1st Reflown SpaceX Falcon 9 Soars to Orbit with SES-10 Revolutionizing Rocketry Forever – Photo/Video Gallery

Worlds 1st ever reflown SpaceX Falcon 9 soars to orbit with SES-10 telecomsat from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com
Worlds 1st ever reflown SpaceX Falcon 9 soars to orbit with SES-10 telecomsat from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX CEO Elon Musk’s Billion dollar bet on rocket recycling paid off beautifully when the world’s first ever reflown rocket booster – a SpaceX Falcon 9 – roared off NASA’s historic pad 39A at the Kennedy Space Center and successfully delivered the next generation SES-10 TV satellite to orbit and simultaneously shot revolutionary shock waves reverberating forever across the rocket industry worldwide.

“This is a huge revolution in spaceflight,” billionaire SpaceX CEO and Chief Designer Elon Musk told reporters at the post launch briefing at the Kennedy Space Center press site, barely an hour after liftoff.

And as if the relaunch of a ‘Flight-Proven’ booster was not enough, SpaceX engineers deftly maneuvered the Falcon 9 first stage to a second successful pinpoint landing on a miniscule droneship at sea.

The stunning events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

SpaceX Falcon 9 with SES-10 telecomsat soars to orbit over Melbourne Airport, FL, on March 30, 2017. Credit: Julian Leek

The milestone SpaceX mission to refly the first ever ‘used rocket’ blasted off right on time at the opening of the dinnertime launch window on Thursday, March 30, at 6:27 p.m. EDT.

The used two stage 229-foot-tall (70-meter) rocket carried the SES-10 telecommunications payload to orbit using a ‘Flight-Proven’ Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center (KSC) in Florida.

Musk said SpaceX invested about a billion dollars of his firm’s own funds and 15 years of hard won effort to accomplish the unprecedented feat that many experts deemed virtually unattainable or outright impossible.

“This represents the culmination of 15 years of work at SpaceX to be able to refly a rocket booster,” Musk elaborated.

“It’s really a great day, not just for SpaceX, but for the space industry as a whole, proving something can be done that many people said was impossible.”

But SES Chief Technology Officer (CTO) Martin Martin Halliwell had faith in SpaceX from the beginning and unabashedly discounted the risk – based on his in depth knowledge.

‘We had a team embedded with SpaceX all along the way,” SES CTO Haliwell said at the post launch briefing.

Furthermore Halliwell was instrumental in signing up telecom giant SES as the paying customer who had complete confidence in placing his firm’s expensive SES-10 communication satellite atop SpaceX’s history making used and now successfully reflown booster.

“There have been naysayers,” Halliwell told reporters at a prelaunch press briefing on March 28. “I can tell you there was a chief engineer of another launch provider — I will not say the name — who told me, categorically to my face, you will never land a first stage booster. It is impossible. If you do it then it will be completely wrecked.”

“We are confident in this booster,” Halliwell told me at the prelaunch briefing.

“There is not a huge risk,” Halliwell stated emphatically. “In this particular case we know that the reusability capability is built into the design of the Falcon 9 vehicle.”

SpaceX CEO and Chief Designer Elon Musk and SES CTO Martin Halliwell exuberantly shake hands of congratulation following the successful delivery of SES-10 TV comsat to orbit using the first reflown and flight proven booster in world history at the March 30, 2017 post launch media briefing at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

“You’ve got to decouple the emotion from the engineering,” Halliwell elaborated on Thursday’s launch. “The engineering team that Elon has working for him is really second to none. He asks very simple profound questions. And he gets very good answers. The proof is in the pudding.”

SpaceX Falcon 9 and SES-10 Satellite clear the tower at Kennedy Space Center Launch Complex 39 on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins

“This will rock the space industry,” said Halliwell at the post launch media briefing. “And SpaceX already has!”

Reflown SpaceX Falcon 9 soars to orbit with SES-10 telecomsat from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

The recycled Falcon delivered the nearly six ton SES-10 satellite to geostationary transfer orbit where it will provide significantly improved TV, voice, data and maratime service to over 37 million customers across Central and South America.

This recycled Falcon 9 first stage booster first launched in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.

Furthermore, after the 156 foot tall first stage booster completed its primary mission task, SpaceX engineers successfully guided it to a second landing on the tiny OCISLY drone ship for a soft touchdown some eight and a half minutes after liftoff.

OCISLY had left Port Canaveral several days ahead of the March 30 launch and was prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast, just waiting for the boosters 2nd history making approach and pinpoint propulsive soft landing.

