Plausibility Check – Habitable Planets around Red Giants

Betelgeuse is a red giant star easily visible in our night sky. Betelgeuse is actally a red super-giant, meaning it has enough mass that it will end as a supernova, rather than as a white dwarf with a planetary nebula. Image credit: Hubble Space Telescope
Betelgeuse is a red super-giant, meaning it has enough mass that it will end as a supernova, rather than as a white dwarf with a planetary nebula. New research suggests that the star could've consumed a smaller companion star. Image credit: Hubble Space Telescope

[/caption]

While planets orbiting twin stars are a staple of science fiction, another is having humans live on planets orbiting red giant stars. The majority of the story of Planet of the Apes takes place on a planet around Betelgeuse. Planets around Arcturus in Isaac Asimov’s Foundation series make up the capital of his Sirius Sector. Superman’s home planet was said to orbit a the fictional red giant, Rao. Races on these planets are often depicted as being old and wise since their stars are aged, and nearing the end of their lives. But is it really plausible to have such planets?

Stars don’t last forever. Our own Sun has an expiration date in about 5 billion years. At that time, the amount of hydrogen fuel in the core of the Sun will have run out. Currently, the fusion of that hydrogen into helium is giving rise to a pressure which keeps the star from collapsing in on itself due to gravity. But, when it runs out, that support mechanism will be gone and the Sun will start to shrink. This shrinking causes the star to heat up again, increasing the temperature until a shell of hydrogen around the now exhausted core becomes hot enough to take up the job of the core and begins fusing hydrogen to helium. This new energy source pushes the outer layers of the star back out causing it to swell to thousands of times its previous size. Meanwhile, the hotter temperature to ignite this form of fusion will mean that the star will give off 1,000 to 10,000 times as much light overall, but since this energy is spread out over such a large surface area, the star will appear red, hence the name.

So this is a red giant: A dying star that is swollen up and very bright.

Now to take a look at the other half of the equation, namely, what determines the habitability of a planet? Since these sci-fi stories inevitably have humans walking around on the surface, there’s some pretty strict criteria this will have to follow.

First off, the temperature must be not to hot and not to cold. In other words, the planet must be in the Habitable zone also known as the “Goldilocks zone”. This is generally a pretty good sized swath of celestial real estate. In our own solar system, it extends from roughly the orbit of Venus to the orbit of Mars. But what makes Mars and Venus inhospitable and Earth relatively cozy is our atmosphere. Unlike Mars, it’s thick enough to keep much of the heat we receive from the sun, but not too much of it like Venus.

This diagram shows the distances of the planets in the Solar System (upper row) and in the Gliese 581 system (lower row), from their respective stars (left). The habitable zone is indicated as the blue area, showing that Gliese 581 d is located inside the habitable zone around its low-mass red star. Based on a diagram by Franck Selsis, Univ. of Bordeaux. Credit: ESO

The atmosphere is crucial in other ways too. Obviously it’s what the intrepid explorers are going to be breathing. If there’s too much CO2, it’s not only going to trap too much heat, but make it hard to breathe. Also, CO2 doesn’t block UV light from the Sun and cancer rates would go up. So we need an oxygen rich atmosphere, but not too oxygen rich or there won’t be enough greenhouse gasses to keep the planet warm.

The problem here is that oxygen rich atmospheres just don’t exist without some assistance. Oxygen is actually very reactive. It likes to form bonds, making it unavailable to be free in the atmosphere like we want. It forms things like H2O, CO2, oxides, etc… This is why Mars and Venus have virtually no free oxygen in their atmospheres. What little they do comes from UV light striking the atmosphere and causing the bonded forms to disassociate, temporarily freeing the oxygen.

Earth only has as much free oxygen as it does because of photosynthesis. This gives us another criteria that we’ll need to determine habitability: the ability to produce photosynthesis.

So let’s start putting this all together.

Firstly, the evolution of the star as it leaves the main sequence, swelling up as it becomes a red giant and getting brighter and hotter will mean that the “Goldilocks zone” will be sweeping outwards. Planets that were formerly habitable like the Earth will be roasted if they aren’t entirely swallowed by the Sun as it grows. Instead, the habitable zone will be further out, more where Jupiter is now.

However, even if a planet were in this new habitable zone, this doesn’t mean its habitable under the condition that it also have an oxygen rich atmosphere. For that, we need to convert the atmosphere from an oxygen starved one, to an oxygen rich one via photosynthesis.

So the question is how quickly can this occur? Too slow and the habitable zone may have already swept by or the star may have run out of hydrogen in the shell and started contracting again only to ignite helium fusion in the core, once again freezing the planet.

The only example we have so far is on our own planet. For the first three billion years of life, there was little free oxygen until photosynthetic organisms arose and started converting it to levels near that of today. However, this process took several hundred million years. While this could probably be increased by an order of magnitude to tens of millions of years with genetically engineered bacteria seeded on the planet, we still need to make sure the timescales will work out.

It turns out the timescales will be different for different masses of stars. More massive stars burn through their fuel faster and will thus be shorter. For stars like the Sun, the red giant phase can last about 1.5 billion years, so ~100x longer than is necessary to develop an oxygen rich atmosphere. For stars twice as massive as the Sun, that timescale drops to a mere 40 million years, approaching the lower limit of what we’ll need. More massive stars will evolve even more quickly. So for this to be plausible, we’ll need lower mass stars that evolve slower. A rough upper limit here would be a two solar mass star.

