NASA announces launch dates, backup commander

The STS-134 commander, Mark Kelly, has been provided with a backup, so that he can focus on his wife's recovery. Photo Credit: NASA.gov

[/caption]

In the wake of the tragedy that took place last week in Tucson, Arizona, NASA has announced that astronaut Rick Sturckow will serve as backup commander for the STS-134 mission on the shuttle – Endeavour. This was decided so that the remainder of the crew could move forward with training during the absence of current STS-134 Commander Mark Kelly.

Kelly’s wife, Congresswoman Gabrielle Giffords, was wounded in a shooting on Jan. 8, at an outdoor event at a Safeway supermarket, dubbed “Congress on your Corner.” She was shot in the head by alleged gunman Jared Lee Loughner. Loughner, who listed the Communist Manifesto as one of his favorite books, shot a total of 18 people, six of whom have died. Loughner has a long history of mental instability, drug use and run-ins with the law.

Both STS-133 and STS-134 have had launch dates announced. Image Credit: NASA.gov

The final flight of Endeavour is currently scheduled for Apr. 19 – Kelly remains commander of the mission.

“Mark is still the commander of STS-134,” said Peggy Whitson, chief of the Astronaut Office. “He is facing many uncertainties now as he supports Gabrielle, and our goal is to allow him to keep his undistracted attention on his family while allowing preparations for the mission to progress. Designating a backup allows the crew and support team to continue training, and enables Mark to focus on his wife’s care.”

Sturckow will start his training next week at Johnson Space Center (JSC) in Texas with the remainder of the STS-134 crew, Pilot Greg Johnson and Mission Specialists; Mike Fincke, Roberto Vittori, Andrew Feustel and Greg Chamitoff.

Endeavour’s final, 14-day, mission to the International Space Station (ISS) will deliver the Alpha Magnetic Spectrometer (AMS-02). It will also contain much-needed spare parts including two S-band antennas, a gas tank, and spare parts for Canada’s Dextre robot.

NASA is hoping to launch Discovery at 4:50 p.m. EDT on Thursday, Feb. 24, on the orbiter’s STS-133 mission to the orbiting outpost. Endeavour’s final mission, STS-134, is currently slated to take place at 7:48 p.m. EDT on Apr. 19. The dates were chosen Thursday during the shuttle program’s weekly Program Requirements Control Board meeting (PRCB). Normally launch dates are confirmed about two weeks prior to launch, and as always, these dates are subject to various conditions – and to change.

From left-to-right, Congresswoman Nancy Pelosi, Congresswoman Gabrielle Giffords and her husband Navy Captain and astronaut Mark Kelly. Photo Credit: Tucsoncitizen

NASA – The Frontier Is Everywhere (Videos): Readings from Carl Sagan

Carl Sagan

Check out this awesome pair of inspiring videos about NASA and Space Exploration. They are set to the ever inspiring words of Carl Sagan – reading from his book, “The Pale Blue Dot”. And these beautifully crafted videos were not created by NASA, but rather by people inspired by NASA and Carl Sagan to dream about distant frontiers even in these times of tough budgets for NASA.

The original, highly praised video – see below – was created by Director Michael Marantz, who was inspired by the words of Carl Sagan. Now a completely new version – above – by a fellow going by “damewse”, has been set to the same stirring words and music and the video has gone viral.

[/caption]
“damewse” posted that he created the new video treatment because he feels NASA’s PR sucks, resulting in massive funding cuts. He pleads with NASA to use social media to relate to the public with videos like these to rekindle public interest in the space program.

Both videos are included here for all to enjoy and compare – moving and thought provoking in their own right.

“damewse” elaborated; “I got frustrated with NASA and made this video. NASA is the most fascinating, adventurous, epic institution ever devised by human beings, and their media sucks.”

“Seriously. none of their brilliant scientists appear to know how to connect with the social media crowd, which is now more important than ever. In fact, NASA is an institution whose funding directly depends on how the public views them.”

Earth: The Pale Blue Dot
The original film and comments by Director Michael Marantz

“Carl Sagan provides the epic narration to this piece. His great ability to convey such overwhelming topics in relatable ways inspired me to make this.”

The Pale Blue Dot. Most distant image of Earth, snapped by the Voyager 1 spacecraft in 1990 at a distance of 6.1 billion kilometers. Credit: NASA

“This piece contains readings from Carl Sagan’s “Pale Blue Dot”. I have edited his words to tell this short narrative.

I took the time lapse images in Mexico and Utah.

The piano is self-composed.

Everything in this video is created by myself except for the words of Carl Sagan.

I hope you enjoy this piece, it has given me hope once again.”

– Michael Marantz

…………..
Well NASA does need to do a more effective job at PR to grab the attention of the public – especially the younger generations – and explaining the agency’s exploration goals in ways that folks will find value in and support. But it’s also true that NASA has embraced many forms of social media. Take a look at almost any NASA Center or Mission homepage and you’ll see buttons for Twitter, Facebook, YouTube, flickr, blogs and more. I’ve found these sources to be invaluable, especially during beaking news events.

It hinges more I think on the quality of the presentation of the content and the organization of outstanding material at those websites. Look here for a thoughtful perspective from Spaceref Canada

The lengthy list of exciting and worthy ideas and lost opportunities for space exploration that have gone unfunded in our lifetimes, is truly sad.

Carl Sagan with a model of the Viking Lander that landed on Mars in 1976 in the search for life.

Kepler Discovers Its Smallest and First Rocky Planet

NASA's Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system.