It thus became the first booster in history to launch twice and land twice.

SpaceX Falcon 9 and SES-10 Satellite rising higher, picking up speed at Kennedy Space Center Launch Complex 39 on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. . Credit: Carol Higgins

Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and SES-10 Satellite rising higher, picking up speed at Kennedy Space Center Launch Complex 39 on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins
Liftoff, fire & smoke, with SpaceX Falcon 9 rocket 9 and SES-10 Satellite rising off the launch pad 39A at Kennedy Space Center Launch Complex 39 on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins
1st relaunched SpaceX Falcon 9 arcs over towards Africa after blastoff from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017 carrying SES-10 telecomsat to GTO. Credit: Ken Kremer/Kenkremer.com
Re-launch of SpaceX Falcon 9 with SES-10 comsat soaring to orbit with trailing exhaust trail as seen above the Kennedy Space Center Quality Inn, Titusville, FL. Credit: Melissa Bayles
Re-launch of SpaceX Falcon 9 with SES-10 comsat soaring to orbit with trailing exhaust trail as seen above the Kennedy Space Center Quality Inn, Titusville, FL. Credit: Melissa Bayles
Heading downrange, higher and higher, faster and faster — SpaceX Falcon 9 and SES-10 Satellite liftoff from Kennedy Space Center Launch Complex 39A on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins
Heading downrange, higher and higher, faster and faster — SpaceX Falcon 9 and SES-10 Satellite liftoff from Kennedy Space Center Launch Complex 39A on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins

SpaceX Accomplishes American ‘Science Triumph’ with ‘Mind Blowing’ Historic 2nd Launch and Landing of Used Rocket

The ‘used’ SpaceX Falcon 9 launches the SES-10 telecomsat to orbit from historic Launch Complex 39A as it zooms past US Flag by the countdown clock at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com
The ‘used’ SpaceX Falcon 9 launches the SES-10 telecomsat to orbit from historic Launch Complex 39A as it zooms past US Flag by the countdown clock at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX accomplished an American ‘Science Triumph’ with today’s “Mind Blowing” and history making second launch and landing of a previously flown Falcon 9 booster that successfully delivered a massive and powerful Hi Def TV satellite to orbit for telecom giant SES from the Kennedy Space Center. Note: Breaking News story being updated.

The milestone SpaceX mission to refly the first ever ‘used rocket’ blasted off right on time at dinnertime today, Thursday, March 30, at 6:27 p.m. EDT. It carried the SES-10 telecommunications payload to orbit atop a ‘Flight-Proven’ Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

The recycled Falcon delivered the nearly six ton SES-10 satellite to geostationary transfer orbit where it will provide significantly improved TV, voice, data and maratime service to over 37 million customers across Central and South America.

The daring mission to relaunch a used booster dubbed ‘Flight-Proven’ seems like its straight out of a science fiction thriller.

Yet today’s stellar results fully vindicates billionaire SpaceX CEO and Chief Designer Elon Musk’s bold vision to slash launch costs by recovering and reusing spent first stage rockets from his firms Falcon 9 launch vehicle.

“My mind is blown,” Musk said in post launch remarks at the KSC press site. “This is one of the coolest things ever.”

“We just had an incredible day today – the first re-flight of an orbital-class booster.”

“It did its mission perfectly, dropped off the second stage, came back and landed on the drone ship, right on the bullseye. It’s an amazing day, I think, for space as a whole, for the space industry.”

Recycled SpaceX Falcon 9 skyrockets to orbit with SES-10 telecomsat from historic Launch Complex 39A as it zooms past US Flag by the countdown clock at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

For the first time in world history a recovered and ‘Flight-Proven’ rocket has actually launched on a second mission and not only roared aloft but survived intact all the way to its intended orbit and delivered a second satellite to orbit for a paying customer- in this case the commercial TV broadcast satellite provider SES- one of the world’s largest.

“This will rock the space industry,” said SES CTO Martin Halliwell at the post launch media briefing. “And SpaceX already has!”

“We are confident in this booster,” Halliwell told me at a prelaunch press briefing on March 28.

“There is not a huge risk,” Halliwell stated emphatically. “In this particular case we know that the reusability capability is built into the design of the Falcon 9 vehicle.”

Reflown SpaceX Falcon 9 soars to orbit with SES-10 telecomsat from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

This recycled Falcon 9 first stage booster had initially launched in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.

