NASA Voyager Probes Still Going Strong After 40 Years

Earth's Greatest Hits: the Golden Record attached to the Voyager 1 and 2 spacecraft. Credit: NASA/JPL.

Forty years ago, the Voyager 1 and 2 missions began their journey from Earth to become the farthest-reaching missions in history. In the course of their missions, the two probes spent the next two decades sailing past the gas giants of Jupiter and Saturn. And while Voyager 1 then ventured into the outer Solar System, Voyager 2 swung by Uranus and Neptune, becoming the first and only probe in history to explore these worlds.

This summer, the probes will be marking the fortieth anniversary of their launch – on September 5th and August 20th, respectively. Despite having traveled for so long and reaching such considerable distances from Earth, the probes are still in contact with NASA and sending back valuable data. So in addition to being the most distant missions from Earth, they are the longest-running mission in history.

In addition to their distance and longevity, the Voyager spacecraft have also set numerous other records for robotic space missions. For example, in 2012, the Voyager 1 probe became the first and only spacecraft to have entered interstellar space. Voyage 2, meanwhile, is the only probe that has explored all four of the Solar System’s gas/ice giants – Jupiter, Saturn, Uranus and Neptune.

Voyager 2 Mission
The launch of the Voyager 2 probe, which took place on August 20th, 1977. Credit: NASA

Their discoveries also include the first active volcanoes beyond Earth – on Jupiter’s moon Io – the first evidence of a possible subsurface ocean on Europa, the dense atmosphere around Titan (the only body beyond Earth with a dense, nitrogen-rich atmosphere), the craggy surface of Uranus’ “Frankenstein Moon” Miranda, and the ice plume geysers of Neptune’s largest moon, Triton.

These accomplishments have had immeasurable benefits for planetary science, astronomy and space exploration. They’ve also paved the way for future missions, such as the Galileo and Juno probes, the Cassini-Huygens mission, and the New Horizons spacecraft. As Thomas Zurbuchen, the associate administrator for NASA’s Science Mission Directorate (SMD), said in a recent press statement:

“I believe that few missions can ever match the achievements of the Voyager spacecraft during their four decades of exploration. They have educated us to the unknown wonders of the universe and truly inspired humanity to continue to explore our solar system and beyond.”

But what is perhaps most memorable about the Voyager missions is the special cargo they carry. Each spacecraft carries what is known as the Golden Record, a collection of sounds, pictures and messages that tell of Earth, human history and culture. These records were intended to serve as a sort of time capsule and/or message to any civilizations that retrieved them, should they ever be recovered.

Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth. Credit: NASA

As noted, both ships are still in contact with NASA and sending back mission data. The Voyager 1 probe, as of the writing of this article, is about 20.9 billion km (13 billion mi; 140 AU) from Earth. As it travels northward out of the plane of the planets and into interstellar space, the probe continues to send back information about cosmic rays – which are about four times as abundant in interstellar space than around Earth.

From this, researchers have learned that the heliosphere – the region that contains the Solar System’s planets and solar wind – acts as a sort of radiation shield. Much in the say that Earth’s magnetic field protects us from solar wind (which would otherwise strip away our atmosphere), the heliopause protects the Solar planets from atomic nuclei that travel at close to the speed of light.

Voyager 2, meanwhile, is currently about 17.7 billion km (11 billion mi; 114.3 AU) from Earth. It is traveling south out of the plane of the planets, and is expected to enter interstellar space in a few years. And much like Voyager 1, it is also studying how the heliosphere interacts with the surroundings interstellar medium, using a suite of instruments that measure charged particles, magnetic fields, radio waves and solar wind plasma.

Once Voyager 2 crosses into interstellar space, both probes will be able to sample the medium from two different locations simultaneously. This is expected to tell us much about the magnetic environment that encapsulates our system, and will perhaps teach us more about the history and formation of the Solar System. On top of that, it will let us know what kinds of hazards a possible interstellar mission will have to contend with.

Illustration showing how NASA’s Hubble Space Telescope is looking along the paths of NASA’s Voyager 1 and 2 spacecraft as they journey through the solar system and into interstellar space. Credit: NASA/ESA/Z. Levy (STScI)

The fact that the two probes are still active after all this time is nothing short of amazing. As Edward Stone – the David Morrisroe Professor of Physics at Caltech, the former VP and Director of NASA’s Jet Propulsion Laboratory, and the Voyager project scientist – said:

“None of us knew, when we launched 40 years ago, that anything would still be working, and continuing on this pioneering journey. The most exciting thing they find in the next five years is likely to be something that we didn’t know was out there to be discovered.”

Keeping the probes going has also been a challenge since the amount of power they generate decreases at a rate of about four watts per year. This has required that engineers learn how to operate the twin spacecraft with ever-decreasing amounts of power, which has forced them to consult documents that are decades old in order to understand the probes’ software and command functions.

Luckily, it has also given former NASA engineers who worked on the Voyager probes the opportunity to offer their experience and expertise. At present, the team that is operating the spacecraft estimate that the probes will run out of power by 2030. However, they will continue to drift along their trajectories long after they do so, traveling at a speed of 48,280 km per hour (30,000 mph) and covering a single AU every 126 days.

The Voyager 1 spacecraft has started to transverse what JPL has dubbed as a “cosmic purgatory” between our solar system – and interstellar space. Credit: NASA/JPL

At this rate, they will be within spitting distance of the nearest star in about 40,000 years, and will have completed an orbit of the Milky Way within 225 million years. So its entirely possible that someday, the Golden Records will find their way to a species capable of understanding what they represent. Then again, they might find their way back to Earth someday, informing our distant, distant relatives about life in the 20th century.

And if the craft avoid any catastrophic collisions and can survive in the interstellar medium of space, it is likely that they will continue to be emissaries for humanity long after humanity is dead. It’s good to leave something behind!

Further Reading: NASA

Veteran Multinational Trio Launches on Soyuz and Arrives at International Space Station

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)
The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

An all veteran multinational trio of astronauts and cosmonauts rocketed to orbit aboard a Russian Soyuz capsule and safely arrived at the International Space Station (ISS) after a fast track rendezvous on Friday, July 28.

NASA astronaut Randy Bresnik, Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of ESA (European Space Agency) docked at the orbiting outpost at 5:54 p.m. EDT (2154 GMT) Friday just six hours after departing our Home Planet.

The three crewmates launched aboard the Russian Soyuz MS-05 spacecraft from the Baikonur Cosmodrome in Kazakhstan during a typically hot mid-summers night at 9:41 p.m. Baikonur time, or 11:41 a.m. EDT, 1541 GMT, as the booster and Baikonur moved into the plane of the space station’s orbit. They blasted to space from the same pad as Yuri Gagarin, the first man in space.

The entire launch sequence aboard the Soyuz rocket performed flawlessly and delivered the Soyuz capsule to its targeted preliminary orbit flowing by the planned opening of the vehicles solar arrays and antennas.

The Russian Soyuz MS-05 carrying NASA astronaut Randy Bresnik, Sergey Ryazanskiy of the Russian space agency Roscosmos, and Paolo Nespoli of ESA (European Space Agency) docked to the International Space Station at 5:54 p.m. on Friday, July 28, 2017. Credits: NASA Television

Following a rapid series of orbit raising maneuvers, the Soyuz reached the ISS after 4 orbits and six hours to successfully complete all the rendezvous and docking procedures.

The Soyuz docked at the Earth-facing Russian Rassvet module as the spaceships were flying some 250 mi (400 km) over Germany.

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

Following the standard pressurization and leak checks, the hatches between the spacecraft and station were opened from inside the ISS at about 9:45 p.m. EDT.

The new trio of Bresnik, Ryazanskiy and Nespoli then floated one by one from the Soyuz into the station and restored the outpost to a full strength crew of six humans.

The veteran space flyers join Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA who are already serving aboard.

Thus begins Expedition 52 aboard the million pound orbiting science complex.

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

This is the second space flight for both Bresnik and Ryazanskiy and the third for Nespoli.