[/caption]

NASA’s Kepler planet hunting space telescope has made an historic discovery by finding its first rocky planet – and it’s simultaneously the smallest planet ever found beyond our solar system. The exoplanet, dubbed Kepler-10b, measures barely 1.4 times the diameter of Earth and orbits its star in less than one earth day. Therefore the planet is located well outside the habitable zone and is far too close to the star for liquid water to exist. It is Earth-sized but not Earth-like with respect to the search for life. The finding of such a small and rocky world marks a major milestone for Keplers scientific capabilities in finding another world like our own.

Indeed the scorching hot planet orbits so close to its parent star – once every 0.84 days – that the surface is molten and temperatures exceed 2,500 degrees Fahrenheit, hotter than lava flows here on Earth. Kepler-10b is 20 times closer to its star than Mercury is to our sun. Its density is similar to that of an iron dumbbell.

Check out the amazing video below narrated by Natalie Batalha, Kepler’s deputy science team lead from NASA’s Ames Research Center which describes Kepler’s exciting discovery of the smallest exoplanet known to date – some 560 light years from Erath.

The discovery is based on data that was collected from May 2009 to early January 2010 and was independently confirmed with the W.M. Keck Observatory in Hawaii. A peer reviewed paper has been accepted for publication in the Astrophysical Journal. The spacecraft was launched in March 2009 by a Delta II rocket.

Over 500 exoplanets have been discovered up to now. Kepler uses the transit method to detect exoplanets and monitors 150,000 stars by aiming 42 detectors between the constellations of Cygnus and Lyra.

Kepler Mission Star Field.
An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer will be pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square. Credit: Carter Roberts / Eastbay Astronomical Society.

Read more at this NASA Press release

NASA’s Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system.

The discovery of this so-called exoplanet is based on more than eight months of data collected by the spacecraft from May 2009 to early January 2010.

“All of Kepler’s best capabilities have converged to yield the first solid evidence of a rocky planet orbiting a star other than our sun,” said Natalie Batalha, Kepler’s deputy science team lead at NASA’s Ames Research Center in Moffett Field, Calif., and primary author of a paper on the discovery accepted by the Astrophysical Journal. “The Kepler team made a commitment in 2010 about finding the telltale signatures of small planets in the data, and it’s beginning to pay off.”

Kepler’s ultra-precise photometer measures the tiny decrease in a star’s brightness that occurs when a planet crosses in front of it. The size of the planet can be derived from these periodic dips in brightness. The distance between the planet and the star is calculated by measuring the time between successive dips as the planet orbits the star.

Kepler is the first NASA mission capable of finding Earth-size planets in or near the habitable zone, the region in a planetary system where liquid water can exist on the planet’s surface. However, since it orbits once every 0.84 days, Kepler-10b is more than 20 times closer to its star than Mercury is to our sun and not in the habitable zone.

Kepler-10b orbits one of the 150,000 stars that the spacecraft is monitoring between the constellations of Cygnus and Lyra.
We aim our mosaic of 42 detectors there, under the swan’s wing, just above the plane of the Milky Way galaxy. The star itself is very similar to our own sun in temperature, mass and size, but older with an age of over 8 billion years, compared to the 4-and-1/2 billion years of our own sun. It’s a quiet star, slowly spinning with a weak magnetic field and few of the sun spots that characterize our own sun. The star’s about 560 light years from our solar system and one of the brighter stars that Kepler is monitoring. It was the first we identified as potentially harboring a very small transiting planet. The transits of the planet were first seen in July of 2009.

The diameter of Kepler-10b is only about 1.4 times the diameter of Earth and it's mass is about 4.5 times that of Earth. It is the best example of a rocky planet to date.

Kepler-10 was the first star identified that could potentially harbor a small transiting planet, placing it at the top of the list for ground-based observations with the W.M. Keck Observatory 10-meter telescope in Hawaii.

Scientists waiting for a signal to confirm Kepler-10b as a planet were not disappointed. Keck was able to measure tiny changes in the star’s spectrum, called Doppler shifts, caused by the telltale tug exerted by the orbiting planet on the star.

“The discovery of Kepler-10b, a bone-fide rocky world, is a significant milestone in the search for planets similar to our own,” said Douglas Hudgins, Kepler program scientist at NASA Headquarters in Washington. “Although this planet is not in the habitable zone, the exciting find showcases the kinds of discoveries made possible by the mission and the promise of many more to come,” he said.

“Our knowledge of the planet is only as good as the knowledge of the star it orbits,” said Batalha. Because Kepler-10 is one of the brighter stars being targeted by Kepler, scientists were able to detect high frequency variations in the star’s brightness generated by stellar oscillations, or starquakes. “This is the analysis that really allowed us to pin down Kepler-10b’s properties.,” she added.

“We have a clear signal in the data arising from light waves that travel within the interior of the star,” said Hans Keldsen, an astronomer at the Kepler Asteroseismic Science Consortium at Aarhus University in Denmark. Kepler Asteroseismic Science Consortium scientists use the information to better understand the star, just as earthquakes are used to learn about Earth’s interior structure. “As a result of this analysis, Kepler-10 is one of the most well characterized planet-hosting stars in the universe next to our sun,” Kjeldsen said.

Kepler from the high-gain antenna side in the clean room at Astrotech. Credit: nasatech.net

That’s good news for the team studying Kepler-10b. Accurate stellar properties yield accurate planet properties. In the case of Kepler-10b, the picture that emerges is of a rocky planet with a mass 4.6 times that of Earth and with an average density of 8.8 grams per cubic centimeter — similar to that of an iron dumbbell.

“This planet is unequivocally rocky, with a surface you could stand on,” commented team member Dimitar Sasselov, of the Harvard-Smithsonian Center for Astrophysics in Cambridge and a Kepler co-investigator.