Furthermore, after the 156 foot tall first stage booster completed its primary mission task, SpaceX engineers successfully guided it to a second landing on the tiny OCISLY drone ship for a soft touchdown some eight and a half minutes after liftoff.

OCISLY had left Port Canaveral several days ahead of the March 30 launch and was prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast, just waiting for the boosters 2nd history making approach and pinpoint propulsive soft landing.

It thus became the first booster in history to launch twice and land twice.

SpaceX CEO and Chief Designer Elon Musk and SES CTO Martin Halliwell exuberantly shake hands of congratulation following the successful delivery of SES-10 TV comsat to orbit using the first reflown and flight proven booster in world history at the March 30, 2017 post launch media briefing at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

And this magnificent achievement was accomplished through the dedication and hard work of engineers and scientists who benefited from the American education system that cultivated and nurtured their talents – like generations before them – and that we as a country must continue to support and fortify with reliable and ample research and development (R&D) and educational funding – now and in the future – if we wish to remain leaders in science and space.

The entire Falcon 9/SES-10 launch and landing was broadcast live on the SpaceX hosted webcast.

SpaceX Falcon 9 recycled rocket carrying SES-10 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad ahead of liftoff slated for 6:27 p.m on 30 Mar 2017 on world’s first reflight of an orbit class rocket. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX SES-10, EchoStar 23 and CRS-10 launches to ISS, ULA SBIRS GEO 3 launch, GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 31, Apr 1: “SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 recycled rocket carrying SES-10 telecomsat poised atop Launch Complex 39A at the Kennedy Space Center ahead of liftoff slated for 6:27 p.m. on 30 Mar 2017 on world’s first reflight of an orbit class rocket. Credit: Ken Kremer/Kenkremer.com

The SES-10 satellite was manufactured by Airbus Defence & Space and is based on the Eurostar E3000 platform. It will operate in geostationary orbit.Credit: SES/Airbus
SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com

SpaceX Attempting Launch of 1st Orbit Class Recycled Rocket March 30 – Watch Live

SpaceX Falcon 9 recycled rocket carrying SES-10 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad ahead of liftoff at 6:27 p.m on 30 Mar 2017 on world’s first reflight of an orbit class rocket. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 recycled rocket carrying SES-10 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad ahead of liftoff slated for 6:27 p.m on 30 Mar 2017 on world’s first reflight of an orbit class rocket. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The moment of truth is rapidly approaching as SpaceX attempts the world’s first reflight of an orbital class rocket later today, Thursday, March 30, with the firms Falcon 9 standing proudly at historic launch complex 39A at NASA’s Kennedy Space Center in Florida – ready to deliver an advanced TV broadcast satellite to orbit for the America’s for telecom giant SES.

If successful, the launch will mightily advance billionaire SpaceX CEO Elon Musk’s bold vision to slash launch costs by recovering and reusing spent first stage rockets from his firms Falcon 9 launch vehicle.

“The SES-10 mission will mark a historic milestone on the road to full and rapid reusability,” say Space officials.

“We are confident in this booster,” SES CTO Martin Halliwell told Universe Today at a press briefing on March 28.

SpaceX Falcon 9 recycled rocket carrying SES-10 telecomsat poised atop Launch Complex 39A at the Kennedy Space Center ahead of liftoff slated for 6:27 p.m. on 30 Mar 2017 on world’s first reflight of an orbit class rocket. Credit: Ken Kremer/Kenkremer.com

The milestone SpaceX mission destined to refly the first ever ‘used rocket’ is slated for lift off on Thursday, March 30, at 6:27 p.m. EDT carrying the SES-10 telecommunications payload to orbit atop a ‘Flight-Proven’ Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

So, if you want to witness this truly magnificent event in space history with your own eyes, there’s only a few hours left for you to ‘Get Your Ass to KSC!’ to paraphrase Apollo 11 moonwalker Buzz Aldrin.

The nearly six ton SES-10 satellite will provide significantly improved TV, voice, data and maratime service to over 37 million customers across Central and South America.

Eventually, Musk hopes to help establish a ‘City on Mars’ by building Interplanetary Colonial Transporters to transport human settlers to live on the Red Planet – the most Earth-like world in our Solar System.

You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 6:27 pm EDT or 10:27 pm UTC liftoff time.

The two and a half hour launch window closes at 9:57 p.m. EDT.

Watch the SpaceX broadcast live at: SpaceX.com/webcast

The weather outlook is glorious along the Florida Space Coast with an 80% chance of favorable conditions at launch time in the latest AF prognosis.