Bresnik previously flew to the space station as a member of the STS-129 space shuttle Atlantis mission in November 2009. The 10 day mission delivered two Express Logistics Carriers (ELC racks) to the space station as part of approximately 30,000 pounds of replacement parts.

Bresnik performed two spacewalks for a total of 11 hours and 50 minutes during the STS-129 mission. He is slated to take command of the ISS as a member of Expedition 53.

The six person crew of Space Shuttle Atlantis walk out from crew quarters at 10:38 AM to greet the cheering crowd of media and NASA officials and then head out to pad 39 A to strap in for space launch with hours. Randy Bresnik is third from left. Credit: Ken Kremer/kenkremer.com

The new Expedition 52 crew will spend a four and a half month stint aboard the station and continue over 250 ongoing science investigations in fields such as biology, Earth science, human research, physical sciences and technology development.

Bresnik, Ryazanskiy and Nespoli are slated to stay aboard until returning to Earth in December.

Whitson, Fischer and Yurchikhin are in the home stretch of their mission and will retun to Earth in September. Shortly after their departure, NASA astronauts Mark Vande Hei and Joseph Acaba and Russian cosmonaut Alexander Misurkin will launch on the next Soyuz from Kazakhstan to join the Expedition 53 crew.

Whitson is the most experienced US astronaut with time in space. Her record setting cumulative time in space will exceed 600 days and include a 9 month stay on this flight upon her return to Earth.

She most recently launched to the ISS last year on Nov 17, 2016 aboard a Russian Soyuz capsule from the Baikonur Cosmodrome. This is her 3rd long duration stay aboard the station.

Whitson also holds the record for most spacewalks by a female astronaut. Altogether she has accumulated 53 hours and 23 minutes of EVA time over eight spacewalks.

The newly-expanded Expedition 52 crew expect to welcome a pair of unmanned US cargo ships carrying new research experiments and supplies, namely the SpaceX Dragon as soon as August and Orbital ATK Cygnus a month or two later, on NASA-contracted commercial resupply missions.

The SpaceX CRS-12 mission will carry investigations ”the crew will work on including a study developed by the Michael J. Fox Foundation of the pathology of Parkinson’s disease to aid in the development of therapies for patients on Earth. The crew will use the special nature of microgravity in a new lung tissue study to advance understanding of how stem cells work and pave the way for further use of the microgravity environment in stem cell research. Expedition astronauts also will assemble and deploy a microsatellite investigation seeking to validate the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations such as tracking severe weather and detecting natural disasters.”

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Opportunity Starts Historic Descent of Tantalizing Martian Gully to Find Out How Was It Carved

Historic 1st descent down Martian gully. Panoramic view looking down Perseverance Valley after entry at top was acquired by NASA’s Opportunity rover scanning from north to south. It shows numerous wheel tracks at left, center and right as rover conducted walkabout tour prior to starting historic first decent down a Martian gully - possibly carved by water - and looks into the interior of Endeavour crater. Perseverance Valley terminates down near the crater floor in the center of the panorama. The far rim of Endeavour crater is seen in the distance, beyond the dark floor. Rover mast shadow at center and deck at left. This navcam camera photo mosaic was assembled by Ken Kremer and Marco Di Lorenzo from raw images taken on Sol 4780 (5 July 2017) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Historic 1st descent down Martian gully. Panoramic view looking down Perseverance Valley after entry at top was acquired by NASA’s Opportunity rover scanning from north to south. It shows numerous wheel tracks at left, center and right as rover conducted walkabout tour prior to starting historic first decent down a Martian gully – possibly carved by water – and looks into the interior of Endeavour crater. Perseverance Valley terminates down near the crater floor in the center of the panorama. The far rim of Endeavour crater is seen in the distance, beyond the dark floor. Rover mast shadow at center and deck at left. This navcam camera photo mosaic was assembled by Ken Kremer and Marco Di Lorenzo from raw images taken on Sol 4780 (5 July 2017) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

From the precipice of “Perseverance Valley” NASA’s teenaged Red Planet robot Opportunity has begun the historic first ever descent of an ancient Martian gully – that’s simultaneously visually and scientifically “tantalizing” – on an expedition to discern ‘How was it carved?’; by water or other means, Jim Green, NASA’s Planetary Sciences Chief tells Universe Today.

Since water is an indispensable ingredient for life as we know it, the ‘opportunity’ for Opportunity to study a “possibly water-cut” gully on Mars for the first time since they were discovered over four decades ago by NASA orbiters offers a potential scientific bonanza.

“Gullies on Mars have always been of intense interest since first observed by our orbiters,” Jim Green, NASA’s Planetary Sciences Chief explained to Universe Today.

“How were they carved? muses Green. “Water is a natural explanation but this is another planet. Now we have a chance to find out for real!”

Their origin and nature has been intensely debated by researchers for decades. But until now the ability to gather real ‘ground truth’ science by robotic or human explorers has remained elusive.

“This will be the first time we will acquire ground truth on a gully system that just might be formed by fluvial processes,” Ray Arvidson, Opportunity Deputy Principal Investigator of Washington University in St. Louis, told Universe Today.

“Perseverance Valley” is located along the eroded western rim of gigantic Endeavour crater – as illustrated by our exclusive photo mosaics herein created by the imaging team of Ken Kremer and Marco Di Lorenzo.

After arriving at the upper entryway to “Perseverance Valley” the six wheeled rover drove back and forth to gather high resolution imagery of the inner slope for engineers to create a 3D elevation map and plot a safe driving path down – as illustrated in our lead mosaic showing the valley and extensive wheel tracks at left, center and right.

Having just this week notched an astounding 4800 Sols roving the Red Planet, NASA’s resilient Opportunity rover has started driving down from the top of “Perseverance Valley” from the spillway overlooking the upper end of the ancient fluid-carved Martian valley into the unimaginably vast eeriness of alien Endeavour crater.

Water, ice or wind may have flowed over the crater rim and into the crater from the spillway.

“It is a tantalizing scene,” said Opportunity Deputy Principal Investigator Ray Arvidson of Washington University in St. Louis, in a statement. “You can see what appear to be channels lined by boulders, and the putative spillway at the top of Perseverance Valley. We have not ruled out any of the possibilities of water, ice or wind being responsible.”

Toward the right side of this scene is a broad notch in the crest of the western rim of Endeavour Crater. Wheel tracks in that area were left by NASA’s Mars Exploration Rover Opportunity as it observed “Perseverance Valley” from above in the spring of 2017. The valley is a major destination for the rover’s extended mission. It descends out of sight on the inner slope of the rim, extending down and eastward from that notch. The component pancam images for this view from a position outside the crater were taken during the span of June 7 to June 19, 2017, sols 4753 to 4765. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.

“With the latest drive on sol 4782, Opportunity began the long drive down the floor of Perseverance Valley here on Endeavour crater, says Larry Crumpler, a rover science team member from the New Mexico Museum of Natural History & Science.

“This is rather historic in that it represents the first time that a rover has driven down an apparent water-cut valley on Mars. Over the next few months Opportunity will explore the floor and sides of the valley for evidence of the scale and timing of the fluvial activity, if that is what is represents.”

This mosaic view looks down from inside the upper end of “Perseverance Valley” on the inner slope of Endeavour Crater’s western rim after Opportunity started driving down the Martian gully. The scene behind the shadow of the rover’s mast shows Perseverance Valley descending to the floor of Endeavour Crater. This navcam camera photo mosaic was assembled from raw images taken on Sol 4782 (7 July 2017) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com

NASA’s unbelievably long lived Martian robot reached a “spillway” at the top of “Perseverance Valley” in May after driving southwards for weeks from the prior science campaign at a crater rim segment called “Cape Tribulation.”

“Investigations in the coming weeks will “endeavor” to determine whether this valley was eroded by water or some other dry process like debris flows,” explains Crumpler.

“It certainly looks like a water cut valley. But looks aren’t good enough. We need additional evidence to test that idea.”