“All of Kepler’s best capabilities have converged for this discovery,” Batalha said, “yielding the first solid evidence of a rocky planet orbiting a star other than our sun.”

Ames manages Kepler’s ground system development, mission operations and science data analysis. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.

Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.

……..
Click here to view a hi res 360 degree panorama of Kepler inside the cleanroom. Credit: nasatech.net

Can China enter the international space family?

China has become only the third nation in the world to have a manned space program. Photo: Chine

[/caption]

It has often been called a ‘100 billion boondoggle’ – yet it is also unquestionably one of the most successful international programs in human history. The International Space Station (ISS) is just now starting to produce some of the valuable science that was the station’s selling point from the beginning. However, this delay can be attributed to the numerous tragedies, economic woes and other issues that have arisen on a global scale through the course of the station’s construction.

The one thing that the world learned early on from the ISS experience is that space is a great forum for diplomacy. One time arch-rivals now work side by side on a daily basis.

With much of the nations of the world talking about stepped-up manned exploration efforts it would seem only natural that the successful model used on the space station be incorporated into the highly-expensive business of manned space exploration. If so, then one crucial player is being given a hard look to see if they should be included – China.

Will we one day see Chinese taikonauts working alongside U.S. astronauts and Russian cosmonauts? Only time will tell. Photo Credit: NASA

“International partnership in space exploration has proven its worth over the last decade. It would be a positive step if the other space-faring nation of the world, China, were to join the assembled space explorers of humankind as we march outward into the solar system,” said former NASA Space Shuttle Program Manager Wayne Hale who writes a popular blog about space matters.

China is only the third nation (behind Russia and the United States) to have a successful manned space program, having launched its first successful manned space flight in 2003. This first mission only had a single person onboard, and gave the world a new word – ‘taikonaut’ (taikong is the Chinese word for space). The country’s next mission contained two of these taikonauts and took place in 2005. The third and most current manned mission that China has launched was launched in 2008 and held a crew of three.

Yang Liwei became the first of China's Taikonaut when he rocketed into orbit in 2003. Photo Credit: Xinhua

China has steadily, but surely, built and tested capabilities essential for a robust manned space program. Considering that China very ambitious goals for space this would seem a prudent course of action. China has stated publically that they want to launch a space station and send their taikonauts to the moon – neither of which are small feats.

China currently utilizes its Shenzhou spacecraft atop the Long March 2F booster from their Jiuquan facility. However, if China wants to accomplish these goals, they will need a more powerful booster. This has been part of the reason that the U.S. has been hesitant to include China due to concerns about the use of what are known as dual-use technologies (rockets that can launch astronauts can also launch nuclear weapons).

Both China's rocket and spacecraft are derived from Soviet Soyuz designs. Photo Credit: Xinhua/Wang Jianmin

Some have raised concerns about the nation’s human rights track record. It should be noted however that Russia had similar issues before being included in the International Space Station program.

“In the early 1990’s, some at NASA thought having Russian cosmonauts on the Space Shuttle would mean giving away trade secrets to the competition,” said Pat Duggins, author of the book Trailblazing Mars. “It turned out Russian crew capsules saved the International Space Station when the Shuttles were grounded after the Columbia accident in 2003. So, never say never on China, I guess.”

Duggins is not the only space expert who feels that China would make a good companion when mankind once again ventures out past low-Earth-orbit.

“One of the findings of the Augustine Commission was that the international framework that came out of the ISS program is one of the most important. It should be used and expanded upon for use in international beyond-LEO human space exploration,” said Dr. Leroy Chiao a veteran of four launches and a member of the second Augustine Commission. “My personal belief is that countries like China, which is only the third nation able to launch astronauts, should be included. My hope is that the politics will align soon, to allow such collaboration, using the experience that the US has gained in working with Russia to bring it about.”

Not everyone is completely convinced that China will be as valuable an asset as the Russians have proven themselves to be however.

“It is an interesting scenario with respect to the Chinese participation in an international effort in space. The U.S. has made some tremendous strides in terms of historical efforts to bridge the gap with the Russians and the results have been superb,” said Robert Springer a two-time space shuttle veteran. “The work that has resulted in the successful completion of the International Space Station is an outstanding testimony to what can be done when political differences are set aside in the interest of International cooperation. So, there is a good model of how to proceed, driven somewhat by economic realities as well as politics. I am not convinced that the economic and political scenario bodes well for similar results with the Chinese. It is a worthwhile goal to pursue, but I am personally not convinced that a similar outcome will be the result, at least not in the current environment.”

China's journey into space has just begun, but it remains to be seen if they will be going it alone or as part of a partnership. Photo Credit: Xinhua

35 Days to STARDUST-NeXT Valentines Day Flyby of Comet Tempel 1

Stardust-NExT Spacecraft & Comet Tempel 1. Artist rendering of Stardust-NExT spacecraft nearing comet Tempel 1.

[/caption]

35 Days and Counting !

NASA’s re-purposed STARDUST- NeXT spacecraft is set to flyby Comet Tempel 1 at a distance of just 200 km on Valentine’s Day – February 14, 2011 at about 8:36 p.m. PST. The encounter marks the first time that a comet has been visited twice by probes from Earth. The revisit also provides the first opportunity for up-close observations of a comet both before and after a single orbital pass around the sun.

Comet Tempel 1 was first visited by NASA’s Deep Impact comet smashing mission in July 2005. Deep Impact delivered a 375 kg projectile into the path of Temple 1 that resulted in a high speed impact directly into the comet nucleus.

The cosmic collision of about 10.2 km/sec (22,800 miles/hour) ejected a cloud of debris that was studied by the Deep Impact spacecraft as well as an armada of orbiting and ground based telescopes. The impact crater itself was obscured by the debris cloud. The spacecraft did find the first evidence of surface ice on a comet instead of just inside a comet. Stardust NExT will take images and spectra of Tempel 1 and hunt for the impact crater.