However for the back-up launch date on Friday, the outlook worsens considerable to only 40% favorable.

“This thing is good to go!” Halliwell told me.

The SES-10 satellite was manufactured by Airbus Defence & Space and is based on the Eurostar E3000 platform. It will operate in geostationary orbit.Credit: SES/Airbus

The Falcon 9 booster to be recycled was initially launched in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.

The 156 foot tall first stage was recovered about eight and a half minutes after liftoff via a pinpoint propulsive soft landing on an tiny ocean going droneship prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast.

If all goes well SpaceX will also attempt to re-land the Falcon 9 first stage on an oceangoing barge for an unprecedented second time, provided there are sufficient fuel reserves remaining after accomplishing its primary mission of delivering SES-10 to GTO, Halliwell stated.

The SES-10 launch comes barely 2 weeks after the prior SpaceX launch of EchoStar XXIII on March 16.

SpaceX, founded by billionaire and CEO Elon Musk, inked a deal in August 2016 with telecommunications giant SES, to refly a ‘Flight-Proven’ Falcon 9 booster.

Luxembourg-based SES and Hawthrone, CA-based SpaceX jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster.”

The flight proven SpaceX Falcon 9 rocket will deliver SES-10 to a Geostationary Transfer Orbit (GTO).

SES-10 has a launch mass of 5,300 kg or 11,700 pounds, which includes the dry mass and propellant.

The spacecraft utilizes for both chemical propulsion for orbit raising and electric propulsion for station keeping.

SES-10 will replace AMC-3 and AMC-4 to provide enhanced coverage and significant capacity expansion over Latin America, says SES.

“The satellite will be positioned at 67 degrees West, pursuant to an agreement with the Andean Community (Bolivia, Colombia, Ecuador and Peru), and will be used for the Simón Bolivar 2 satellite network.”

Up to 3 additional SES satellites could launch on SpaceX Falcon 9 rockets by the end of this year.

Watch for Kens’ continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX SES-10, EchoStar 23 and CRS-10 launches to ISS, ULA SBIRS GEO 3 launch, GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 31, Apr 1: “SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SES CTO Martin Halliway discusses the planned SES-10 telecomsat launch on March 30, 2017 on first ‘flight-proven’ SpaceX Falcon 9 from pad 39A on the Kennedy Space Center, FL. Credit: Ken Kremer/Kenkremer.com
Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

NASA Test Fires New Engine Controlling ‘Brain’ for First SLS MegaRocket Mission

NASA engineers conduct a test of the first RS-25 engine controller that will be used on an actual Space Launch System flight on the A-2 Test Stand at Stennis Space Center on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC
NASA engineers conduct a test of the first RS-25 engine controller that will be used on an actual Space Launch System flight on the A-2 Test Stand at Stennis Space Center on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

Engineers carried out a critical hot fire engine test firing with the first new engine controlling ‘brain’ that will command the shuttle-era liquid fueled engines powering the inaugural mission of NASA’s new Space Launch System (SLS) megarocket.

The first integrated SLS launch combining the SLS-1 rocket and Orion EM-1 deep space crew capsule could liftoff as soon as late 2018 on a mission around the Moon and back.

The full duration static fire test involved an RS-25 engine integrated with the first engine controller flight unit that will actually fly on the maiden SLS launch and took place on Thursday, March 23 at the agency’s Stennis Space Center in Bay St. Louis, Mississippi.

The 500 second-long test firing was conducted with the engine controller flight unit installed on RS-25 development engine no. 0528 on the A-2 Test Stand at Stennis.

The RS-25 engine controller is the ‘brain’ that commands the RS-25 engine and communicates between the engine and the SLS rocket. It is about the size of a dorm refrigerator.

RS-25 new engine controller. Credit: NASA/SSC

The newly developed engine controller is a modern version from the RS-25 controller that helped propel all 135 space shuttle missions to space.

“This an important – and exciting – step in our return to deep space missions,” Stennis Director Rick Gilbrech said. “With every test of flight hardware, we get closer and closer to launching humans deeper into space than we ever have traveled before.”

The modernized RS-25 engine controller was funded by NASA and created in a collaborative effort of engineers from NASA, RS-25 prime contractor Aerojet Rocketdyne of Sacramento, California, and subcontractor Honeywell of Clearwater, Florida.

“The controller manages the engine by regulating the thrust and fuel mixture ratio and monitors the engine’s health and status – much like the computer in your car,” say NASA officials.