NASA’s Opportunity rover acquired this Martian panoramic view from a promontory that overlooks Perseverance Valley below – scanning from north to south. It is centered on due East and into the interior of Endeavour crater. Perseverance Valley descends from the right and terminates down near the crater floor in the center of the panorama. The far rim of Endeavour crater is seen in the distance, beyond the dark floor. Rover deck and wheel tracks at right. This navcam camera photo mosaic was assembled from raw images taken on Sol 4730 (14 May 2017) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

The valley slices downward from the crest line through the rim from west to east at a breathtaking slope of about 15 to 17 degrees – and measures about two football fields in length!

Huge Endeavour crater spans some 22 kilometers (14 miles) in diameter on the Red Planet. Perseverance Valley slices eastwards at approximately the 8 o’clock position of the circular shaped crater. It sits just north of a rim segment called “Cape Byron.”

Why go and explore the gully at Perseverance Valley?

“Opportunity will traverse to the head of the gully system [at Perseverance] and head downhill into one or more of the gullies to characterize the morphology and search for evidence of deposits,” Arvidson elaborated to Universe Today.

“Hopefully test among dry mass movements, debris flow, and fluvial processes for gully formation. The importance is that this will be the first time we will acquire ground truth on a gully system that just might be formed by fluvial processes. Will search for cross bedding, gravel beds, fining or coarsening upward sequences, etc., to test among hypotheses.”

Exploring the ancient valley is the main science destination of the current two-year extended mission (EM #10) for the teenaged robot, that officially began Oct. 1, 2016. It’s just the latest in a series of extensions going back to the end of Opportunity’s prime mission in April 2004.

Before starting the gully descent, Opportunity conducted a walkabout at the top of the Perseverance Valley in the spillway to learn more about the region before driving down.

“The walkabout is designed to look at what’s just above Perseverance Valley,” said Opportunity Deputy Principal Investigator Ray Arvidson of Washington University in St. Louis, in a statwemwent. “We see a pattern of striations running east-west outside the crest of the rim.”

“We want to determine whether these are in-place rocks or transported rocks,” Arvidson said. “One possibility is that this site was the end of a catchment where a lake was perched against the outside of the crater rim. A flood might have brought in the rocks, breached the rim and overflowed into the crater, carving the valley down the inner side of the rim. Another possibility is that the area was fractured by the impact that created Endeavour Crater, then rock dikes filled the fractures, and we’re seeing effects of wind erosion on those filled fractures.”

Opportunity rover looks south from the top of Perseverance Valley along the rim of Endeavour Crater on Mars in this partial self portrait including the rover deck and solar panels. Perseverance Valley descends from the right and terminates down near the crater floor. This navcam camera photo mosaic was assembled from raw images taken on Sol 4736 (20 May 2017) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Having begun the long awaited gully descent, further movements are temporarily on hold since the start of the solar conjunction period which blocks communications between Mars and Earth for about the next two weeks, since Mars is directly behind the sun.

In the meantime, Opportunity will still collect very useful panoramic images and science data while standing still.

The solar conjunction moratorium on commanding extends from July 22 to Aug. 1, 2017.

As of today, July 27, 2017, long lived Opportunity has survived over 4800 Sols (or Martian days) roving the harsh environment of the Red Planet.

Opportunity has taken over 221,625 images and traversed over 27.95 miles (44.97 kilometers.- more than a marathon.

See our updated route map below. It shows the context of the rovers over 13 year long traverse spanning more than the 26 mile distance of a Marathon runners race.

The rover surpassed the 27 mile mark milestone on November 6, 2016 (Sol 4546) and will soon surpass the 28 mile mark.

As of Sol 4793 (July 18, 2017) the power output from solar array energy production is currently 332 watt-hours with an atmospheric opacity (Tau) of 0.774 and a solar array dust factor of 0.534, before heading into another southern hemisphere Martian winter later in 2017. It will count as Opportunity’s 8th winter on Mars.

Meanwhile Opportunity’s younger sister rover Curiosity traverses up the lower sedimentary layers at the base of Mount Sharp.

And NASA continues building the next two robotic missions due to touch down in 2018 and 2020.

NASA as well is focusing its human spaceflight efforts on sending humans on a ‘Journey to Mars’ in the 2030s with the Space Launch System (SLS) mega rocket and Orion deep space crew capsule.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

13 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2017. This map shows the entire 43 kilometer (27 mi) path the rover has driven on the Red Planet during over 13 years and more than a marathon runners distance for over 4782 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 – to current location at the western rim of Endeavour Crater. After studying Spirit Mound and ascending back uphill the rover has reached her next destination in May 2017- the Martian water carved gully at Perseverance Valley near Orion crater. Rover surpassed Marathon distance on Sol 3968 after reaching 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone – and searched for more at Marathon Valley. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer/kenkremer.com

SpaceX Dragon Returns Science Cargo to Earth, Falcon 9 Delivers Massive ‘Epic’ Intelsat Comsat to Orbit – Photo/Video Galley

SpaceX Falcon 9 blasts off with Intelsat 35e - 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat - on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – July has begun with SpaceX maintaining a blistering pace of blasting rockets and spaceships flying to space and returning to Earth for a host of multipronged missions furthering NASA science both on the International Space Station (ISS) and beyond, commercial space endeavors in the US and overseas and fulfilling billionaire founder Elon Musk’s dreams of creating reusable rocketry to slash launch costs and advance humanity’s push to the stars.

On July 2, SpaceX conducted the first launch attempt of the Intelsat 35e telecomsat that ultimately culminated with a spectacularly successful launch on the third try on July 5 at dusk that lit up the Florida Space Coast skies.

A Falcon 9 roared off SpaceX’s seaside launch pad 39A at NASA’s Kennedy Space Center in Florida precisely on time at 7:38 p.m. EDT, or 2338 UTC July 5 carrying the massive Intelsat 35e communications satellite for commercial high speed broadband provider Intelsat.

SpaceX Falcon 9 launch of with ‘Epic’ comsat for Intelsat at 7:38 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

SpaceX Falcon 9 streaks to geostationary orbit after blast off with advanced Intelsat 35e ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

On July 3, the first reflown SpaceX Dragon cargo freighter returned to Earth with a splashdown in the Pacific Ocean after a month-long stay at the International Space Station.

SpaceX contracted ships recovered Dragon from the ocean and hauled it onto deck for return to Port and handover of the science experiments to NASA and teams of research investigators.

SpaceX Dragon returned to Earth July 3, 2017 with a splashdown in the Pacific Ocean after a month-long stay at the International Space Station, completing the first re-flight mission of a commercial spacecraft to and from the orbiting laboratory. Credit: SpaceX

The Dragon CRS-11 spacecraft completed the first re-flight mission of a commercial spacecraft to and from the orbiting laboratory.

The gumdrop shaped Dragon spacecrft brought back more than 4,100 pounds of cargo and research samples gathered by members of the stations multinational crews.

Meanwhile, the doubly ‘flight-proven’ SpaceX Falcon 9 booster from the BulgariaSat-1 launch that propulsoively soft landed upright and intact on the sea going OCISLY drone ship hundreds of mile (km) offshore in the Atlantic Ocean sailed back into Port Canaveral.

After berthing in port, technicians removed its quartet of landing legs and lowered it horizontally for transport back to KSC for refurbishment operations.

SpaceX Falcon 9 booster from BulgariaSat-1 craned from OCISLY droneship to ground based platform on Port Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Watch these launch videos:

Video Caption: Falcon 9 launch of the fourth Intelsat EpicNG high throughput satellite built by Boeing on July 5, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida. Credit: Jeff Seibert

Video Caption: Time lapse of SpaceX launch of the Intelsat 35e satellite on a legless Falcon 9 rocket from Pad 39A on July 5, 2017 at NASA’s Kennedy Space Center in Florida. Credit: Jeff Seibert

The first stage was not recovered for this launch because the massive 6800 kg (13000 lb) Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.