Artists concept of NASA’s STARDUST- NeXT probe which will fly by Comet Tempel 1 on Feb. 14, 2011. Credit: NASA

According to the latest update posted at the STARDUST- NeXT mission website on Jan 6; “The spacecraft is healthy and began the New Year with a cold boot to clear a memory address latch-up that had occurred late in 2010. This cold boot clears the latched line and resets the memory to its factory settings.”

The reboot was completely successful and sets the probe up to accomplish the missions science objectives. On board optical navigation cameras were scheduled to take a new set of images on Jan. 6.

The update further states that the mission plan has now changed substantially to accommodate two new challenges. First the estimated fuel remaining on board is lower than expected. Second, the optical navigation cameras failed to detect the comet in the prior set of images in December.

10 Jan. 2011 Position of STARDUST-NeXT probe - Looking Down on the Sun. This image shows the current position of the STARDUST spacecraft and the spacecraft's trajectory (in blue) around the Sun. Credit: NASA

The optical cameras provide the key information to precisely navigate the probe to the comet. “Current estimates show that the comet may not be bright enough to detect with the Navcam until the latter half of January,” states the update.

As a result of the lower fuel estimate the remaining trajectory maneuvers (TCM’s) have been adjusted to January 31, February 7, and February 12. No science images will be taken until the last 7 days prior to the Feb 14 encounter.

Caption: Video of Comet Tempel 1 as NASA’s Deep Impact comet spacecraft delivers a projectile which smashed into the comet in July 2005. NASA’s STARDUST- NeXT probe is set to flyby Comet Tempel 1 on February, 14, 2011. The probe will collect numerous high resolution images of the coma and nucleus and hunt for the elusive 2005 impact crater.

The team states that these changes will provide “positive fuel margin through encounter …. and places the TCMs at times best able to accommodate late detection of the comet”.

The engineering team is building new approach sequences to accommodate these significant changes to the approach and Comet Tempel 1 encounter on Feb 14.

A briefing by the science team will be carried live on NASA TV on Jan. 19 at 2 PM EST

The Stardust spacecraft accomplished its original goal of flying through a dust cloud surrounding the nucleus of comet Wild 2 in Jan. 2004. The probe successfully gathered particles of cometary material during the flyby, The comet particles were returned to Earth aboard a sample return capsule which landed in the Utah desert in January 2006.

Comet particle tracks in aerogel returned to Earth by STARDUST in January 2006

NASA Redoubling Efforts to Contact Spirit

Spirit’s Last Picture Show - for now. Spirit’s final panoramic mosaic was taken on Sol 2175 in February 2010, a few weeks before entering hibernation mode in March 2010 just prior to the onset of her 4th winter on Mars. The Columbia Hills serve as a backdrop in this image. The rover is stalled in a sand trap called Troy adjacent to the Home Plate volcanic feature in Gusev Crater. Von Braun mound, left of center, was next driving target for science until Spirit became mired in sulfate rich soil - which indicates significant past flow of liquid water in this region of Mars. Credit: NASA/JPL/Cornell, Marco Di Lorenzo, Kenneth Kremer

[/caption]

No one is giving up hope for Spirit. Not Yet. And neither should you.

It’s too soon to turn out the lights. Indeed NASA is stepping up operational efforts to contact the plucky rover – More communications commands; more listening time; more frequencies. Spirit last communicated with mission controllers back on Earth on March 22, 2010. The rover entered hibernation mode – some nine months ago – as the available sunlight to power the life giving solar panels was diminishing. NASA hopes to reawaken Spirit from a long slumber and reignite her breakthrough campaign of exploration and discovery from a scientific goldmine on the surface of the red planet.

“The sun is still rising on Mars,” says Ray Arvidson in an interview from Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers.

“We will keep listening for many months if necessary,” Steve Squyres informed me. Squyres is the Principal Scientific Investigator for the Mars Exploration Rover mission.

Carbonate-Containing Martian Rocks, False Color.
Data from Spirit collected in late 2005 has confirmed that an outcrop called Comanche contains a mineral indicating that a past environment was wet and non-acidic, possibly favorable to life.
Spirit captured this view of the Comanche outcrop during Sol 689 on Mars (Dec. 11, 2005). The rover's Mössbauer spectrometer, miniature thermal emission spectrometer and alpha particle X-ray spectrometer each examined targets on Comanche.
About one-fourth of the composition of Comanche is magnesium iron carbonate. That concentration is 10 times higher than for any previously identified carbonate in a Martian rock. Carbonates originate in wet, near-neutral conditions, but dissolve in acid. The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds. Credit: NASA/JPL-Caltech/Cornell University

By the time of the last dispatch from Mars, Spirit had lasted for nearly six years of bonus mission time – during the extended mission phase – light years beyond the 3 month “warranty” proclaimed by NASA as the mission began back in January 2004.

At Spirit’s location in the southern hemisphere of Mars, Southern Summer has not yet arrived. Right now it’s mid Southern Spring and daylight hours are increasing. And Summer doesn’t even start until mid-March 2011. The question is whether Spirit’s unheated electronics components have endured the extremely harsh and frigidly cold conditions of her 4th winter on Mars – her coldest ever. At about -100 C … Imagine Antarctica !

“The amount of solar energy available for Spirit is still increasing every day for the next few months,” said Mars Exploration Rover Project Manager John Callas of NASA’s Jet Propulsion Laboratory (JPL) , Pasadena, Calif. “As long as that’s the case, we will do all we can to increase the chances of hearing from the rover again.”