“The controller then communicates the performance specifications programmed into the controller and monitors engine conditions to ensure they are being met, controlling such factors as propellant mixture ratio and thrust level.”

A quartet of RS-25 engines, leftover from the space shuttle era and repeatedly reused, will be installed at the base of the core stage to power the SLS at liftoff, along with a pair of extended solid rocket boosters.

The four RS-25 core stage engine will provide a combined 2 million pounds of thrust at liftoff.

In addition to being commanded by the new engine controller, the engines are being upgraded in multiple ways for SLS. For example they will operate at a higher thrust level and under different operating conditions compared to shuttle times.

To achieve the higher thrust level required, the RS-25 engines must fire at 109 percent of capability for SLS compared to operating at 104.5 percent of power level capability for shuttle flights.

The RS-25 engines “also will operate with colder liquid oxygen and engine compartment temperatures, higher propellant pressure and greater exhaust nozzle heating.”
SLS will be the world’s most powerful rocket and send astronauts on journeys into deep space, further than human have ever travelled before.

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

NASA engineers conduct a test of the first RS-25 engine controller that will be used on an actual Space Launch System flight on the A-2 Test Stand at Stennis Space Center on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

The next step is evaluating the engine firing test results, confirming that all test objectives were met and certifying that the engine controller can be removed from the RS-25 development engine and then be installed on one of four flight engines that will help power SLS-1.

During 2017, two additional engine controllers for SLS-1 will be tested on the same development engine at Stennis and then be installed on flight engines after certification.

Finally, “the fourth controller will be tested when NASA tests the entire core stage during a “green run” on the B-2 Test Stand at Stennis. That testing will involve installing the core stage on the stand and firing its four RS-25 flight engines simultaneously, as during a mission launch,” says NASA.

Numerous RS-25 engine tests have been conducted at Stennis over more than 4 decades to certify them as flight worthy for the human rated shuttle and SLS rockets.

NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18, 2016 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

Although NASA is still targeting SLS-1 for launch in Fall 2018 on an uncrewed mission, the agency is currently conducting a high level evaluation to determine whether the Orion EM-1 capsule can be upgraded in time to instead fly a human crewed mission with two astronauts before the end of 2019 – as I reported here.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Aerojet Rocketdyne technicians inspect the engine controller that will be used for the first integrated flight of NASA’s Space Launch System and Orion in late 2018. The engine controller was installed on RS-25 development engine no. 0528 for testing at Stennis Space Center on the A-2 Test Stand on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

What’s the Difference Between a Rocket and Space Plane? Amazing Hand-Drawn Animations Explain It All

You gotta love Earth’s atmosphere. It basically makes life (as we know it) possible on our planet by providing warmth and air to breathe, as well as protecting us from nasty space things like radiation and smaller asteroids. But for studying space (i.e., astronomy) or coming back to Earth from space, the atmosphere is a pain.

Last year, we introduced you to freelance animator and storyboard artist Stanley VonMedvey, who started creating short, hand-drawn videos to explain a complex topic: how spacecraft work. These videos are wonderfully concise, clear and easy to understand. Plus Stan’s hand-drawn animations are incredible.

His series, “Stan Draws Spaceships” now has a new video that shows the complexities of how spacecraft return to Earth through our atmosphere, comparing the partially reusable Falcon 9 and fully reusable Skylon. Take a look below. Again, the hand-drawn animations are impeccable and Stan’s explanations are just captivating.

I was trying to think of sufficient accolades for Stan’s work, but I can’t do any better than one commentor on Stan’s YouTube Channel. MarsLettuce said, “The attention to detail here is insane. The air intake being shorn off by drag was especially great. The sequence of her hands making the paper plane was subdued, but it added a lot. The characters were really well done, too. I love the reaction of Stan being hit by the paper airplane. It’s hilarious.”

Stan’s earlier videos explain expendable launch vehicles and the space shuttle.

He describes himself as “completely obsessed with and fascinated by space exploration,” and he wants to share what he’s learned over the years about spaceflight.

Stan would like the opportunity and resources to make more videos, and has started a Patreon page to help in this process. Right now, he creates the videos on his own (he told us he uses the time-honored home-recording technique of draping a blanket over his head) in his home office. It takes him roughly 2.5 months to produce a 5 minute episode.

“I’d like to make a lot more videos,” he writes on Patreon, “explaining things like Hohmman transfers and laser propulsion and the construction techniques of O’Neill cylinders. I want to make long form videos (2-3 minutes) that explain a general idea, and short form videos (30 seconds) that cover a single word, like “ballistics” or “reaction control.”