However, there’s one more effect we need to worry about: Can we have enough CO2 in the atmosphere to even have photosynthesis? While not nearly as reactive as oxygen, carbon dioxide is also subject to being removed from the atmosphere. This is due to effects like silicate weathering such as CO2 + CaSiO3 –> CaCO3 + SiO2. While these effects are slow they build up with geological timescales. This means we can’t have old planets since they would have had all their free CO2 locked away into the surface. This balance was explored in a paper published in 2009 and determined that, for an Earth mass planet, the free CO2 would be exhausted long before the parent star even reached the red giant phase!

So we’re required to have low mass stars that evolve slowly to have enough time to develop the right atmosphere, but if they evolve that slowly, then there’s not enough CO2 left to get the atmosphere anyway! We’re stuck with a real Catch 22. The only way to make this feasible again is to find a way to introduce sufficient amounts of new CO2 into the atmosphere just as the habitable zone starts sweeping by.

Fortunately, there are some pretty large repositories of CO2 just flying around! Comets are composed mostly of frozen carbon monoxide and carbon dioxide. Crashing a few of them into a planet would introduce sufficient CO2 to potentially get photosynthesis started (once the dust settled down). Do that a few hundred thousand years before the planet would enter the habitable zone, wait ten million years, and then the planet could potentially be habitable for as much as an additional billion years more.

Ultimately this scenario would be plausible, but not exactly a good personal investment since you’d be dead long before you’d be able to reap the benefits. A long term strategy for the survival of a space faring species perhaps, but not a quick fix to toss down colonies and outposts.

45 Years of Rendezvous and Docking in Space

On Thursday, the European ATV Johannes Kepler will dock with the International Space Station. Rendezvous and docking in space has been taking place for 45 years, and happened first when Gemini 8 hooked up with the Agena Target Vehicle in 1966. Most of us take for granted how two spacecraft rendezvous while in orbit, but it is a complicated procedure involving orbital mechanics, coordination between the two spacecraft, and strict timelines. Here’s a 90-second whirlwind tour of the history of docking in space – past, present and future from ESA. If you want to read more about the history rendezvous and docking, ESA’s ATV blog has a detailed look. Below is a video that describes how the ATV docks at the ISS.

Continue reading “45 Years of Rendezvous and Docking in Space”

Movies of Comet Tempel 1 Encounter by Stardust-NExT

NASA's Stardust-NExT mission took this image of comet Tempel 1 at 8:39 p.m. PST (11:39 p.m. EST) on Feb 14, 2011. The comet was first visited by NASA's Deep Impact mission in 2005. Credit: NASA/JPL-Caltech/Cornell. Image brightened and enhanced by Ken Kremer to show additional detail.

Want to know what it feels like at close range to ride on a spaceship past a zooming comet that’s spewing dust and debris that could destroy you at any moment ?

Check out the movies (above & below) which gives you a front row seat at NASA’s newest ‘Comet Experience’. Hitch a ride on the rear of Stardust-NExT as it flew past Compet Tempel 1 at 9.8 km/sec, or 24,000 MPH.

The movie comprises the highest resolution images of the fleeting 8 minutes of the closest approach period that occurred between 8:35:26 p.m. to 8:43:08 p.m. PST on Feb. 14, 2011 (4:35:26 a.m. to 4:43:08 a.m. UTC, Feb. 15, 2011, according to the clock kept aboard the spacecraft).

Stardust started taking these the excellent quality photos at a distance of 2,462 kilometers (1,530 miles) away from the center of the comet and get to within 185 kilometers (115 miles). By the end of the movie, the spacecraft is 2,594 kilometers (1,611 miles) away from the center of the comet.

Think about it and the navigational precision required to pull off this feat. After a journey of near 6 billion kilometers (3.5 Billion miles) and 12 years, the highest quality science and images are captured in what amounts to an instant in time.

“And they did it with Math !”, exclaimed NASA Asspciate Admisistrator Ed Weiler at the post encounter briefing. Weiler exhorted school kids worldwide to study math and science if that want to accomplish great deeds.

Comet Tempel 1 was approximately 335 million kilometers (208 million miles) away from Earth and on the other side of the sun during the encounter. Tempel 1 is oblong in shape and has an average diameter of about 6 kilometers (4 miles).

The individual images are all online. Check out these alternate movie versions prepared by Dimitri Demeeter at Youtube and nasatech.net at the links below.

Here’s 1/10 sec with text

Here’s 1/4 sec with text

Here’s 1/2 sec with text

Here’s 1/10 sec w/o text

Here’s 1/2 sec w/o text

[/caption]

Highlights from the Comet Tempel 1 Post Flyby briefing

more Stardust goodies coming up

Read more about the Stardust-NExT Flyby and mission in my earlier stories here, here, here, here and here

Discovery’s final crew arrives at NASA’s Kennedy Space Center

STS-133 Commander Steve Lindsey and Mission Specialist Alvin Drew land at Kennedy Space Center's Shuttle Landing Facility. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL – Arriving in their trademark T-38 Talon jets, the crew that will fly the last mission of the space shuttle Discovery arrived at NASA’s Kennedy Space Center in Florida. The astronauts landed at the Shuttle Landing Facility (SLF) at 3:45 p.m. EDT and took a few moments to speak to members of the media and pose for pictures before heading off to prepare for their 11-day mission.

Discovery is currently slated to begin its mission to the International Space Station (ISS) with liftoff taking place at 4:50 p.m. EDT Thursday, Feb. 24. The STS-133 mission is Discovery’s final scheduled flight. However, STS-132, which took place this past May, was shuttle Atlantis’ final scheduled flight – now that orbiter is scheduled to close out the shuttle program when it completes mission STS-135, which is scheduled to take place late this summer.