“We’re stepping up our efforts to contact Spirit — doubling down on her, as it were,” tweeted JPL mars rover driver Scott Maxwell.

And all those negative stories you may have read about Spirit being “Still Stuck” … well they totally missed the point.

A topographical map showing where Spirit became mired in loose, sulfate rich soil at a depression called Scamander Crater, about 8 meters (26 feet) wide and 25 centimeters (10 inches) deep. The total relief indicated by the color differences is about half a meter (20 inches) from the higher ground (color coded red) to the lower ground (color coded black). The map covers an area 12 meters (39 feet) wide from west to east. North is to the top.From its embedded position, the rover used its robotic arm to examine the patch of bright soil it had exposed, called Ulysses. The map indicates that Spirit is situated with its left wheels within the crater and right wheels outside the crater. Credit: NASA/JPL-Caltech/Ohio State University

In the final Sols, or Martian days, before falling silent in March 2010, there was dramatic movement by Spirit. “During the last 9 drives, Spirit actually moved 34 cm. That’s pretty good for a stationary rover,” Arvidson said.

This movement came despite the loss of two of the rover’s six wheels and after many months of methodical testing in the “Mars sand box”. Engineers at JPL devised and tested numerous strategies in attempting to extricate Spirit from the sand trap of soft soil in which she became mired.

Because of the declining sun and available power, Spirit basically just ran out of time to try and completely escape from the sand trap. This left it unable to obtain a favorable tilt for solar energy during the rover’s fourth Martian winter, which began last May.

Many members of the rover team are hopeful that they can indeed “Free Spirit” if she awakens from her current hibernation mode.

“I have no idea whether we’ll hear from Spirit again or not… there’s simply no way to predict it,” Squyres told me. “We will keep listening for many months. All we can do is listen”

Even if we never hear from Spirit again, she has accomplished a remarkable series of scientific breakthroughs, far beyond the wildest dreams of the science and engineering teams that built and operate the twins.

Both rovers have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life.

Spirit discovered a rock that contained high levels of carbonates, minerals that form in neutral watery conditions that are far more conducive to the formation of life than the acidic watery conditions reported earlier in the mission.

Although Spirit has been stalled at a place called ‘Troy’ since April 2009. she made a significant science discovery at that exact spot. Spirit examined the soil in great detail and found key evidence that water, perhaps as snow melt, trickled into the subsurface fairly recently and on a continuing basis.

While driving on the western edge of an eroded over volcanic feature named ‘Home Plate’, she unknowingly broke through a hard surface crust (perhaps 1 cm thick) and sank into hidden soft sand beneath. At ‘Troy’, Spirit discovered that the crust was comprised of water related sulfate materials and therefore found evidence for the past flow of liquid water on the surface of Mars – a great science discovery!

After mid-March, prospects for reviving Spirit would begin to drop, say NASA officials. Communication strategies would change based on reasoning that Spirit’s silence is due to factors beyond just a low-power condition. Mission-ending damage from the cold experienced by Spirit in the past Martian winter is a real possibility.

This mosaic of images shows the soil in front of NASA's Mars Exploration Rover Spirit after a series of short backward drives during attempts to extricate the rover from a sand trap in January and early February 2010. It is presented in false color to make some differences between materials easier to see. Bright-toned soil was freshly exposed by the rover's left-front wheel during the drives and can be seen with a sand wave shaping that resulted from the unseen wheel's action.

Spirit's panoramic camera (Pancam) took the component images during the period from the 2,163rd to 2,177th Martian days, or sols, of Spirit's mission on Mars (Feb. 2 to Feb. 16, 2010). The turret at the end of the rover's arm appears in two places because of movement during that period. Insets in the upper left and lower right corners of the frame show magnified views of the nearby inscribed rectangles within the mosaic. The patch of ground within each rectangle is about 25 centimeters (10 inches) across. The top inset and upper portion of the mosaic include targets within soil layers exposed by the action of Spirit's wheels in April 2009 and examined in detail with instruments on Spirit's arm during the five subsequent months.

Olive pit and Olive leaf are two of the analyzed targets. The investigations determined that, under a thin covering of windblown sand and dust, relatively insoluble minerals are concentrated near the surface and more-soluble ferric sulfates have higher concentrations below that layer. This pattern suggests water has moved downward through the soil, dissolving and carrying the ferric sulfates. The brightness and color of the freshly disturbed soil seen in the center area of the mosaic indicates the this formerly hidden material is sulfate-rich. Before Spirit drove into this patch, the surface looked like the undisturbed ground highlighted in the lower-right inset. Flecks of red material in the surface layer resemble the appearance of the surface layer at other locations where Spirit's wheels have exposed high-sulfate, bright soils. Image Credit: NASA/JPL-Caltech/Cornell University


Spirit entered a low-power fault mode in March 2010 with minimal activity except charging and heating the batteries and keeping its clock running. With most heaters shut off, Spirit’s internal temperatures dipped lower than ever before on Mars. That stress could have caused damage, such as impaired electrical connections, that would prevent reawakening or, even if Spirit returns to operation, would reduce its capabilities.

“Components within the rover electronic module (REM) inside the rover’s warm electronic box (WEB) are experiencing record low temperatures,” said Doug McCuistion, the director of Mars Exploration at NASA Headquarters in Washington, DC, in an interview about Spirit’s predicament. “The expectation is for the REM hardware to reach -55C at the coldest part of the winter. We have tested the REM down to -55C”.

NASA’s Deep Space Network of antennas in California, Spain and Australia has been listening for Spirit daily in coordination with the spacecraft orbiting Mars; Mars Odyssey and Mars Reconnaissance Orbiter. In X-band, the DSN listens for Spirit during one pass each day. The rover team has also been sending commands to elicit a response from the rover even if the rover has lost track of time.