An artist’s conception of Reaction Engines’ Skylon spacecraft. Credit: Reaction Engines

So, check out Stan’s videos and his Patreon page. If you’d like to see more, consider supporting his work. See more of his drawings at his website.

SpaceX Dragon Splashes Down in Pacific with Treasure Trove of Space Station Science

The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX
The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX’s tenth contracted resupply mission to the International Space Station came to a safe conclusion with a splashdown of the Dragon spacecraft in the Pacific Ocean Sunday and successfully returned a treasure trove of more than two tons of precious science experiments and research samples from the space station.

Researchers on Earth are eagerly awaiting the science data and samples in order to carry out high powered laboratory analysis that will eventually yield the fruits of the hard won labor – years in the making.

The Dragon CRS-10 cargo freighter departed the International Space Station (ISS) Sunday morning after Expedition 50 astronauts Thomas Pesquet of ESA (European Space Agency) and Shane Kimbrough of NASA released the spacecraft from the grip of the station’s 57.7-foot-long(17.6-meter) Canadian-built Canadarm2 robotic arm as planned at 5:11 a.m. EDT, March 19.

After carefully maneuvering away from the orbiting outpost and six person international crew at an altitude of appox. 250 miles (400 km), Dragon eased away to a safe distance.

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

The vessel then fired its braking thrusters a few hours later to initiate the reentry burn that would set the craft on course for a fiery plummet through the Earth’s atmosphere.

Some five and a half hours later the spaceship carried out a parachute assisted splashdown in the Pacific Ocean at 10:46 a.m. EDT, about 200 miles southwest of Long Beach, California.

The highest priority research and technology cargo will be removed from Dragon immediately and returned to NASA.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The rest will travel back to port and be prepared for a return trip to SpaceX’s test facility in McGregor, Texas, where the remaining scientific samples, research experiments and technology gear and hardware will be unloaded for NASA.

Dragon had spent nearly a month berthed at the Earth-facing port on the station’s Harmony module, since arriving on Feb 23.

Dragon begun its space voyage after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory – as I reported here.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

At liftoff, the Dragon CRS-10 space freighter was carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload to the low Earth orbiting station in support of the Expedition 50 and 51 crew members.

After a four day chase, Dragon was captured and attached to the station using the Canadian arm on Feb 23 by the same two astronauts who released it on Sunday.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck. Astronauts plucked them out of the trunk using the robotic arm and attached them to specified locations on the stations exterior to carry out their objectives.

For the return trip to Earth, the astronaut crew loaded Dragon with more than 5,400 pounds of NASA cargo, and science and technology demonstration samples gathered and collected by the stations crewmembers.

“A variety of technological and biological studies are returning in Dragon. The Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity,” said NASA.

“This information will provide insight into how human cancers start and spread, which aids in the development of prevention and treatment plans. Results from this investigation could lead to the treatment of disease and injury in space, as well as provide a way to improve stem cell production for human therapy on Earth.”

“Samples from the Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates such as rodents and humans from re-growing lost bone and tissue, and how microgravity conditions affect the process. Results will provide a new understanding of the biological reasons behind a human’s inability to grow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic non-healing wounds.”

Dragon departed in order to make way for the arrival of the next cargo ship.

The ‘SS John Glenn’ Cygnus cargo freighter built by Orbital Sciences is due to lift off no earlier than March 27 on a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch and mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Are You Ready For The NanoSWARM?

CubeSats NODes 1 & 2 and STMSat-1 are deployed from the International Space Station during Expedition 47. Image: NASA

We’re accustomed to the ‘large craft’ approach to exploring our Solar System. Probes like the Voyagers, the Mariners, and the Pioneers have written their place in the history of space exploration. Missions like Cassini and Juno are carrying on that work. But advances in technology mean that Nanosats and Cubesats might write the next chapter in the exploration of our Solar System.

Nanosats and Cubesats are different than the probes of the past. They’re much smaller and cheaper, and they offer some flexibility in our approach to exploring the Solar System. A Nanosat is defined as a satellite with a mass between 1 and 10 kg. A CubeSat is made up of multiple cubes of roughly 10cm³ (10cm x 10cm x 11.35cm). Together, they hold the promise of rapidly expanding our understanding of the Solar System in a much more flexible way.