The crew will deliver the Leonardo Permanent Multipurpose Module (PMM) to the space station. The PMM was modified from the Multi-Purpose Logistics Module (MPLM) Leonardo – which was essentially a cargo container. Now, Leonardo will be a permanent fixture on the orbiting outpost providing additional storage for the station’s crew.

STS-133 mission Commander Steve Lindsey discusses the upcoming mission at Kennedy Space Center's Shuttle Launch Facility. Photo Credit: Jason Rhian

On the way to orbit, the PMM will carry, among other things, the first human-like robot ever flown in space, Robonaut 2 (R2). R2 will stay onboard the station and will be used to test the viability of similar robots in assisting astronauts on future long-duration missions. One of the things that the station can always use – is more spare parts. STS-133 will deliver various parts and the Express Logistics Carrier 4, a platform that holds large equipment.

The crew consists of Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists Alvin Drew, Steve Bowen, Michael Barratt and Nicole Stott. Bowen is a last minute addition to the crew. He replaces Tim Kopra who broke his hip in a bicycle accident.

Mission Specialist Alvin Drew (left) is greeted by NASA Administrator Charles Bolden (right). Photo Credit: Jason Rhian

Spectacular ATV Kepler Launch Photo Captured from Orbiting ISS

This remarkable photo was taken by ESA astronaut Paolo Nespoli from the ISS on 16 February 2011, just minutes after ATV Johannes Kepler lifted off on board an Ariane 5 from Kourou at 22:50 UTC. It shows the rising exhaust trail of Ariane, still in its initial vertical trajectory. The trail can be seen as a thin streak framed just beneath the Station's remote manipulator arm. Credits: ESA/ NASA

[/caption]

Have you ever seen a space launch from orbit ?

Check out the spectacular launch photo (above) of the Johannes Kepler ATV streaking skyward atop an Ariane 5 rocket as captured by astronaut Paolo Nespoli from his unparalleled vantage point looking out the windows aboard the International Space Station (ISS), in orbit some 350 km above Earth.

The launch photo shows the rising exhaust trail from the rocket just minutes after blast off of the Ariane booster on Feb. 16 from the ESA rocket base in Kourou, French Guiana, South America. The rocket was still on a vertical ascent trajectory to orbit. Additional launch photos below from space and Earth.

Photo captured on 16 February 2011 from the real-time video from the Ariane 5 launcher during the flight V200 during the time of jettisoning the boosters.

The photo vividly illustrates the maturity of the European space effort since the launch base, Ariane booster rocket, Kepler payload and astronaut Nespoli all stem from Europe and are crucial to the future life of the ISS.

Ariane 5 rocket at the Launch pad at Europe's Spaceport in Kourou, French Guiana with Johannes Kepler ATV bolted on top prior to Feb. 16 blast off.

Kepler is set to dock at the ISS on Feb. 24 and an on time arrival is essential because of an impending orbital traffic jam.

Space Shuttle Discovery is due to link up with the ISS just six hous after Kepler if the orbiter launches according to schedule on Feb. 22.

Everything is nominal with Kepler’s spacecraft systems and orbital performance at this time say European Space Agency (ESA) officials, including the deployment of ATV’s four large solar wings.

Ariane 5 liftoff with Johannes Kepler ATV

The ATV, or Automated Transfer Vehicle, is a European built resupply vessel designed to transport essential cargo and provisions to the ISS. It is Europe’s contribution to stocking up the ISS.

Kepler is carrying carries more than seven metric tons of supplies and cargo for the ISS and will be used to reboost the outpost to a higher orbit during its planned four month mission.

“ATV is a truly European spacecraft. Flying it requires experts from ESA, partner agencies and industry across half a dozen countries,” said ESA’s Bob Chesson, Head of the Human Spaceflight Operations Department.

“Getting it built, into orbit and operating it in flight to docking requires a lot of hard work and dedication from hundreds of people.”

The ATV is named after Johannes Kepler (1571-1630), the German astronomer and mathematician who is best known for discovering the laws of planetary motion. NASA also named its powerful new planet hunting space telescope after Kepler, which recently discovered the first earth sized planets orbiting inside the habitable zone.

After the shuttle is forcibly retired later this year in 2011, the very survival and continued use of the ISS will be completely dependent on a steady train of cargo and payloads lofted by unmanned resupply vessels including the ATV from Europe, HTV from Japan, Progress from Russia and commercial carriers such as SpaceX and Orbital Sciences.

Photos of Ariane rockets rising exhaust trail from Feb. 16 ATV launch photographed from the ISS. Credits: ESA/ NASA

European Space Agency (ESA) astronaut Paolo Nespoli, Expedition 26 flight engineer, conducts a test run with the French/CNES neuroscientific research experiment 3D-Space (SAP) in the Columbus laboratory of the International Space Station.

NASA Weighs Risks of Unique Photo-Op at Space Station

In this computer-generated representation, a space shuttle is docked to a completed and fully operational International Space Station (ISS). Credit: NASA

[/caption]

If all goes well and space shuttle Discovery arrives at the International Space Station the end of February, there will be a distinctive configuration: all the international partners will have a vehicle docked to the completed ISS. With the shuttle program about to retire, this configuration will be unique enough – this is the only time it will happen during the shuttle program — that NASA is considering putting three cosmonauts/astronauts in one of the Soyuz capsules that are docked to the station, have them undock and fly around to take pictures of the entire complex.