Now, the monitoring is being increased. Additional listening periods include times when Spirit might mistake a signal from NASA’s Mars Reconnaissance Orbiter as a signal from Earth and respond to such a signal. Commands for a beep from Spirit will be sent at additional times to cover a wider range of times-of-day on Mars when Spirit might awaken.

“DSN does an average of 4 “sweep & beep” commands in each day’s pass,” according to JPL spokesman Guy Webster. Also, NASA is listening on a wider range of frequencies to cover more possibilities of temperature effects on Spirit’s radio systems

Opportunity is still blazing a trail of discovery on the opposite side of Mars. She is currently exploring the stadium sized Santa Maria Carter which holds deposits of water bearing minerals that will further elucidate the potential habitability on the red planet.

For current updates about Opportunity’s exciting view from the steep walled crater and while being simultaneously imaged from Mars orbit in exquisite high resolution, read my earlier stories.

The Mystery of John Glenn’s Fireflies Returns

Astronaut John Glenn as photographed during his space flight by an automatic sequence motion picture camera mounted inside Friendship 7. Credit: NASA

[/caption]

What were the “fireflies” that John Glenn saw during the first orbital spaceflight for the US? Enjoy a new “you-were-there” look at the stories of early space exploration from the original NASA transcripts, but in a vastly improved format. A new website called Spacelog has put the transcripts in a searchable, linkable format. Spacelog is an open source venture making the transcripts more accessible to the public, and adding photos and timelines in with the text. Currently the Apollo 13 mission and Mercury Friendship 7 mission are available with more coming in the future. A linking feature allows users to Tweet and link to particular parts of the transcripts. As an open source project, Spacelog is also looking for help.

Below is the part of the Friendship 7 transcript where John Glenn describes small, mysteriously illuminated particles surrounding his capsule:

John Glenn

This is Friendship Seven. I’ll try to describe what I’m in here. I am in a big mass of some very small particles, that are brilliantly lit up like they’re luminescent. I never saw anything like it. They round a little; they’re coming by the capsule, and they look like little stars. A whole shower of them coming by.
00 01 15 57

John Glenn
They swirl around the capsule and go in front of the window and they’re all brilliantly lighted. They probably average maybe 7 or 8 feet apart, but I can see them all down below me, also.
00 01 16 06
CAPCOM
Roger, Friendship Seven. Can you hear any impact with the capsule? Over.
00 01 16 10
John Glenn
Negative, negative. They’re very slow; they’re not going away from me more than maybe 3 or 4 miles per hour. They’re going at the same speed I am approximately. They’re only very slightly under my speed. Over.
00 01 16 33
John Glenn
They do, they do have a different motion, though, from me because they swirl around the capsule and then depart back the way I am looking.
00 01 16 46
John Glenn
Are you receiving? Over.

———-

What were these fireflies? In the movie “The Right Stuff” the fireflies were given the illusion of being mystical or perhaps alien — or maybe part of Glenn’s imagination. People in mission control were worried the heat shield on his spacecraft could be falling apart.

The answer wasn’t confirmed until the next Mercury mission, Aurora 7, with astronaut Scott Carpenter on board in May 1962. Carpenter also saw the fireflies, or snowflakes, as he called them, and quickly could identify the source. They were tiny white pieces of frost from the side of the spacecraft. Condensation gathered on the outside of the spacecraft as the capsule passed from the cold orbital darkness and warm sunlight, and then froze again, creating a layer of frost. As the spacecraft again came into sunlight, the frost flakes would come off and float around the capsule. The sunlight also illuminated them, making them “luminescent.” When Carpenter banged on the side of the capsule, more flakes came off and were visible.

Read more at Spacelog.

Opportunity Photographed from Mars Orbit at Crater Precipice

Opportunity rover at the SW rim of Santa Maria Crater on New Year's Eve 2010 - Sol 2466. The rover sits at the edge of the crater rim and was photographed from Mars orbit by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Look closely to see the rover tracks on the left as Opportunity approached the westerm rim of Santa Maria crater. Credit: NASA/JPL/University of Arizona

[/caption]

“I enjoy seeing our rover again,“ says Steve Squyres in an exclusive for Universe Today. Squyres is the top scientist for the Opportunity and Spirit Mars rovers.

NASA’s Opportunity rover was just been photographed from Mars Orbit while perched at the precipice of Santa Maria crater – just meters away from the edge of the Southwest rim. The photo was taken on New Year’s Eve, Dec. 31, 2010 on Sol 2466 of the mission which has lasted nearly 7 years ! Opportunity landed on Mars on Jan. 24, 2004.

This newly released photo was taken by the high resolution HiRISE camera circling overhead in Mars orbit aboard NASA’s Mars Reconnaissance Orbiter (MRO).

“Well, it’s always great to see images like that,” Steve Squyres just informed me after seeing the new photos of Opportunity. Squyres, of Cornell University, is the Principal Scientific Investigator for NASA’s Spirit and Opportunity Mars rovers.

“This one reminds me a lot of the first time we ever saw a rover from orbit, just after Opportunity had arrived at the rim of Victoria crater. It’s a very evocative scene, and it’s hard not to project certain things onto the rover (“valiant”, “lonely”) when you see it. Mostly, though, I just enjoy seeing our rover again.”

“The last time I laid eyes on Opportunity was about seven and a half years ago, and it’s nice getting another glimpse of her,” said Squyres.