A cubesat structure, made by ClydeSpace, 1U in size. Credit: Wikipedia Commons/Svobodat

NASA has been working on smaller satellites for a few years, and the work is starting to bear some serious fruit. A group of scientists at JPL predicts that by 2020 there will be 10 deep space CubeSats exploring our Solar System, and by 2030 there will be 100 of them. NASA, as usual, is developing NanoSat and CubeSat technologies, but so are private companies like Scotland’s Clyde Space.

Clyde Space from Clyde Space on Vimeo.

INSPIRE and MarCO

NASA has built 2 Interplanetary NanoSpacecraft Pathfinder In Relevant Environment (INSPIRE) CubeSats to be launched in 2017. They will demonstrate what NASA calls the “revolutionary capability of deep space CubeSats.” They’ll be placed in earth-escape orbit to show that they can withstand the rigors of space, and can operate, navigate, and communicate effectively.

Following in INSPIRE’s footsteps will be the Mars Cube One (MarCO) CubeSats. MarCO will demonstrate one of the most attractive aspects of CubeSats and NanoSats: their ability to hitch a ride with larger missions and to augment the capabilities of those missions.

In 2018, NASA plans to send a stationary lander to Mars, called Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight). The MarCO CubeSats will be along for the ride, and will act as communications relays, though they aren’t needed for mission success. They will be the first CubeSats to be sent into deep space.

So what are some specific targets for this new class of small probes? The applications for NanoSats and CubeSats are abundant.

Other NanoSat and CubeSat Missions

NASA’s Europa Clipper Mission, planned for the 2020’s, will likely have CubeSats along for the ride as it scrutinizes Europa for conditions favorable for life. NASA has contracted 10 academic institutes to study CubeSats that would allow the mission to get closer to Europa’s frozen surface.

The ESA’s AIM asteroid probe will launch in 2020 to study a binary asteroid system called the Didymos system. AIM will consist of the main spacecraft, a small lander, and at least two CubeSats. The CubeSats will act as part of a deep space communications network.

ESA’s Asteroid Impact Mission is joined by two triple-unit CubeSats to observe the impact of the NASA-led Demonstration of Autonomous Rendezvous Technology (DART) probe with the secondary Didymos asteroid, planned for late 2022. Image: ESA

The challenging environment of Venus is also another world where CubeSats and NanoSats can play a prominent role. Many missions make use of a gravity assist from Venus as they head to their main objective. The small size of NanoSats means that one or more of them could be released at Venus. The thick atmosphere at Venus gives us a chance to demonstrate aerocapture and to place NanoSats in orbit around our neighbor planet. These NanoSats could take study the Venusian atmosphere and send the results back to Earth.

NanoSWARM

But the proposed NanoSWARM might be the most effective demonstration of the power of NanoSats yet. The NanoSWARM mission would have a fleet of small satellites sent to the Moon with a specific set of objectives. Unlike other missions, where NanoSats and CubeSats would be part of a mission centered around larger payloads, NanoSWARM would be only small satellites.

NanoSWARM is a forward thinking mission that is so far only a concept. It would be a fleet of CubeSats orbiting the Moon and addressing questions around planetary magnetism, surface water on airless bodies, space weathering, and the physics of small-scale magnetospheres. NanoSWARM would target features on the Moon called “swirls“, which are high-albedo features correlated with strong magnetic fields and low surficial water. NanoSWARM CubeSats will make the first near-surface measurements of solar wind flux and magnetic fields at swirls.

This is an image of the Reiner Gamma lunar swirl from NASA’s Lunar Reconnaissance Orbiter.
Credits: NASA LRO WAC science team

NanoSWARM would have a mission architecture referred to as “mother with many children.” The mother ship would release two sets of CubeSats. One set would be released with impact trajectories and would gather data on magnetism and proton fluxes right up until impact. A second set would orbit the Moon to measure neutron fluxes. NanoSWARM’s results would tell us a lot about the geophysics, volatile distribution, and plasma physics of other bodies, including terrestrial planets and asteroids.

Space enthusiasts know that the Voyager probes had less computing power than our mobile phones. It’s common knowledge that our electronics are getting smaller and smaller. We’re also getting better at all the other technologies necessary for CubeSats and NanoSats, like batteries, solar arrays, and electrospray thrusters. As this trend continues, expect nanosatellites and cubesats to play a larger and more prominent role in space exploration.

And get ready for the NanoSTORM.

March Launch Madness: Triple Headed Space Spectacular Starts Overnight with SpaceX March 14 – Watch Live

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – It’s March Madness for Space fans worldwide! A triple header of space spectaculars starts overnight with a SpaceX Falcon 9 launching in the wee hours of Tuesday, March 14 from the Florida Space Coast.