The Soyuz could photograph the station, showing the ISS in its final, completed configuration, with the shuttle attached, along with the Russian Progress and Soyuz, the European ATV and the Japanese HTV-1.


NASA managers, engineers and contractors are meeting today, Feb. 18 in a Flight Readiness Review to discuss the photo op. Of course, the Russian space agency would have to go along with the idea, as the task would not be insignificant.

Anytime a spacecraft undocks, there is the possibility of a problem or malfunction, and with people involved, the problems multiply fairly quickly. If for some reason the crew could not re-dock, they would have to deorbit and return to Earth, and the ISS crew would all of a sudden be reduced from six to three. Of course, the shuttle crew would be there, but their stay would be limited.

If the plans gets the OK, the crew doing the photo-op mission would ber Alexander Kaleri, Oleg Skripochka and Expedition 26 commander Scott Kelly.

Atlantis undocks after its first visit at Mir. Credit: Roscosmos/NASA

But you have to admit, the pictures and videos would be spectacular, and as things stand now, this would be the one and only chance to get a picture like this, a sort of family photo of the station and all the vehicles that support it.

The feat is not without precedence, however. The Russians took a similar photo on July 4, 1995, when the shuttle Atlantis was docked to the Mir space station, the first time a shuttle visited the Russian space station. Just before Atlantis undocked to return home, cosmonauts Anatoly Solovyev and Nikolai Budarin undocked in a Soyuz spacecraft and photographed the shuttle’s departure from a distance of about 300 feet.
There was a computer problem during the maneuver, however, and the cosmonauts had to dock manually and everything turned out just fine. And the picture was great, too.

The NASA Twitter feed reporting from today’s FRR meeting said the decision to do the photo op will probably not be made until during the STS-133 mission. NASA management is also deciding today when the Discovery mission will actually launch – right now it is scheduled for February 24, 2011 but they are weighing waiting until February 25, as the ATV Johnnes Kepler will arrive at the ISS on the 24th about 6 hours before the shuttle is scheduled to launch. If there were any problems with the ATV, the shuttle might have to stand down.

Sun Erupts with Enormous X2 Solar Flare

Active region 1158 let loose with an X2.2 flare late on February 15, taken by NASA's Solar Dynamics Observatory in the extreme ultraviolet wavelength of 193 Angstroms. Much of the vertical line in the image is caused by the bright flash overwhelming the SDO imager. Credit: NASA/SDO

Just in time for Valentine’s Day, [and the Stardust flyby of Comet Tempel 1] the Sun erupted with a massive X-Class flare, the most powerful of all solar events on February 14 at 8:56 p.m. EST . This was the first X-Class flare in Solar Cycle 24 and the most powerful X-ray flare in more than four years.

The video above shows the flare as imaged by the AIA instrument at 304 Angstroms on NASA’s Solar Dynamics Observatory. More graphic videos below show the flare in the extreme ultraviolet wavelength of 193 Angstroms and as a composite with SOHO’s coronagraph.

Spaceweather Update: A CME hit Earth’s magnetic field at approximately 0100 UT on Feb. 18th (8:00 pm EST on Feb. 17th). Send me or comment your aurora photos

The eruption registered X2 on the Richter scale of solar flares and originated from Active Region 1138 in the sun’s southern hemisphere. The flare directly follows several M-class and C-class flares over the past few days which were less powerful. The explosion also let loose a coronal mass ejection (CME) headed for Earth’s orbit. It was speeding at about 900 Km/second.
CME’s can disrupt communications systems and the electrical power grid and cause long lasting radiation storms.

According to a new SDO update, the particle cloud from this solar storm is weaker than first expected and may produce some beautiful aurora in the high northern and southern latitudes on Feb. 17 (tonight).

According to spaceweather.com, skywatchers in the high latitudes should be alert for auroras after nightfall Feb. 17 from this moderately strong geomagnetic storm.

Send me your aurora reports and photos to post here

Sources: SDO website, spaceweather.com

NASA SDO – Big, Bright Flare February 15, 2011

Video Caption: Active region 1158 let loose with an X2.2 flare at 0153 UT or 8:50 pm ET on February 15, 2011, the largest flare since Dec. 2006 and the biggest flare so far in Solar Cycle 24. Active Region 1158 is in the southern hemisphere, which has been lagging the north in activity but now leads in big flares! The movie shows a close-up of the flaring region taken by the Solar Dynamics Observatory in the extreme ultraviolet wavelength of 193 Angstroms. Much of the vertical line in the image and the staggered lines making an “X” are caused by the bright flash overwhelming our imager. A coronal mass ejection was also associated with the flare. The movie shows activity over about two days (Feb. 13-15, 2011). Since the active region was facing Earth, there is a good chance that Earth will receive some effects from these events, with some possibility of mid-latitude aurora Feb. 16 – 18. Credit: NASA SDO

X2 flare Video combo from SDO and SOHO

Video caption: The X2 flare of Feb. 15, 2011 seen by SDO (in extreme ultraviolet light) enlarged and superimposed on SOHO’s coronagraph that shows the faint edge of a “halo” coronal mass ejection as it races away from the Sun. The video covers about 11 hours

[/caption]

This image taken by SDO's AIA instrument at 171 Angstrom shows the current conditions of the quiet corona and upper transition region of the Sun. Credit: NASA/SDO/AIA