SpaceX Falcon 9 accelerates downrange to Africa and beyond streaking to geostationary orbit after liftoff blast off carrying massive Intelsat 35e ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ comsat for Intelsat – on July 5, 2017 at 7:37 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Credit: Ken Kremer/kenkremer.com
Launch of expendable SpaceX Falcon 9 with 4th next gen ‘Epic’ DTH comsat for Intelsat at 7:37 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com
Expendable SpaceX Falcon 9 is seen rising to launch position in this up close view of payload fairing encapsulating Intelsat 35e comsat and is now erected to launch position and poised for liftoff on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

VP Pence Vows Return to the Moon, Boots on Mars during KSC Visit

Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, 2017 tour of NASA's Kennedy Space Center - along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com
Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, tour of NASA’s Kennedy Space Center – along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Vice President Mike Pence, during a whirlwind visit to NASA’s Kennedy Space Center in Florida, vowed that America would fortify our leadership in space under the Trump Administration with impressive goals by forcefully stating that “our nation will return to the moon, and we will put American boots on the face of Mars.”

“American will once again lead in space for the benefit and security of all of our people and all of the world,” Vice President Mike Pence said during a speech on Thursday, July 6, addressing a huge crowd of more than 500 NASA officials and workers, government dignitaries and space industry leaders gathered inside the cavernous Vehicle Assembly Building at the Kennedy Space Center – where Apollo/Saturn Moon landing rockets and Space Shuttles were assembled for decades in the past and where NASA’s new Space Launch System (SLS) megarocket and Orion deep space crew capsule will be assembled for future human missions to the Moon, Mars and beyond.

Pence pronounced the bold space exploration goals and a reemphasis on NASA’s human spaceflight efforts from his new perch as Chairman of the newly reinstated National Space Council just established under an executive order signed by President Trump.

“We will re-orient America’s space program toward human space exploration and discovery for the benefit of the American people and all of the world.”

Vice President Mike Pence speaks before an audience of NASA leaders, U.S. and Florida government officials, and employees inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Pence thanked employees for advancing American leadership in space. Behind the podium is the Orion spacecraft flown on Exploration Flight test-1 in 2014. Credits: NASA/Kim Shiflett

However Pence was short on details and he did not announce any specific plans, timetables or funding during his 25 minute long speech inside the iconic VAB at KSC.

It remains to been seen how the rhetoric will turn to reality and all important funding support.

The Trump Administration actually cut their NASA 2018 budget request by $0.5 Billion to $19.1 Billion compared to the enacted 2017 NASA budget of $19.6 Billion – including cuts to SLS and Orion.

By contrast, the Republican led Congress – with bipartisan support – is working on a 2018 NASA budget of around 19.8 Billion.

“Let us do what our nation has always done since its very founding and beyond: We’ve pushed the boundaries on frontiers, not just of territory, but of knowledge. We’ve blazed new trails, and we’ve astonished the world as we’ve boldly grasped our future without fear.”

“From this ‘Bridge to Space,’ our nation will return to the moon, and we will put American boots on the face of Mars.” Pence declared.

Lined up behind Pence on the podium was the Orion spacecraft flown on Exploration Flight Test-1 (EFT-1) in 2014 flanked by a flown SpaceX cargo Dragon and a mockup of the Boeing CST-100 Starliner crew capsule.

The crewed Dragon and Starliner capsules are being developed by SpaceX and Boeing under NASA contracts as commercial crew vehicles to ferry astronauts to the International Space Station (ISS).

Pence reiterated the Trump Administrations support of the ISS and working with industry to cut the cost of access to space.

Vice President Mike Pence (holding Orion model) tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6 KSC visit – posing with KSC Director/astronaut Robert Cabana, acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio, Lockheed Martin CEO Marillyn Hewson and KSC Deputy Director Janet Petro inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Acting NASA Administrator Robert Lightfoot also welcomed Vice President Pence to KSC and thanked the Trump Administration for its strong support of NASA missions.

“Here, of all places, we can see we’re not looking at an ‘and/or proposition’,” Lightfoot said.

“We need government and commercial entities. We need large companies and small companies. We need international partners and our domestic suppliers. And we need academia to bring that innovation and excitement that they bring to the next workforce that we’re going to use to actually keep going further into space than we ever have before.”

View shows the state of assembly of NASA’s Orion EM-1 deep space crew capsule during inspection tour by Vice President Mike Pence on July 6, 2017 inside the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center. 1st integrated flight with NASA’s SLS megarocket is slated for 2019. Credit: Ken Kremer/kenkremer.com

After the VAB speech, Pence went on an extensive up close inspection tour of KSC facilities led by Kennedy Space Center Director and former shuttle astronaut Robert Cabana, showcasing the SLS and Orion hardware and infrastructure critical for NASA’s plans to send humans on a ‘Journey to Mars’ by the 2030s.

“We are in a great position here at Kennedy, we made our vision a reality; it couldn’t have been done without the passion and energy of our workforce,” said Kennedy Space Center Director Cabana.

“Kennedy is fully established as a multi-user spaceport supporting both government and commercial partners in the space industry. As America’s premier multi-user spaceport, Kennedy continues to make history as it evolves, launching to low-Earth orbit and beyond.”

Vice President Mike Pence holds and inspects an Orion capsule heat shield tile with KSC Director/astronaut Robert Cabana during his July 6, 2017 tour/speech at NASA’s Kennedy Space Center – accompanied by acting NASA administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

Pence toured the Neil Armstrong Operations and Checkout Building (O & C) where the Orion deep space capsule is being manufactured for launch in 2019 on the first integrated flight with SLS on the uncrewed EM-1 mission to the Moon and back – as I witnessed for Universe Today.

Vice President Mike Pence tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6, 2017 KSC visit with KSC Director/astronaut Robert Cabana inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2019 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Titan’s Lakes are Nice and Calm. The Perfect Spot for a Landing

A new study has revealed that Titan's methane lakes could be calm enough for future missions to land there. Credit: bisbos.com

Ever since the Cassini orbiter and the Huygens lander provided us with the first detailed glimpse of Saturn’s moon Titan, scientists have been eager to mount new missions to this mysterious moon. Between its hydrocarbon lakes, its surface dunes, its incredibly dense atmosphere, and the possibility of it having an interior ocean, there is no shortage of things that are worthy of research.

The only question is, what form would this mission take (i.e. aerial drone, submarine, balloon, lander) and where should it set down? According to a new study led by the University of Texas at Austin, Titan’s methane lakes are very calm and do not appear to experience high waves. As such, these seas may be the ideal place for future missions to set down on the moon.

Their study, which was titled “Surface Roughness of Titan’s Hydrocarbon Seas“, appeared in the June 29th issue of the journal Earth and Planetary Science Letters. Led by Cyril Grima, a research associate at the University of Texas Institute for Geophysics (UTIG), the team behind the study sought to determine just how active the lakes are in Titan’s northern polar region are.

Titan’s three largest lakes and their surrounding areas as seen by the Cassini RADAR instrument. The researchers used the instrument to study waves on the lake surfaces. Credit: Cyril Grima/ The University of Texas at Austin

As Grima explained in a University of Texas press release, this research also shed light on the meteorological activity on Titan:

“There’s a lot of interest in one day sending probes to the lakes, and when that’s done, you want to have a safe landing, and you don’t want a lot of wind. Our study shows that because the waves aren’t very high, the winds are likely low.”

Towards this end, Grima and his colleagues examined radar data obtained by the Cassini mission during Titan’s early summer season. This consisted of measurements of Titan’s northern lakes, which included Ontario Lacus,  Ligeia Mare, Punga Mare, and Kraken Mare. The largest of the three, Kraken Mars, is estimated to be larger than the Caspian Sea – i.e. 4,000,000 km² (1,544,409 mi²) vs 3,626,000 km2 (1,400,000 mi²).