Oblique view of Opportunity on New Years Eve 2010 from Mars Orbit. HiRISE also took an an oblique view of the same area of Mars. This image shows the view looking West, as MRO pointed off nadir 18 degrees to the West to acquire this oblique image, similar to the view out an airplane window. Credit: NASA/JPL/University of Arizona

Opportunity arrived at the western rim of Santa Maria on Dec. 16 (Sol 2451) after a long and arduous trek of some 19 km since departing from Victoria Crater over 2 years ago in September 2008.

The rover has been exploring around the western portion of Santa Maria crater since arriving and is now heading to the southeast rim which possesses deposits of hydrated minerals.

Opportunity drove some 40 meters south along the steep rim from the initial location at “Palos” Promontory and then bumped incrementally further up to the edge on Sol 2464 at a place dubbed “Wanahani”.

The rover was photographed from Mars orbit while perched at “Wanahani” on New Years Eve, Dec 31, 2010 on Sol 2466.

“We are driving the vehicle in a counterclockwise direction around Santa Maria to reach the very interesting hydrated sulfates on the other side,” according to Ray Arvidson, the deputy principal investigator for the rovers, in an interview from Washington University in St. Louis. “We’ll make 3 stops or more depending on what we see”

Simultaneously to being photographed from orbit, the rover itself was of course merrily snapping a ground level view of Santa Maria. To experience the surface eye view from Opportunity, see our photo mosaic – stitched from the raw images – to display the rovers panoramic perspective whilst gazing outwards from “Wanahani” to the cliffs of Santa Maria on Sols 2464 and 2466.

Opportunity’s surface view of Santa Maria on New Years Eve Dec 31 while being photographed overhead from Mars Orbit.
Wanahani outlook at Santa Maria Crater. Opportunity took this panaromic mosaic from “Wanhani” just meters from the crater rim on Dec 29, 2010 (Sol 2464). Note rover tracks near rim at left, relatively clean solar panel at right and numerous ejecta rocks. The rim is inclined roughly 5 degrees here. CRISM mapper results suggest water bearing materials are located at the southeastern edge of the crater rim, nicknamed “Yuma”. Portions of distant Endeavour Crater are faintly visible as bumps on the horizon in the background. Mosaic Credit: NASA/JPL/Cornell, Ken Kremer, Marco Di Lorenzo

“Opportunity is imaging the crater interior to better understand the geometry of rock layers as a means of defining the stratigraphy and the impact process, says Matt Golembek, Mars Exploration Program Landing Site Scientist at the Jet Propulsion Laboratory (JPL), Pasadena, Calif.

Santa Maria is a relatively young, 90 meter-diameter impact crater (note blocks of ejecta around the crater), but old enough to collect sand dunes in its interior.

Santa Maria Crater, located in Meridiani Planum, is about 6 kilometers from the rim of Endeavour Crater, which contains spectral indications of phyllosilicates, or clay bearing minerals that are believed to have formed in wet conditions that could have been more habitable than the later acidic conditions in which the sulfates Opportunity has been exploring formed.

Data from the CRISM mineral mapper aboard MRO data show indications of hydrated sulfates on the Southeast edge of the Santa Maria Crater at which Opportunity is planning on spending the upcoming solar conjunction. After that, Opportunity will traverse to the Northwest rim of Endeavour Crater, aided tremendously by HiRISE images like the one here for navigation and targeting interesting smaller craters along the way.

Opportunity rover at the SW rim of Santa Maria Crater on New Year's Eve 2010 - Sol 2466. The rover sits at the edge of the crater rim and was photographed from Mars orbit by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Look closely to see the rover tracks on the left as Opportunity approached the westerm rim of Santa Maria crater. Credit: NASA/JPL/University of Arizona

“Astrobiology” Parody Video of Ke$ha’s “We R Who We R”

Wanna get turned on by … “Astrobiology” ?? Are we alone in the universe?

Well check out just this newly-released music video parody of Ke$ha’s hit song “We R Who We R” – “Astrobiology.”

Suspend your disbelief. It’s different. It’s cool. And it’s very clever.

And .. It’s even better the second time around when you listen to the lyrics more closely … combined with the shocking video .. Featuring beautiful maidens and alien dolls galore. Continue reading ““Astrobiology” Parody Video of Ke$ha’s “We R Who We R””

New Years Postcards from the Edge by Opportunity Mars Rover

Wanahani outlook at Santa Maria Crater. Opportunity took this panaromic mosaic from “Wanhani” just meters from the crater rim on Dec 29, 2010 (Sol 2464). Note rover tracks near rim at left, relatively clean solar panel at right and numerous ejecta rocks. CRISM mapper results suggest water bearing materials are located at the southeastern edge of the rim located at the southeastern section of the crater. Portions of distant Endeavour Crater are faintly visible as bumps on the horizon in the background. Mosaic Credit: NASA/JPL/Cornell, Ken Kremer, Marco Di Lorenzo

[/caption]

A robot from Earth is celebrating New Years on Mars by snapping another amazing set of “Postcards from the Edge” while perched near the sharp edge of a crater cliff on the red planet. NASA’s Opportunity rover is now stationed just meters away from a new precipice at the stunningly beautiful crater named Santa Maria. The twin rovers mark their 7th anniversary on Mars this week. See martian postcard mosaics above and below.

Craters expose the hidden history of Mars and permit scientists a path to explore the past geologic epochs which otherwise would remain buried and inaccessible.