NASA’s Stardust Discovers Human made Deep Impact Crater on Comet Tempel 1

Tempel 1, as Seen by Two Spacecraft. These two images show the different views of comet Tempel 1 seen by NASA's Deep Impact spacecraft (left) and NASA's Stardust spacecraft (right). Two craters, about 300 meters (1,000 feet) in diameter, help scientists locate the area hit by the impactor released by Deep Impact in July 2005. The dashed lines correlate the features. Stardust approached the comet from a different angle on Feb. 14, 2011. Credit: NASA/JPL-Caltech/University of Maryland/Cornell

[/caption]
NASA’s aging and amazing Stardust space probe has at last discovered the human made crater created on Comet Tempel 1 in 2005 by the history making cosmic smash up with NASA’s Deep Impact penetrator. Stardust streaked past the comet on Feb. 14 at 10.9 km/sec, or 24,000 MPH, and succeeded in briefly photographing the crater as it approached within 178 km (111 mi) during the fleeting moments of the probes closest approach.

The intentional celestial collision in 2005 was designed to violently unleash the buried remnants of the early solar system into an enormous ejecta cloud of dusty debris that scientists could sift for clues to help unlock the secrets of how we all formed and evolved some 4.5 Billion Years ago.

Tempel 1 is the first comet to receive a second visit by probes from Earth.

Comets have continuously smashed into Earth over the eons and delivered vast quantities of key ingredients – such as water and organic molecules – that may have sparked the formation of life on the early Earth.

NASA approved the use of the already orbiting Stardust-NExT spacecraft to follow up on the science discoveries by Deep Impact as the best and most economical way to try and locate the crater blast site, image new terrain and look for changes on the comets surface since the 2005 mission as the comet also completed another orbit around our Sun and eroded due to solar heating.

The human made crater is about 150 meters wide and was formed by a 375 kilogram (800 pound) projectile propelled into the speeding path of Comet Tempel 1 by the Deep Impact mothership in 2005.

Tempel 1 Impact Site.
This pair of images shows the before-and-after comparison of the part of comet Tempel 1 that was hit by the impactor from NASA's Deep Impact spacecraft. The left-hand image is a composite made from images obtained by Deep Impact in July 2005. The right-hand image shows arrows identifying the rim of the crater caused by the impactor. The crater is estimated to be 150 meters (500 feet) in diameter. This image also shows a brighter mound in the center of the crater likely created when material from the impact fell back into the crater. Credit: NASA/JPL-Caltech/University of Maryland/Cornell

Stardust-NExT took 72 high resolution science images of the comet during the Valentine’s Day encounter flyby on Feb, 14 at 11:40 p.m. EST (8:40 p.m. PST). The probe absolutely had to be precisely navigated to exactly hit the aim point for sequencing the images to match the right moment in the erratic rotation of the volatile comet.

The results of the Stardust-NExT mission were announced at a post encounter new briefing after most of the images and science data had streamed back to Earth. The science team and NASA said that all the mission objectives were accomplished.

“If you ask me was this mission 100 percent successful in terms of the science, I’d have to say no. It was 1000 percent successful!” said Stardust-NExT principal investigator Joe Veverka of Cornell University, Ithaca, N.Y., at the news briefing.

“We found the Deep Impact crater. We see erosion in comparison to 2005. So we do see changes. Erosion on the scale of 20 to 30 meters of material has occurred in the five or six years since we took the first picture. We are seeing a change, but we have to spend time quantifying the changes and understanding what they mean.”

“We saw a lot of new territory. It’s amazing with lots of layers. There is lots of surface sublimation. We had to arrive at precisely the right time in order to see new and old territory.”

“We had monitored the comets rotation for several years. And we got the longitude almost perfect within 1 or 2 degrees,” Veverka said.

Tempel 1 Impact Site
Credit: NASA/JPL-Caltech/University of Maryland/Cornell

It took a few years of careful study to deduce the comets complex rotational patterns which change as the body orbits in a wide orbital path between Mars and Jupiter and is heated by the sun.

Peter Schultz, a science team co-investigator agreed and showed the comparison images.

“We saw the crater,” said Schultz, of University. “It’s subdued; it’s about 150 meters across and has a small central mound in the center. It looks as if from the impact, the stuff went up and came back down. So we did get it, there’s no doubt. I think one of the bottom-line messages is that this surface of the comet where we hit is very weak. It’s fragile. So the crater partly healed itself.”

“It was about the size we expected. But more subdued.”

The probes mission is almost complete since it has very little fuel left. The remaining science data from the flyby is being sent back and some outbound data is being collected.

“This spacecraft has logged over 3.5 billion miles since launch, and while its last close encounter is complete, its mission of discovery is not,” said Tim Larson, Stardust-NExT project manager at JPL. “We’ll continue imaging the comet as long as the science team can gain useful information, and then Stardust will get its well-deserved rest.”

Stardust-NExT is a repurposed spacecraft that has journeyed nearly 6 billion kilometers since it was launched in 1999.

Initially christened as Stardust, the spaceships original task was to fly by Comet Wild 2 in 2004. It also collected priceless cometary dust particles from the coma which was safely parachuted back to Earth inside a return canister in 2006. High powered science analysis of the precious comet dust will help researchers discern the origin and evolution of our solar system.

This was humanities first revisit to a comet and at a bargain basement price by using an old spacecraft already in space.

“The cost was just $29 Million dollars. A new Discovery class mission costs $300 to 500 Million. So that’s maybe 6% the cost of developing and launching a new mission,” said Ed Weiler, the associate administrator for NASA’s Science Mission Directorate at NASA HQ in Washington, DC.