With the help of the Cassini RADAR Team and researchers from Cornell University, the Johns Hopkins University Applied Physics Laboratory (JHUAPL), NASA’s Jet Propulsion Laboratory (JPL) and elsewhere, the team applied a technique known as radar statistical reconnaissance. Developed by Grima, this technique relies on radar data to measure the roughness of surfaces in minute detail.

This technique has also been used to measure snow density and the surface roughness of ice in Antarctica and the Arctic. Similarly, NASA has used the technique for the sake of selecting a landing site on Mars for their Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (Insight) lander, which is scheduled to launch next year.

The left image shows a mosaic of images of Titan taken by the Cassini spacecraft in near infrared light. Titan’s polar seas are visible as sunlight glints off of them. The right image is a radar image of Kraken Mare. Credit: NASA Jet Propulsion Laboratory.
The left image shows a mosaic of images of Titan taken by the Cassini spacecraft in near infrared light. Titan’s polar seas are visible as sunlight glints off of them. The right image is a radar image of Kraken Mare. Credit: NASA Jet Propulsion Laboratory.

From this, Grima and his colleagues determined that waves on these lakes are quite small, reaching only 1 cm in height and 20 cm in length. These findings indicate that these lakes would be a serene enough environment that future probes could make soft landings on them and then begin the task of exploring the surface of the moon. As with all bodies, waves on Titan could be wind-driven, triggered by tidal flows, or the result of rain or debris.

As a result, these results are calling into question what scientists think about seasonal change on Titan. In the past, it was believed that summer on Titan was the beginning of moon’s windy season. But if this were the case, the results would have indicated higher waves (the result of higher winds). As Alex Hayes, an assistant professor of astronomy at Cornell University and a co-author on the study, explained:

“Cyril’s work is an independent measure of sea roughness and helps to constrain the size and nature of any wind waves. From the results, it looks like we are right near the threshold for wave generation, where patches of the sea are smooth and patches are rough.”

These results are also exciting for scientists who are hoping to plot future missions to Titan, especially by those who are hoping to see a robotic submarine sent to Titan’s to investigate its lakes for possible signs of life. Other mission concepts involve exploring Titan’s interior ocean, its surface, and its atmosphere for the sake of learning more about the moon’s environment, its organic-rich environment and probiotic chemistry.

And who knows? Maybe, just maybe, these missions will find that life in our Solar System is more exotic than we give it credit before, going beyond the carbon-based life that we are familiar with to include the methanogenic.

Further Reading: University of Texas JSG, Earth and Planetary Science Letters

SpaceX Ramps Up; Reused SpaceX BulgariaSat-1 Booster Arrives in Port as Next Falcon 9 Test Fires for July 2 Intelsat Launch – Gallery

What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com
What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL/KENNEDY SPACE CENTER, FL – The launch cadence at Elon Musk’s SpaceX is truly ramping up with Falcon 9 boosters rapidly coming and going in all directions from ground to space as the firm audaciously sets its sight on a third commercial payload orbital launch on July 2 in the span of just 9 days from its East and West Coast launch bases.

It was a magnificent sight to behold !! Seeing commercial passenger carrying cruise ships and commercial recycled rockets that will one day carry paying passenger to space, floating side by side in the busy channel of narrow Port Canaveral, basking in the suns glow from the sunshine state.

The doubly ‘flight-proven’ SpaceX Falcon 9 booster portends a promising future for spaceflight that Elon Musk hopes and plans will drastically slash the high cost of rocket launches and institute economic savings that would eventually lead to his dream of a ‘City on Mars!’ – sooner rather than later.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Thursday, June 29, serves as a perfect example of how SpaceX is rocking the space industry worldwide.

First, the reused first stage Falcon 9 booster from last Friday’s (June 23) SpaceX launch of the BulgariaSat-1 HD television broadcast satellite floated magnificently into Port Canaveral early Thursday morning atop the diminutive oceangoing droneship upon which it safely touched down upright on a quartet of landing legs some eight minutes after launch.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Second, SpaceX engineers then successfully conducted a late in the day static hot fire test of the Falcon 9 first stage engines and core that will power the next launch of the Intelsat 35e commercial comsat to orbit this Sunday, July 2.

So the day was just chock full of nonstop SpaceX rocketry action seeing a full day of rocket activities from dawn to dusk.

SpaceX Falcon 9 Booster and Canaveral Lighthouse together- Twice used SpaceX Falcon 9 which launched BulgariaSat-1 into orbit from KSC on 23 June floats into Port Canaveral with Cape Canaveral LIghthouse seen between landing legs in the distance as OCISLY drone ship crew on which she landed are working on deck on June 29, 2017. Credit: Ken Kremer/kenkremer.com

Thursday’s nonstop Space Coast action spanning from the north at the Kennedy Space Center and further south to Cape Canaveral Air Force Station and Port Canaveral was the culmination of space launch flow events that actually began days, weeks and months earlier.

The 156 foot- tall Falcon 9 booster had successfully landed on the tiny rectangular shaped “Of Course I Still Love You” or OCISLY droneship less than nine minutes after liftoff on Friday, June 23 on the BulgariaSat-1 flight.

That mission began with the picture perfect liftoff of the BulgariaSat-1 communications satellite for East European commercial broadband provider BulgariaSat at 3:10 p.m. EDT, or 19:10 UTC, June 23, with ignition of all nine of the ‘flight-proven’ Falcon 9 first stage engines on SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider.

The 15 story tall first stage touched down with a slight tilt of roughly eight degrees as a direct result of the extremely demanding landing regime.

Then after spending several post landing and launch days at sea due to stormy weather along the Florida Space Coast and to accommodate local shipping traffic and SpaceX planning needs, the booster at last neared shore from the south off the coast of Melbourne, FL.

Accompanied by a small armada of support vessels it was slowly towed to port by the Elsbeth III.

The SpaceX flotilla arrived at last at the mouth of Port Canaveral and Jetty Park Pier jutting into the Atlantic Ocean at about 830 a.m. EDT – offering a spectacular view at to a flock of space enthusiasts and photographers including this author.

SpaceX Booster arrival on 30 June 2017. Credit: Dawn Leek Taylor

I highly recommend you try and see a droneship arrival if all possible.

The leaning boosters – of which this is only the second – are even more dramatic!

Because the Falcon 9 barely survived the highest ever reentry force and landing heat to date, Musk reported.

The rectangularly shaped OCISLY droneship is tiny – barely the size of a moderately sized apartment complex parking lot.

Credit: Ken Kremer/kenkremer.com

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year.

Some two minutes and 40 seconds after liftoff the first and second stages separated.

As the second stage continued to orbit, the recycled first stage began the daunting trip back to Earth on a very high energy trajectory that tested the limits of the boosters landing capability.

“Falcon 9 will experience its highest ever reentry force and heat in today’s launch. Good chance rocket booster doesn’t make it back,” SpaceX founder and CEO Elon Musk wrote in a prelaunch tweet.

Following stage separation, Falcon 9’s first stage carried out two burns, the entry burn and the landing burn using a trio of the Merlin 1D engines.

Ultimately the 15 story tall booster successfully landed on the “Of Course I Still Love You” or OCISLY droneship, stationed in the Atlantic Ocean about 400 miles (600 km) offshore and east of Cape Canaveral.

“Rocket is extra toasty and hit the deck hard (used almost all of the emergency crush core), but otherwise good,” Musk tweeted shortly after the recycled booster successfully launched and landed for its second time.

Up close view of blackened Aluminum grid fins on twice used SpaceX Falcon 9 1st stage which just sailed into Port Canaveral on 29 June after launching BulgariaSat-1 23 June 2017 from pad 39A on NASA’s Kennedy Space Center. The fins are being replaced by more resilient units made of Titanium as demonstrated 1st during the recent Iridium 2 launch. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 and Iridium-2 counted as the eighth and ninth SpaceX launches of 2017.

Including those two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Both landing droneships are now back into their respective coastal ports.

It’s a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by Musk.