Santa Maria Crater from Orbit. Opportunity arrived at the western rim of Santa Maria Crater, some 90 meters wide, on Dec. 16, 2010 at a spot called “Palos”. Opportunity then drove in a counterclockwise direction to a spot called “Wanahani” at the southern edge. It is collecting high resolution imagery and spectral data over New Years and will then resume driving to its next destination at the Southeast rim, an area nicknamed “Yuma”. See new annotations. Researchers are using data collected by the CRISM mineral mapping spectrometer aboard NASA’s Mars Reconnaissance Orbiter (MRO) to direct the route which Opportunity is traversing on Mars during the long term journey to Endeavour crater. Spectral observations recorded by CRISM indicates the presence of water-bearing sulfate minerals at the location shown by the red dot on the southeast rim crater whereas the crater floor at the blue dot does not. This image was taken by the High Resolution Imaging Science Experiment (HiRISE) camera also on MRO. Credit: NASA/JPL-Caltech/Univ. of Arizona.

Santa Maria is an exciting find because it appears to be relatively new and unweathered – on the order of possibly just a few million years old. Researchers are eager to drive around the rim in order to explore deposits of water bearing minerals that contain valuable clues to the flow of liquid water on ancient Mars.

The golf cart sized rover arrived this week (Dec. 29) at an outlook nicknamed “Wanahani” near the southern edge of Santa Maria. Opportunity arrived at the western rim of Santa Maria on Dec. 16. Just before Christmas, she drove about 20 meters south along the steep rim from the initial location at Palos Promontory and then bumped incrementally further up to the edge (Sol 2464) .

Palos Promontory and Santa Maria Panorama from Opportunity on Mars.
Opportunity drove within 2.5 meters of the rim and snapped this beautiful panoramic vista of the crater and distant horizon on Sol 2454. Note rover solar panel deck, antennae and sundial at left. Mosaic Credit: NASA/JPL/Cornell, Oliver de Goursac.
Santa Maria from Palos Promontory on Mars.
Opportunity drove to within 2.5 meters of the rim and snapped this gorgeous panoramic vista unveiling the whole interior on Sols 2453 & 2454. Note the steep walls and sand dunes on the floor. Mosaic Credit: NASA/JPL/Cornell, James Canvin
Wanahani outlook at Santa Maria Crater.
Opportunity took this panaromic mosaic from “Wanhani” just meters from the crater rim on Dec 29 (Sol 2464). Note rover tracks near rim at left, solar panel at right and numerous ejecta rocks. CRISM mapper results suggest water bearing materials are located at the southeastern section of the crater. Portions of distant Endeavour Crater are faintly visible as bumps on the horizon in the background. Mosaic Credit: NASA/JPL/Cornell, Ken Kremer, Marco Di Lorenzo
Crater Rim Duo with Signs of Hydates on Mars.
Santa Maria rim up close (80 meters away) and Endeavour rim (6 km away) on the horizon in the distance. Both craters show mineralogical evidence for the past flow of liquid water on Mars and are high priority science targets. Mosaic Credit: NASA/JPL/Cornell, Ken Kremer, Marco Di Lorenzo
Partial panorama near Wanahani outlook on Sol 2461.
Undulating sand dunes on the crater floor and southern portion of Santa Maria, inclined about five degrees. Mosaic Credit: nasatech.net

But there is no time to party and relax. The rover will soon resume driving to the next location – nicknamed “Yuma”. It will continue farther around the football field sized crater – measuring some 90 meters (295 ft) in diameter – to reach the exposures of sulfated hydrates located at the southeast portion of the crater near “Yuma”.

Opportunity must be in position at an important science target before mid January and the onset of solar conjunction and a temporary communications black out with Earth. The rover will remain stationary during conjunction.

Fish eye view from Wanahani outlook. Opportunity snapped this wide angle view from the crater rim of Santa Maria with the hazard camera on Sol 2464. Credit: NASA/JPL/Cornell

At Wanahani, Opportunity is now hurriedly toiling away over the New Year’s period to collect a pair of long baseline, high resolution stereo image mosaics using it’s panoramic, multispectral imaging camera. See our initial Wanahani mosaics assembled here from the navigation camera images just received on Earth (Sol 2464).

The team is using all 13 filters on the filter wheels of the panoramic camera, according to Ray Arvidson, the deputy principal investigator for the rovers, in an interview from Washington University in St. Louis. Over the course of several days, the left and right “eyes” of the panoramic camera will gather data at various wavelengths to maximize the collection of spectral information about the hydrated minerals located in the craters interior.

Data downlink is limited by the available amount of flash memory aboard Opportunity and is the Achilles heel of rover operations. Virtually all the pictures and science is streaming back to Earth via NASA’s long lived Mars Odyssey orbiter. The team is working to get all the acquired science data offloaded as swiftly as possible,

A functioning replica of the Santa Maria in Funchal harbor, Madeira Islands, Portugal.

Arvidson said that the team hopes that the meteor impact that excavated the crater also blasted some of these scientifically fascinating rocks free to spots which are more easily accessible – just outside the rim for close up analysis. Additional imaging and spectral data is also being collected from Mars orbit this new year’s weekend in hopes of quickly directing the rover to the best locations for science in the limited time available.

Opportunity will study the relatively fresh and uneroded ejecta rocks using all the instruments located at the end of the robotic arm. One target will be selected for a longer duration study during the period of solar conjunction, said Arvidson.

The Santa Maria replica at sea. Opportunity is on an epic expedition to a distant horizon far beyond the shores of Earth.
The rover team is naming places visited around the crater rim after islands visited by Columbus during his voyages of expedition and discovery to the New World starting in 1492. The Santa Maria was the largest of the three ships used during his first voyage.

Opportunity will resume her long term trek to Endeavour crater after the end of solar conjunction in mid February. The western rim of Endeavour is about 6 km distant. Endeavour is a very compelling science target because it shows significant signatures for clay minerals which formed in the presence of neutral bodies of liquid water on Mars, billions of years ago.

Spirit and Opportunity celebrate 7 Years on Mars this month since the dynamic duo landed in January 2004. Look for my story soon.