Read more about the Stardust-NExT Flyby and mission in my earlier stories here, here, here and here

Changes to Smooth Terrain (Annotated)
This image layout depicts changes in the surface of comet Tempel 1, observed first by NASA's Deep Impact Mission in 2005 (top right) and again by NASA's Stardust-NExT mission on Feb. 14, 2011 (bottom right). Between the two visits, the comet made one trip around the sun. The image at top left is a wider shot from Deep Impact. The smooth terrain is at a higher elevation than the more textured surface around it. Scientists think that cliffs, illustrated with yellow lines to the right, are being eroded back to the left in this view. The cliffs appear to have eroded as much as 20 to 30 meters (66 to 100 feet) in some places, since Deep Impact took the initial image. The box shows depressions that have merged together over time, also from erosion. This erosion is caused by volatile substances evaporating away from the comet. Credit: NASA/JPL-Caltech/University of Maryland/Cornell

Stardust-NExT zooms by Comet Tempel 1 for Cosmic Encounter

Comet Tempel 1 imaged by NASA's Stardust on Feb 14, Valentine’s Day. NASA's Stardust-NExT mission took this image of comet Tempel 1 at 8:38 p.m. PST (11:38 p.m. EST) on Feb 14, 2011. . The comet was first visited by NASA's Deep Impact mission in 2005. Credit: NASA/JPL-Caltech/Cornell Update Feb 15: Beautifully sharp Comet images now being downlinked. New story upcoming.

[/caption]

NASA’s Stardust-NExT comet chaser successfully zoomed by Comet Temple 1 exactly as planned a short while ago at 11:37 p.m. EST on Feb. 14.

The cosmic Valentine’s Day encounter between the icy comet and the aging probe went off without a hitch. Stardust snapped 72 science images as it raced by at over 10 km/sec or 24,000 MPH and they are all centered in the cameras field of view. The probe came within 181 km (112 miles) of the nucleus of the volatile comet.

The images are being transmitted back now and it will take a several hours until the highest resolution images are available for the science team and the public to see. The first few images from a distance of over a thousand miles can be seen here

Tempel 1 is the first comet to be visited twice by spaceships from Earth. The primary goal was to find out how much the comet has changed in the five years since she was last visited by NASA’s Deep Impact mission in 2005, says Joe Ververka of Cornell University, who is the principal investigator of the Stardust-NExT mission. Deep Impact delivered a 375 kg projectile which blasted the comet and created an impact crater and an enormous cloud of dust so that scientists could study the composition and interior of the comet.

“We are going to be seeing the comet just after its closest passage to the sun. We know the comet is changing because the ice melts. We hope to see old and new territory and the crater and complete the Deep Impact experiment.”

Stardust-NExT is a repurposed spacecraft. Initially christened as Stardust, the spaceships original task was to fly by Comet Wild 2 in 2004. It also collected priceless cometary dust particles from the coma which were safely parachuted back to Earth inside a return canister in 2006. High powered science analysis of the precious comet dust will help researchers discern the origin and evolution of our solar system.

Stardust-NExt approaching Comet Tempel 1.
Artist concept of NASA's Stardust-NExT mission, which will fly by Comet Tempel 1 on Feb. 14, 2011. Credit: NASA/JPL-Caltech/LMSS

Stardust was hurriedly snapping high resolution pictures every 6 seconds and collecting data on the dust environment during the period of closest approach which lasted just about 8 minutes. The anticipation was building after 12 years of hard work and a journey of some 6 Billion kilometers (3.5 Billion miles)

“The Stardust spacecraft did a fantastic job,” says Tim Larson, the Stardust-NExT mission project manager from the Jet Propulsion Laboratory (JPL), Pasadena, Calif. “Stardust has already flown past a asteroid and a comet and returned comet particles to Earth”

“Because of the flyby geometry the antenna was pointed away from earth during the encounter. Therefore all the science images and data was stored in computer memory on board until the spacecraft was rotated to point towards Earth about an hour after the flyby.”

Each image takes about 15 minutes to be transmitted back to Earth by the High Gain Antenna at a data rate of 15,800 bits per second and across about 300 million miles of space.

NASA had bracketed five special images from the closest range as the first ones to be sent back. Instead, the more distant images were sent first. It will take about 10 hours to receive all the images.

So everyone had to wait a few hours longer to see the fruit of their long labor. Most of the team from NASA, JPL and Lockheed Martin has been working on the mission for a dozen years since its inception.

“We had a great spacecraft and a great team,” says Ververka. “Apparently, everything worked perfectly. The hardest thing now is we have to wait a couple of hours before we see all the goodies stored on board.”

The entire flyby was carried out autonomously using a preprogrammed sequence of commands. Due to the vast distance from Earth there was no possibility for mission controllers to intervene in real time.

Confirmation of a successful fly by and science imaging was not received until about 20 minutes after the actual event at about 11:58 p.m. EST. The dust flux monitor also registered increased activity just as occurred during the earlier Stardust flyby of Comet Wild 2 in 2004.

