tasked to map the moon’s gravity and study the structure of the lunar interior from crust to core.
The dynamic duo lifted off from Cape Canaveral on September 10, 2011 atop the last Delta II rocket that will likely soar to space from Florida. After a three month voyage of more than 2.5 million miles (4 million kilometers) since blastoff, the two mirror image GRAIL spacecraft dubbed Grail-A and GRAIL-B are sailing on a trajectory placing them on a course over the Moon’s south pole on New Year’s weekend.
Each spacecraft will fire the braking rockets for about 40 minutes for insertion into Lunar Orbit about 25 hours apart on New Year’s Eve and New Year’s Day.
Engineers will then gradually lower the satellites to a near-polar near-circular orbital altitude of about 34 miles (55 kilometers).
The spacecraft will fly in tandem and the 82 day science phase will begin in March 2012.
“GRAIL is a Journey to the Center of the Moon”, says Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology (MIT). “GRAIL will rewrite the book on the formation of the moon and the beginning of us.”
“By globally mapping the moon’s gravity field to high precision scientists can deduce information about the interior structure, density and composition of the lunar interior. We’ll evaluate whether there even is a solid or liquid core or a mixture and advance the understanding of the thermal evolution of the moon and the solar system,” explained co-investigator Sami Asmar to Universe Today. Asmar is from NASA’s Jet Propulsion Laboratory (JPL)
7. Curiosity Mars Rover
The Curiosity Mars Science Lab (MSL) rover soared skywards on Nov. 26, the last of 2011’s three planetary science missions. Curiosity is the newest, largest and most technologically sophisticated robotic surveyor that NASA has ever assembled.
“MSL packs the most bang for the buck yet sent to Mars.” John Grotzinger, the Mars Science Laboratory Project Scientist of the California Institute of Technology, told Universe Today.
The three meter long robot is the first astrobiology mission since the Viking landers in the 1970’s and specifically tasked to hunt for the ‘Ingredients of Life’ on Mars – the most Earth-like planet in our Solar System.
Video caption: Action packed animation depicts sequences of Curiosity departing Earth, the nail biting terror of the never before used entry, descent and landing on the Martian surface and then looking for signs of life at Gale Crater during her minimum two year expedition across hitherto unseen and unexplored Martian landscapes, mountains and craters. Credit: NASA
Curiosity will gather and analyze samples of Martian dirt in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it.
NASA is targeting Curiosity to a pinpoint touch down inside the 154 km (96 mile) wide Gale Crater on Aug. 6, 2012. The crater exhibits exposures of phyllosilicates and other minerals that may have preserved evidence of ancient or extant Martian life and is dominated by a towering 3 mile (5 km) high mountain.
“10 science instruments are all aimed at a mountain whose stratigraphic layering records the major breakpoints in the history of Mars’ environments over likely hundreds of millions of years, including those that may have been habitable for life,” Grotzinger told me.
This past year Ken was incredibly fortunate to witness the ongoing efforts of many of these magnificent endeavors.
In less than three days, NASA will deliver a double barreled New Year’s package to our Moon when an unprecedented pair of science satellites fire up their critical braking thrusters for insertion into lunar orbit on New Year’s Eve and New Year’s Day.
NASA’s dynamic duo of GRAIL probes are “GO” for Lunar Orbit Insertion said the mission team at a briefing for reporters today, Dec. 28. GRAIL’s goal is to exquisitely map the moons interior from the gritty outer crust to the depths of the mysterious core with unparalled precision.
“GRAIL is a Journey to the Center of the Moon”, said Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology (MIT) in Cambridge at the press briefing.
This newfound knowledge will fundamentally alter our understanding of how the moon and other rocky bodies in our solar system – including Earth – formed and evolved over 4.5 Billion years time.
After a three month voyage of more than 2.5 million miles (4 million kilometers) since launching from Florida on Sept. 10, 2011, NASA’s twin GRAIL spacecraft, dubbed Grail-A and GRAIL-B, are now on final approach and are rapidly closing in on the Moon following a trajectory that will hurl them low over the south pole and into an initially near polar elliptical lunar orbit lasting 11.5 hours.
As of today, Dec. 28, GRAIL-A is 65,860 miles (106,000 kilometers) from the moon and closing at a speed of 745 mph (1,200 kph). GRAIL-B is 79,540 miles (128,000 kilometers) from the moon and closing at a speed of 763 mph (1,228 kph).
The lunar bound probes are formally named Gravity Recovery And Interior Laboratory (GRAIL) and each one is the size of a washing machine.
The long-duration trajectory was actually beneficial to the mission controllers and the science team because it permitted more time to assess the spacecraft’s health and check out the probes single science instrument – the Ultra Stable Oscillator – and allow it to equilibrate to a stable operating temperature long before it starts making the crucial science measurements.
The duo will arrive 25 hours apart and be placed into orbit starting at 1:21 p.m. PST (4:21 p.m. EST) for GRAIL-A on Dec. 31, and 2:05 p.m. PST (5:05 p.m. EST) on Jan. 1 for GRAIL-B, said David Lehman, project manager for GRAIL at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.
“The GRAIL A burn will last 40 minutes and the GRAIL-B burn will last 38 minutes. One hour after the burn we will know the results and make an announcement,” Lehman explained.
The thrusters must fire on time and for the full duration for the probes to achieve orbit. The braking maneuver is preprogrammed and done completely automatically.