Watch my BulgariaSat-1 launch video from KSC pad 39A

Video Caption: Launch of SpaceX Falcon 9 on June 23, 2017 from pad 39A at the Kennedy Space Center carrying BulgariaSat-1 TV broadband satellite to geosynchronous orbit for BulgariaSat, which is Bulgaria’s 1st GeoComSat – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

See NASA’s Curiosity Rover Simultaneously from Orbit and Red Planet’s Surface Climbing Mount Sharp

NASA’s Curiosity rover as seen simultaneously on Mars surface and from orbit on Sol 1717, June 5, 2017. The robot snapped this self portrait mosaic view while approaching Vera Rubin Ridge at the base of Mount Sharp inside Gale Crater - backdropped by distant crater rim. This navcam camera mosaic was stitched from raw images and colorized. Inset shows overhead orbital view of Curiosity (blue feature) amid rocky mountainside terrain taken the same day by NASA’s Mars Reconnaissance Orbiter. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo
NASA’s Curiosity rover as seen simultaneously on Mars surface and from orbit on Sol 1717, June 5, 2017. The robot snapped this self portrait mosaic view while approaching Vera Rubin Ridge at the base of Mount Sharp inside Gale Crater – backdropped by distant crater rim. This navcam camera mosaic was stitched from raw images and colorized. Inset shows overhead orbital view of Curiosity (blue feature) amid rocky mountainside terrain taken the same day by NASA’s Mars Reconnaissance Orbiter. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

You can catch a glimpse of what its like to see NASA’s Curiosity Mars rover simultaneously high overhead from orbit and trundling down low across the Red Planet’s rocky surface as she climbs the breathtaking terrain of Mount Sharp – as seen in new images from NASA we have stitched together into a mosaic view showing the perspective views; see above.

Earlier this month on June 5, researchers commanded NASA’s Mars Reconnaissance Orbiter (MRO) to image the car sized Curiosity rover from Mars orbit using the spacecrafts onboard High Resolution Imaging Science Experiment (HiRISE) telescopic camera during Sol 1717 of her Martian expedition – see below.

HiRISE is the most powerful telescope ever sent to Mars.

And as she does nearly every Sol, or Martian day, Curiosity snapped a batch of new images captured from Mars surface using her navigation camera called navcam – likewise on Sol 1717.

Since NASA just released the high resolution MRO images of Curiosity from orbit, we assembled together the navcam camera raw images taken simultaneously on June 5 (Sol 1717), in order to show the actual vista seen by the six wheeled robot from a surface perspective on the same day.

The lead navcam photo mosaic shows a partial rover selfie backdropped by the distant rim of Gale Crater – and was stitched together by the imaging team of Ken Kremer and Marco Di Lorenzo.

The feature that appears bright blue at the center of this scene is NASA’s Curiosity Mars rover amid tan rocks and dark sand on Mount Sharp, as viewed by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter on June 5, 2017. The rover is about 10 feet long and not really as blue as it looks here. The image was taken as Curiosity was partway between its investigation of active sand dunes lower on Mount Sharp, and “Vera Rubin Ridge,” a destination uphill where the rover team intends to examine outcrops where hematite has been identified from Mars orbit. Credits: NASA/JPL-Caltech/Univ. of Arizona

Right now NASA’s Curiosity Mars Science Laboratory (MSL) rover is approaching her next science destination named “Vera Rubin Ridge” while climbing up the lower reaches of Mount Sharp, the humongous mountain that dominates the rover’s landing site inside Gale Crater.

“When the MRO image was taken, Curiosity was partway between its investigation of active sand dunes lower on Mount Sharp, and “Vera Rubin Ridge,” a destination uphill where the rover team intends to examine outcrops where hematite has been identified from Mars orbit,” says NASA.

“HiRISE has been imaging Curiosity about every three months, to monitor the surrounding features for changes such as dune migration or erosion.”

The MRO image has been color enhanced and shows Curiosity as a bright blue feature. It is currently traveling on the northwestern flank of Mount Sharp. Curiosity is approximately 10 feet long and 9 feet wide (3.0 meters by 2.8 meters).

“The exaggerated color, showing differences in Mars surface materials, makes Curiosity appear bluer than it really looks. This helps make differences in Mars surface materials apparent, but does not show natural color as seen by the human eye.”

See our mosaic of “Vera Rubin Ridge” and Mount Sharp below.

Curiosity images Vera Rubin Ridge during approach backdropped by Mount Sharp. This navcam camera mosaic was stitched from raw images taken on Sol 1726, June 14, 2017 and colorized. Credit: NASA/JPL/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Curiosity is making rapid progress towards the hematite-bearing location of Vera Rubin Ridge after conducting in-depth exploration of the Bagnold Dunes earlier this year.

“Vera Rubin Ridge is a high-standing unit that runs parallel to and along the eastern side of the Bagnold Dunes,” says Mark Salvatore, an MSL Participating Scientist and a faculty member at Northern Arizona University, in a new mission update.

“From orbit, Vera Rubin Ridge has been shown to exhibit signatures of hematite, an oxidized iron phase whose presence can help us to better understand the environmental conditions present when this mineral assemblage formed.”

Curiosity will use her cameras and spectrometers to elucidate the origin and nature of Vera Rubin Ridge and potential implications or role in past habitable environments.

“The rover will turn its cameras to Vera Rubin Ridge for another suite of high resolution color images, which will help to characterize any observed layers, fractures, or geologic contacts. These observations will help the science team to determine how Vera Rubin Ridge formed and its relationship to the other geologic units found within Gale Crater.”

To reach Vera Rubin Ridge, Curiosity is driving east-northeast around two small patches of dunes just to the north. She will then turn “southeast and towards the location identified as the safest place for Curiosity to ascend the ridge. Currently, this ridge ascent point is approximately 370 meters away.”

Curiosity rover raises robotic arm high while scouting the Bagnold Dune Field and observing dust devils inside Gale Crater on Mars on Sol 1625, Mar. 2, 2017, in this navcam camera mosaic stitched from raw images and colorized. Note: Wheel tracks at right, distant crater rim in background. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.

“Lower Mount Sharp was chosen as a destination for the Curiosity mission because the layers of the mountain offer exposures of rocks that record environmental conditions from different times in the early history of the Red Planet. Curiosity has found evidence for ancient wet environments that offered conditions favorable for microbial life, if Mars has ever hosted life,” says NASA.

NASA’s Curiosity rover explores sand dunes inside Gale Crater with Mount Sharp in view on Mars on Sol 1611, Feb. 16, 2017, in this navcam camera mosaic, stitched from raw images and colorized. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

As of today, Sol 1733, June 21, 2017, Curiosity has driven over 10.29 miles (16.57 kilometers) since its August 2012 landing inside Gale Crater, and taken over 420,000 amazing images.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming SpaceX launch of BulgariaSat 1, recent SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

June 22-24: “SpaceX BulgariaSat 1 launch, SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Curiosity’s Traverse Map Through Sol 1717. This map shows the route driven by NASA’s Mars rover Curiosity through the 1717 Martian day, or sol, of the rover’s mission on Mars (June 05, 2017). The base image from the map is from the High Resolution Imaging Science Experiment Camera (HiRISE) in NASA’s Mars Reconnaissance Orbiter. Credit: NASA/JPL-Caltech/Univ. of Arizona

Opportunity Reaches ‘Perseverance Valley’ Precipice – Ancient Fluid Carved Gully on Mars

Opportunity rover looks south from the top of Perseverance Valley along the rim of Endeavour Crater on Mars in this partial self portrait including the rover deck and solar panels. Perseverance Valley descends from the right and terminates down near the crater floor. This navcam camera photo mosaic was assembled from raw images taken on Sol 4736 (20 May 2017) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Opportunity rover looks south from the top of Perseverance Valley along the rim of Endeavour Crater on Mars in this partial self portrait including the rover deck and solar panels. Perseverance Valley descends from the right and terminates down near the crater floor. This navcam camera photo mosaic was assembled from raw images taken on Sol 4736 (20 May 2017) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Opportunity rover looks south from the top of Perseverance Valley along the rim of Endeavour Crater on Mars in this partial self portrait including the rover deck and solar panels. Perseverance Valley descends from the right and terminates down near the crater floor. This navcam camera photo mosaic was assembled from raw images taken on Sol 4736 (20 May 2017) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Now well into her 13th year roving the Red Planet, NASA’s astoundingly resilient Opportunity rover has arrived at the precipice of “Perseverance Valley” – overlooking the upper end of an ancient fluid-carved valley on Mars “possibly water-cut” that flows down into the unimaginably vast eeriness of alien Endeavour crater.