The Stardust-NExT science briefing on NASA TV will be delayed a few hours, until perhaps about 4 p.m. EST

Check back here later at Universe Today, on Tuesday, Feb. 15 for continuing coverage of the Valentine’s Day encounter of Stardust-NExT with the icy, unpredictable and fascinating Comet Tempel 1

Comet Tempel 1 imaged by NASA's Stardust on Feb 14, Valentine’s Day.
NASA's Stardust-NExT mission took this image of comet Tempel 1 at 8:36 p.m. PST (11:36 p.m. EST) on Feb 14, 2011, from a distance of approximately 2200 km (1360 miles). The comet was first visited by NASA's Deep Impact mission in 2005. Credit: NASA/JPL-Caltech/Cornell
Stardust-NExT Spacecraft & Comet Tempel 1.
Artist rendering of upcoming flyby on February, 14, 2011. Credit: NASA

Stardust-NExT: 2 Comet Flybys with 1 Spacecraft.
Stardust-NExT made history on Valentine’s Day - February, 14, 2011 – Tempel 1 is the first comet to be visited twice by spacrecraft from Earth. Stardust has now successfully visited 2 comets and gathered science data: Comet Wild 2 in 2004 (left) and Comet Tempel 1 in 2011 (right). Artist renderings Credit: NASA. Collage: Ken Kremer.

Romantic Valentines Day Encounter Looms with Icy Comet

NASA's Romantic Rendezvous in space on Valentine’s Day - Feb. 14. The planned Valentine's Day (Feb. 14, 2011) rendezvous between NASA's Stardust-NExT mission and Comet Tempel 1 inspired this chocolate-themed artist's concept. Credit: NASA/JPL-Caltech. Video and graphics below illustrate the icy encounter and animate the flyby trajectory. NASA TV: Live Coverage listed below. Update: See below the latest navigation camera images taken on Feb. 11 – newly obtained from JPL. These images are crucial for precisely aiming Stardust-NExT

[/caption]

At last, NASA embraces a romantic rendezvous in the dark void of deep space.

And soon the whole world can watch the up close meet up of the hot Stardust probe and the volatile, icy comet. The historic space tryst is less than a day away!

The Stardust-NExT spacecraft successfully hot fired its thrusters for the final course correction maneuver (TCM-33) on Feb. 12, setting up the fleeting celestial encounter with Comet Tempel 1 on Valentine’s Day, Feb. 14, Monday, at 11:37 p.m. EST. The space science probe will fly by the speeding comet at a distance of approximately 200 kilometers (124 miles) and at a speed of 10 km/sec.

Naturally, the fleeing comet is icy, unpredictable and exploding with jets of gas and dust particles. So there is some uncertainly at NASA and amongst the science team as to what we’ll actually see when the cameras unveil the hidden secrets of the nucleus of Temple 1.

The encounter phase has begun now (Feb. 13) at 24 hours prior to closest approach (Feb. 14) and concludes 24 hours after closest approach.

“The final TCM burn on Feb. 12 went well,” JPL spokesman DC Agle told me today (Feb.13)

It’s been a long wait and a far flung journey. Stardust has cruised some 6 Billion kilometers through our solar system – looping several times around the sun over a dozen years and is now nearly bereft of fuel.

For three and a half long years, the anticipation has been building since NASA approved the repurposing of the Stardust spacecraft in 2007 and fired the thrusters to alter the probes trajectory to Comet Temple 1 for this bonus extended mission.

But until the photos are transmitted across 300 million kilometers of space back to Earth, we won’t know which face of the comets surface was turned towards the camera as the curtain pulls back for the revealing glimpse.

Everything hinges on how accurately the mission team aims the reliable probe and the finicky rotation of the changeable comet.

The irregularly shaped nucleus of Tempel 1 measures barely 5 to 8 km in diameter.

Stardust-NExT: 2 Comet Flybys with 1 Spacecraft.
Stardust-NExT makes history on Valentine’s Day - February, 14, 2011
Tempel 1 is the first comet to be visited twice by spacecraft from Earth. Stardust will have visited 2 comets and gathered science data: Comet Wild 2 in 2004 (left) and Comet Tempel 1 in 2011 (right).
Artist renderings Credit: NASA. Collage: Ken Kremer.

The Feb. 14 encounter marks the first time in history that a comet has been visited twice by spaceships from Earth. The revisit provides the first opportunity for up-close observations of a comet both before and after a single orbital pass around the sun.

In July 2005, NASA’s Deep Impact probe delivered a 375 kg projectile that penetrated at high speed directly into the comets nucleus. The blast created an impact crater and ejected an enormous cloud of debris that was studied by the Deep Impact spacecraft as well as an armada of orbiting and ground based telescopes.

Somewhat unexpectedly, the new crater was totally obscured from the cameras view by light reflecting off the dust cloud.

“The primary goal is to find out how much the comet’s surface has changed between two close passages to the sun since it was last visited in 2005,” says Joe Ververka of Cornell University, who is the principal investigator of the Stardust-NExT mission.

This time around, researchers hope to determine the size of the crater. Numerous bets hinge on that determination.

It’s also quite possible that the crater itself has significantly changed in the intervening five and one half years as the Jupiter-class comet orbits between Mars and Jupiter.

“Comets rarely behave,” says Tim Larson, the Stardust-NExT mission project manager from the Jet Propulsion Laboratory (JPL), Pasadena, Calif.

“Temple 1 exhibits a complex rotation. The rotation period is about 41 hours. But the trajectory changes due to the comet jets and activity.”

“Ideally we would like to obtain photos of old and new territory and the crater from the Deep Impact encounter in 2005,” Larson explained.

Tempel 1 is the most observed comet in history using telescopes worldwide as well as the Hubble and Spitzer Space Telescopes.”

Engineers are using all this data to fine tune the aim of the craft and get a handle on which sides of the comet will be imaged. But either way the team will be elated with the science results regardless of whether the images reveal previously seen or new terrain.