Over the next few weeks, the altitude of the spacecraft will be gradually lowered to 34 miles (55 kilometers) into a near-polar, near-circular orbit with an orbital period of two hours. The science phase will then begin in March 2012.
“So far there have been over 100 missions to the Moon and hundreds of pounds of rock have been returned. But there is still a lot we don’t know about the Moon even after the Apollo lunar landings,” explained Zuber.
“We don’t know why the near side of the Moon is different from the far side. In fact we know more about Mars than the Moon.”
GRAIL’s science collection phase will last 82 days. The two spacecraft will transmit radio signals that will precisely measure the distance between them to within a few microns, less than the width of a human hair.
As they orbit in tandem, the moons gravity will change – increasing and decreasing due to the influence of both visible surface features such as mountains and craters and unknown concentrations of masses hidden beneath the lunar surface. This will cause the relative velocity and the distance between the probes to change.
The resulting data will be translated into a high-resolution map of the Moon’s gravitational field and also enable determinations of the moon’s inner composition.
The GRAIL mission may be extended for another 6 months if the solar powered probes survive a power draining and potentially deadly lunar eclipse due in June 2012.
Engineers would significantly lower the orbit to an altitude of barely 15 to 20 miles above the surface to gain even further insights into the lunar interior.
The twin probes are also equipped with 4 cameras each – named MoonKAM – that will be used by middle school students to photograph student selected targets.
The MoonKAM project is led Dr. Sally Ride, America’s first woman astronaut as a way to motivate kids to study math and science.
JPL manages the GRAIL mission for NASA.
Stay tuned for Universe Today updates amidst the News Year’s festivities.
2011 was a picturesque year! The year brought us new discoveries, a new supernova, the end of an era in human spaceflight, and much more. Here’s a look back at some of the best images we’ve posted on Universe Today in 2011, listed in no particular order:
Above, is one of the first-ever images of a space shuttle docked to the International Space Station. The images were taken by ESA astronaut Paolo Nespoli on May 23, 2011 through a window inside the Soyuz TMA-20 vehicle as he and two crewmates were departing the ISS for their return trip to Earth. See the entire gallery of images of this event here.
A new supernova showed up in 2011 in the Pinwheel galaxy, and skywatchers around the world tried to capture it. Amateur astronomer Rick Johnson submitted this image for our new “Astrophoto” feature this year on Universe Today. Called the SN PTF11kly, the new Type Ia supernova was spotted by Caltech’s Palomar Transient Factory (PTF) survey in the M101, and is located 21 million light years away. You can see the supernova marked in the southern part of the galaxy.
2011 saw the end of an era: the space shuttle program is now history. Universe Today photographer Alan Walters captured this stunning view of the last shuttle launch ever. Read our articles about the final launch and landing of the space shuttle era.
A gorgeous new look at the “Southern Cliff” in the Lagoon Nebula from the Gemini South Observatory.
The Cassini spacecraft continues to crank out spectacular images, and this stunning image of a “flash mob” of moons strung along Saturn’s rings is just an example.
Real image or from a movie? The ATV-2 Johannes Kepler looks like an X-Wing fighter from Star Wars as it departed from the International Space Station.
Incredible landscapes are specialties of the HiRISE camera on the Mars Reconnaissance Orbiter, and this observation shows dune gullies laced with beautiful swirls of tracks left by dust devils. Just like on Earth, dust devils move across the Martian surface and expose the underlying darker material, creating a striking view.
Here’s a “Hidden Treasure” from the European Southern Observatory, from the astrophotography competition where amateurs create images from unused ESO data. In this new image of Messier 78, brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light and creating what is called a reflection nebula.
This series of images is just an example of the great work by award-winning French astrophotographer Thierry Legault. During shuttle Endeavour’s final mission, Legault traveled through Germany, France and Spain to find clear skies and good seeing to capture the shuttle’s voyage to the International Space Station. See more incredible images here.
The Opportunity rover is now exploring Endeavour Crater and this color view of shows a stunning landscape on Mars. This view of a Red Planet “rock garden” is the colorized handiwork of Stu Atkinson, a member of Unmanned Spaceflight and author of the Road to Endeavour blog. This is actually an ejecta field of rocks thrown about after the impact that created this huge crater, and has been an exciting region for the MER scientists to explore.
Its true there is no sound in empty interstellar space, but the Herschel space observatory has observed the cosmic equivalent of sonic booms. Filaments like this have been sighted before by other infrared satellites, but they have never been seen clearly enough to have their widths measure.
On June 7, 2011 an amazingly massive and spectacular event took place on the Sun: a huge prominence eruption, marked by a solar flare and release of energetic particles. It was an event that was heretofore unseen on the Sun, but the Solar Dynamics Observatory saw it all.
With the Sun’s activities ramping up, we saw more aurorae. What better place to see them than from the International Space Station? This view taken by astroanut Mike Fossum shows a stunning aurora, with two Russian vehicles docked to the station in the foreground.
A brilliant cluster of stars in the Large Magellanic Cloud, open cluster NGC 2100 shines brightly, competing with the nearby Tarantula Nebula for bragging rights in this image from ESO’s New Technology Telescope (NTT).
Universe Today’s Ken Kremer helped bring this stunning image of the hills around Endeavour Crater to light, as the Opportunity Rover headed towards the crater in August.
The Chandra X-Ray Observatory took a brand new, deep look inside the Tycho Supernova Remnant, providing a nearly three-dimensional view of the iconic space object.