Opportunity’s unprecedented goal ahead is to go ‘Where No Rover Has Gone Before!’

In a remarkable first time feat and treat for having ‘persevered’ so long on the inhospitably frigid Martian terrain, Opportunity has been tasked by her human handlers to drive down a Martian gully carved billions of years ago – by a fluid that might have been water – and conduct unparalleled scientific exploration, that will also extend into the interior of Endeavour Crater for the first time.

No Mars rover has done that before.

“This will be the first time we will acquire ground truth on a gully system that just might be formed by fluvial processes,” Ray Arvidson, Opportunity Deputy Principal Investigator of Washington University in St. Louis, told Universe Today.

“Opportunity has arrived at the head of Perseverance Valley, a possible water-cut valley here at a low spot along the rim of the 22-km diameter Endeavour impact crater,” says Larry Crumpler, a rover science team member from the New Mexico Museum of Natural History & Science.

NASA’s unbelievably long lived Martian robot reached a “spillway” at the top of “Perseverance Valley” in May after driving southwards for weeks from the prior science campaign at a crater rim segment called “Cape Tribulation.”

“The next month or so will be an exciting time, for no rover has ever driven down a potential ancient water-cut valley before,” Crumpler gushes.

“Perseverance Valley” is located along the eroded western rim of gigantic Endeavour crater – as illustrated by our exclusive photo mosaics herein created by the imaging team of Ken Kremer and Marco Di Lorenzo.

Read an Italian language version of this story here by Marco Di Lorenzo.

The mosaics show the “spillway” as the entry point to the ancient valley.

NASA’s Opportunity rover acquired this Martian panoramic view from a promontory that overlooks Perseverance Valley below – scanning from north to south. It is centered on due East and into the interior of Endeavour crater. Perseverance Valley descends from the right and terminates down near the crater floor in the center of the panorama. The far rim of Endeavour crater is seen in the distance, beyond the dark floor. Rover deck and wheel tracks at right. This navcam camera photo mosaic was assembled from raw images taken on Sol 4730 (14 May 2017) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

“Investigations in the coming weeks will “endeavor” to determine whether this valley was eroded by water or some other dry process like debris flows,” explains Crumpler.

“It certainly looks like a water cut valley. But looks aren’t good enough. We need additional evidence to test that idea.”

The valley slices downward from the crest line through the rim from west to east at a breathtaking slope of about 15 to 17 degrees – and measures about two football fields in length!

Huge Endeavour crater spans some 22 kilometers (14 miles) in diameter on the Red Planet. Perseverance Valley slices eastwards at approximately the 8 o’clock position of the circular shaped crater. It sits just north of a rim segment called “Cape Byron.”

Why go and explore the gully at Perseverance Valley?

“Opportunity will traverse to the head of the gully system [at Perseverance] and head downhill into one or more of the gullies to characterize the morphology and search for evidence of deposits,” Arvidson elaborated.

“Hopefully test among dry mass movements, debris flow, and fluvial processes for gully formation. The importance is that this will be the first time we will acquire ground truth on a gully system that just might be formed by fluvial processes. Will search for cross bedding, gravel beds, fining or coarsening upward sequences, etc., to test among hypotheses.”

Perspective view of Opportunity’s traverse along Endeavour crater rim over the last few weeks towards the Perseverance Valley “spillway” on Mars during Spring 2017. The entry point for the planned drive back into the crater is visible as the low notch just to the left (east) of the current (sol 4718) rover position. Credit: NASA/JPL/Cornell/NMMNH /Larry Crumpler

Exploring the ancient valley is the main science destination of the current two-year extended mission (EM #10) for the teenaged robot, that officially began Oct. 1, 2016. It’s just the latest in a series of extensions going back to the end of Opportunity’s prime mission in April 2004.

What are the immediate tasks ahead that Opportunity must accomplish before descending down the gully to thoroughly and efficiently investigate the research objectives?

In a nutshell, extensive imaging from a local high point promontory to create a long-baseline 3 D stereo image of the valley and a “walk-about” to assess the local geology.

The rover is collecting images from two widely separated points at a dip at the valley spillway to build an “extraordinarily detailed three-dimensional analysis of the terrain” called a digital elevation map.

“Opportunity has been working on a panorama from the overlook for the past couple of sols. The idea is to get a good overview of the valley from a high point before driving down it,” Crumpler explains.

“But before we drive down the valley, we want to get a good sense of the geologic features here on the head of the valley. It could come in handy as we drive down the valley and may help us understand some things, particularly the lithology of any materials we find on the valley floor or at the terminus down near the crater floor.”

“So we will be doing a short “walk-about” here on the outside of the crater rim near the “spillway” into the valley.”

“We will drive down it to further assess its origin and to further explore the structure and stratigraphy of this large impact crater.”

NASA’s Opportunity Mars rover passed near this small, 90-foot-wide and relatively fresh crater in April 2017, during the 45th anniversary of the Apollo 16 mission to the moon. The rover team chose to call it “Orion Crater,” after the Apollo 16 lunar module, Orion, which carried astronauts John Young and Charles Duke to and from the surface of the moon in April 1972 while crewmate Ken Mattingly piloted the Apollo 16 command module, Casper, in orbit around the moon. The rover’s Navigation Camera (Navcam) recorded this view assembled from raw images taken on Sol 4712 (26 April 2017) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com

The six wheeled rover landed on Mars on January 24, 2004 PST on the alien Martian plains at Meridiani Planum – as the second half of a stupendous sister act.

Expected to last just 3 months or 90 days, Opportunity has now endured nearly 13 ½ years or an unfathomable 53 times beyond the “warrantied” design lifetime.

Her twin sister Spirit, had successfully touched down 3 weeks earlier on January 3, 2004 inside 100-mile-wide Gusev crater and survived more than six years.

Opportunity has been exploring Endeavour almost six years – since arriving at the humongous crater in 2011. Endeavour crater was formed when it was carved out of the Red Planet by a huge meteor impact billions of years ago.

“Endeavour crater dates from the earliest Martian geologic history, a time when water was abundant and erosion was relatively rapid and somewhat Earth-like,” explains Crumpler.

Exactly what the geologic process was that carved Perseverance Valley into the rim of Endeavour Crater billions of years ago has not yet been determined, but there are a wide range of options researchers are considering.

“Among the possibilities: It might have been flowing water, or might have been a debris flow in which a small amount of water lubricated a turbulent mix of mud and boulders, or might have been an even drier process, such as wind erosion,” say NASA scientists.

“The mission’s main objective with Opportunity at this site is to assess which possibility is best supported by the evidence still in place.”

Extensive imaging with the mast mounted pancam and navcam cameras is currently in progress.

“The long-baseline stereo imaging will be used to generate a digital elevation map that will help the team carefully evaluate possible driving routes down the valley before starting the descent,” said Opportunity Project Manager John Callas of JPL, in a statement.

“Reversing course back uphill when partway down could be difficult, so finding a path with minimum obstacles will be important for driving Opportunity through the whole valley. Researchers intend to use the rover to examine textures and compositions at the top, throughout the length and at the bottom, as part of investigating the valley’s history.”

The team is also dealing with a new wheel issue and evaluating fixes. The left-front wheel is stuck due to an actuator stall.

“The rover experienced a left-front wheel steering actuator stall on Sol 4750 (June 4, 2017) leaving the wheel ‘toed-out’ by 33 degrees,” the team reported in a new update.