Stardust-NExT approaching Comet Tempel 1
Artist concept of NASA's Stardust-NExT mission, which will fly by Comet Tempel 1 on Feb. 14, 2011. Credit: NASA/JPL-Caltech/LMSS

Today, Feb. 13, mission controllers at JPL are uplinking the final flyby sequences and parameters for Monday’s (Feb. 14) historic encounter.

Stardust-NExT will take 72 high resolution images of Comet Tempel 1 during the close approach. The team expects the nucleus to be resolved in several of the closest images. These will be stored in an onboard computer and relayed back to Earth starting about three hours later.

“All data from the flyby (including the images and science data obtained by the spacecraft’s two onboard dust experiments) are expected to take about 10 hours to reach the ground,” according to a NASA statement.

3 D stereo view of Comet Wild 2 from Stardust flyby in 2004. Credit: NASA/
Stardust-NExT is a repurposed spacecraft and this will be the last hurrah for the aging probe. Stardust was originally launched way back in 1999 and accomplished its original goal of flying through a dust cloud surrounding the nucleus of Comet Wild 2 on Jan. 2, 2004. During the flyby, the probe also collected comet particles which were successfully returned to Earth aboard a sample return capsule which landed in the Utah desert in January 2006.

Stardust continued its solitary voyage through the void of the space. Until now !

Watch the Stardust-NExT Romantic Rendezvous: Live on NASA TV

NASA has scheduled live mission commentary of the flyby and a post encounter news briefing on Feb. 14 and Feb. 15. These will be televised on NASA TV as follows:

February 14, Monday
11:30 p.m. – 1 a.m. (Feb. 15) – Live Stardust-NExT Mission Commentary (including coverage of closest approach to Comet Tempel 1 and re-establishment of contact with the spacecraft following the encounter) – JPL

February 15, Tuesday
3 – 4:30 a.m. Live Stardust-NExT Mission Commentary (resumes with the arrival of the first close-approach images of Comet Tempel 1) – JPL

1 p.m. – Stardust-NExT Post-Encounter News Briefing – JPL

Five facts you should know about NASA’s Stardust-NExT spacecraft as it prepares for a Valentine’s “date” with comet Tempel 1. From a NASA Press Release

1. “The Way You Look Tonight” – The spacecraft is on a course to fly by comet Tempel 1 on Feb. 14 at about 8:37 p.m. PST (11:37 p.m. EST) — Valentine’s Day. Time of closest approach to Tempel 1 is significant because of the comet’s rotation. We won’t know until images are returned which face the comet has shown to the camera.

Stardust- Earth return capsule with cometary dust particles in 2006. Credit: NASA/JPL
2. “It’s All Coming Back To Me Now” – In 2004, Stardust became the first mission to collect particles directly from a comet, Wild 2, as well as samples of interstellar dust. The samples were returned in 2006 via a capsule that detached from the spacecraft and parachuted to the ground at a targeted area in Utah. Mission controllers then placed the still-viable Stardust spacecraft on a flight path that could reuse the flight system, if a target of opportunity presented itself. Tempel 1 became that target of opportunity.

3. “The First Time Ever I Saw Your Face” – The Stardust-NExT mission will allow scientists for the first time to look for changes on a comet’s surface that occurred after one orbit around the sun. Tempel 1 was observed in 2005 by NASA’s Deep Impact mission, which put an impactor on a collision course with the comet. Stardust-NExT might get a glimpse of the crater left behind, but if not, the comet would provide scientists with previously unseen areas for study. In addition, the Stardust-NExT encounter might reveal changes to Tempel 1 between Deep Impact and Stardust-Next, since the comet has completed an orbit around the sun.

4. “The Wind Beneath My Wings” – This Tempel 1 flyby will write the final chapter of the spacecraft’s success story. The aging spacecraft approached 12 years of space travel on Feb. 7, logging almost 6 billion kilometers (3.5 billion miles) since launch. The spacecraft is nearly out of fuel. The Tempel 1 flyby and return of images are expected to consume the remaining fuel.

5. “Love is Now the Stardust of Yesterday” – Although the spacecraft itself will no longer be active after the flyby, the data collected by the Stardust-NExT mission will provide comet scientists with years of data to study how comets formed and evolved.

Do you know the artists names who wrote and sing these celestially romantic tunes ?

NASA Stardust NExT Video: Date with a Comet – Tempel 1

Stardust-NExT Spacecraft & Comet Tempel 1.
Artist rendering of upcoming flyby on February, 14, 2011. Credit: NASA
13 Feb 2011 Position of STARDUST-NExT probe
Looking Down on the Sun. This image shows the current position of the STARDUST spacecraft and the spacecraft's trajectory (in blue) around the Sun. Credit: NASA

Latest navigation camera images of Comet Temple 1 coma and surrounding stars.
Taken by Stardust-NExT at about 10:30 a.m. on Feb. 11 – newly obtained from JPL. This region is about 1.2 degrees on a side - 351 x 351 pixels. Exposure duration 10 seconds. These images are crucial for precisely aiming Stardust-NExT. Credit: NASA/JPL
Enlargement of latest navigation camera image of Comet Temple 1 coma and surrounding stars showing a small section around the comet. Taken by Stardust-NExT at about 10:30 a.m. on Feb. 11 – newly obtained from JPL. Exposure duration 10 seconds. These images are crucial for precisely aiming Stardust-NExT. Credit: NASA/JPL