Thus the extensive Pancam panorama is humorously being called the “Sprained Ankle Panorama.” Selected high-value targets of the surrounding area will be imaged with the full 13-filter Pancam suite.

After reaching the bottom of Perseverance Valley, Opportunity will explore the craters interior for the first time during the mission.

“Once down at the end of the valley, Opportunity will be directed to explore the crater fill on a drive south at the foot of the crater walls,” states Crumpler.

As of today, June 17, 2017, long lived Opportunity has survived over 4763 Sols (or Martian days) roving the harsh environment of the Red Planet.

Opportunity has taken over 220,800 images and traversed over 27.87 miles (44.86 kilometers) – more than a marathon.

See our updated route map below. It shows the context of the rovers over 13 year long traverse spanning more than the 26 mile distance of a Marathon runners race.

The rover surpassed the 27 mile mark milestone on November 6, 2016 (Sol 4546).

NASA’s Opportunity rover acquired this Martian panoramic view from a promontory that overlooks Perseverance Valley below – scanning from north to south. It is centered on due East and into the interior of Endeavour crater. Perseverance Valley descends from the right and terminates down near the crater floor in the center of the panorama. The far rim of Endeavour crater is seen in the distance, beyond the dark floor. Rover deck and wheel tracks at right. This navcam camera photo mosaic was assembled from raw images taken on Sol 4730 (14 May 2017) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

As of Sol 4759 (June 13, 2017) the power output from solar array energy production is currently 343 watt-hours with an atmospheric opacity (Tau) of 0.842 and a solar array dust factor of 0.529, before heading into another southern hemisphere Martian winter later in 2017. It will count as Opportunity’s 8th winter on Mars.

“The science team is really jazzed at starting to see this area up close and looking for clues to help us distinguish among multiple hypotheses about how the valley formed,” said Opportunity Project Scientist Matt Golombek of NASA’s Jet Propulsion Laboratory, Pasadena, California.

NASA’s Opportunity rover scans around and across to vast Endeavour crater on Dec. 19, 2016, as she climbs steep slopes on the way to reach a water carved gully along the eroded craters western rim. Note rover wheel tracks at center. This navcam camera photo mosaic was assembled from raw images taken on Sol 4587 (19 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Meanwhile Opportunity’s younger sister rover Curiosity traverses and drills into the lower sedimentary layers at the base of Mount Sharp.

And NASA continues building the next two robotic missions due to touch down in 2018 and 2020.

NASA as well is focusing its human spaceflight effort on sending humans on a ‘Journey to Mars’ in the 2030s with the Space Launch System (SLS) mega rocket and Orion deep space crew capsule.

13 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2017. This map shows the entire 44 kilometer (27 mi) path the rover has driven on the Red Planet during over 13 years and more than a marathon runners distance for over 4763 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 – to current location at the western rim of Endeavour Crater at the head of Perseverance Valley. After studying Spirit Mound and ascending back uphill the rover has reached her next destination in May 2017- the Martian water carved gully at Perseverance Valley near Orion crater. Rover surpassed Marathon distance on Sol 3968 after reaching 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone – and searched for more at Marathon Valley. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the Opportunity rover and upcoming SpaceX launch of BulgariaSat 1, recent SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

June 17-19: “Opportunity Mars rover, SpaceX BulgariaSat 1 launch, SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

This graphic shows the route that NASA’s Mars Exploration Rover Opportunity drove in its final approach to “Perseverance Valley” on the western rim of Endeavour Crater during spring 2017. Credits: NASA/JPL-Caltech/Univ. of Arizona/NMMNH
13 Years on Mars! On Christmas Day 2016, NASA’s Opportunity rover scans around vast Endeavour crater as she ascends steep rocky slopes on the way to reach a water carved gully along the eroded craters western rim. This navcam camera photo mosaic was assembled from raw images taken on Sol 4593 (25 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Cancer Risk for a Human Mars Mission Just Got a Lot Worse

A new study from UNLV indicates that the health risks for astronauts exploring Mars could be twice as bad as previously thought. Credit: NASA/Pat Rawlings, SAIC

Astronauts hoping to take part in a crewed mission to Mars might want to pack some additional rad tablets! Long before NASA announced their proposal for a “Journey to Mars“, which envisions putting boots on the Red Planet by the 2030s, mission planners have been aware that one of the greatest risks for such a mission has to do with the threat posed by cosmic and solar radiation.

But according to a new study from the University of Nevada, Las Vegas, this threat is even worse than previously thought. Using a predictive model, this study indicates that astronauts that are the surface of Mars for extended periods of time could experience cell damage from cosmic rays, and that this damage will extend to other healthy cells – effectively doubling the risk of cancer!

The study, which was led by UNLV scientist Dr. Francis Cucinotta, was published in the May issue of Scientific Reports – under the title of Non-Targeted Effects Models Predict Significantly Higher Mars Mission Cancer Risk than Targeted Effects Models“. Building on conventional models that predict that DNA damage caused by radiation leads to cancer, their model looked at how such damage could spread throughout the body.

At one time, Mars had a magnetic field similar to Earth, which prevented its atmosphere from being stripped away. Credit: NASA

Galactic cosmic rays (GCRs) are one of the greatest hazards posed by space exploration. These particles, which originate from beyond our Solar System, are basically atomic nuclei that have been stripped of their surrounding electrons, thanks to their high-speed journey through space. In the cases of iron and titanium atoms, these have been known to cause heavy damage to cells because of their very high rates of ionization.

Here on Earth, we are protected from these rays and other sources of radiation thanks to our protective magnetosphere. But with missions that would take astronauts well beyond Earth, they become a much greater threat. And given the long-term nature of a mission to Mars, mitigation procedures and shielding are being investigated quite thoroughly. As Cucinotta explained in a UNLV press statement:

“Exploring Mars will require missions of 900 days or longer and includes more than one year in deep space where exposures to all energies of galactic cosmic ray heavy ions are unavoidable. Current levels of radiation shielding would, at best, modestly decrease the exposure risks.”

Previous studies have indicated that the effects of prolonged exposure to cosmic rays include cancer, central nervous system effects, cataracts, circulatory diseases and acute radiation syndromes. However, until now, the damage these rays cause was thought to be confined to those cells that they actually traverse – which was based on models that deal with the targeted effects of radiation. 

Artist’s impression of astronauts exploring the surface of Mars. Credit: NASA/JSC/Pat Rawlings, SAIC

For the sake of their study, Dr. Cucinotta and Dr. Eliedonna Cacao (a Chemical Engineer at UNLV) consulted the mouse Harderian gland tumor experiment. This is the only extensive data-set to date that deals with the non-targeted effects (NTEs) of radiation for a variety of particles. Using this model, they tracked the effects of chronic exposure to GCRs, and determined that the risks would be twice as high as those predicted by targeted effects models.

“Galactic cosmic ray exposure can devastate a cell’s nucleus and cause mutations that can result in cancers,” Cucinotta explained. “We learned the damaged cells send signals to the surrounding, unaffected cells and likely modify the tissues’ microenvironments. Those signals seem to inspire the healthy cells to mutate, thereby causing additional tumors or cancers.”

Naturally, any indication that there could be an elevated risk calls for additional research. As Cucinotta and Cacao indicated in their study, “The scarcity of data with animal models for tissues that dominate human radiation cancer risk, including lung, colon, breast, liver, and stomach, suggest that studies of NTEs in other tissues are urgently needed prior to long-term space missions outside the protection of the Earth’s geomagnetic sphere.”

These studies will of course need to happen before any long-term space missions are mounted beyond Earth’s magnetosphere. In addition, the findings also raise undeniable ethical issues, such as whether or not these risks could (or should) be waived by space agencies and astronauts. If in fact we cannot mitigate or protect against the hazards associated with long-term missions, is it even right to ask or allow astronauts to take part in them?

In the meantime, NASA may want to have another look at the mission components for the Journey to Mars, and maybe contemplate adding an additional layer or two of lead shielding. Better to be prepared for the worst, right?

Further Reading: UNLV, Nature