Indeed a trio of launches is planned in the next week as launch competitor and arch rival United Launch Alliance (ULA) plans a duo of nighttime blastoffs from their Delta and Atlas rocket families – following closely on the heels of the SpaceX Falcon 9 launching a commercial telecommunications satellite.

Of course it’s all dependent on everything happening like clockwork!

And there is no guarantee of that given the unpredictable nature of the fast changing weather on the Florida Space Coast and unknown encounters with technical gremlins which have already plagued all 3 rockets this month.

Each liftoff has already been postponed by several days this month. And the rocket launch order has swapped positions.

At any rate, SpaceX is now the first on tap after midnight tonight on Tuesday, March 14.

The Delta IV and Atlas V will follow on March 17 and March 21 respectively – if all goes well.

So to paraphrase moon walker Buzz Aldrin;

‘Get Your Ass to the Florida Space Coast – Fast !’

The potential for a grand slam also exists at the very end of the month. But let’s get through at least the first launch of Falcon first.

SpaceX Falcon 9 rocket stands at launch pad 39a poised to liftoff with EchoStar 23 TV sat on the Kennedy Space Center ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Julian Leek

Liftoff of the two stage SpaceX Falcon 9 carrying the EchoStar 23 telecommunications satellite is now slated for a post midnight spectacle next Tuesday, Mar. 14 from launch pad 39A on the Kennedy Space Center at the opening of the launch window at 1:34 a.m. EDT.

The two and a half hour launch window closes at 4:04 a.m. EDT.

You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 1:34 a.m. liftoff time.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:14 a.m. EDT.

Watch at: SpaceX.com/webcast

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

Following a successful static fire test last week on Mar. 9 of the first stage boosters engines, the SpaceX Falcon 9 was integrated with the EchoStar 23 direct to home TV satellite and rolled back out to pad 39A

The Falcon 9 rocket was raised erect into launch position by the time I visited the pad this afternoon, Monday March 13, to set up my cameras.

The weather outlook is not great at this moment, with rain and thick clouds smothering the coastline and central Florida.

The planned Mar. 14 launch comes barely three weeks after the Falcon’s successful debut on Feb. 19 on the NASA contracted Dragon CRS-10 mission that delivered over 2.5 tons of cargo to the six person crew living and working aboard the International Space Station (ISS).

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Launch Complex 39A was repurposed by SpaceX from launching Shuttles to Falcons. It had lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

SpaceX bilionaire CEO Elon Musk announced last week that he wants to launch a manned Moonshot from pad 39A by the end of next year using his triple barreled Falcon Heavy heavy lift rocket – derived from the Falcon 9.

The second launch of the trio on tap is a United Launch Alliance Delta 4 rocket carrying the WGS-9 high speed military communications satellite for the U.S. Air Force.

Liftoff of the ULA Delta is slated for March 17 from Space Launch Complex-37 at 7: 44 p.m. EDT.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The S.S. John Glenn is scheduled to as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 EchoStar 23 mission patch. Credit: SpaceX

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on Mar 9, 2017 as seen from Space View Park, Titusville, FL. Liftoff with EchoStar 23 comsat is planned for 14 March 2017. Credit: Ken Kremer/Kenkremer.com

Next Cygnus Cargo Ship Christened the SS John Glenn to Honor First American in Orbit

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA's original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com
The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The next Cygnus cargo ship launching to the International Space Station (ISS) has been christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The naming announcement was made by spacecraft builder Orbital ATK during a ceremony with the ‘S.S. John Glenn’, held inside the Kennedy Space Center (KSC) clean room facility where the cargo freighter is in the final stages of flight processing – and attended by media including Universe Today on Thursday, March 9.

“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony in the inside the Payload Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center in Florida.

The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The S.S. John Glenn is scheduled to liftoff as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

The space station resupply mission dubbed Cygnus OA-7 is dedicated to Glenn and his landmark achievement as the first American to orbit the Earth on Feb. 20, 1962 and his life promoting science, human spaceflight and education.

“John Glenn was probably responsible for more students studying math and science and being interested in space than anyone,” said former astronaut Brian Duffy, Orbital ATK’s vice president of Exploration Systems, during the clean room ceremony on March 9.

“When he flew into space in 1962, there was not a child then who didn’t know his name. He’s the one that opened up space for all of us.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

Glenn’s 3 orbit mission played a pivotal role in the space race with the Soviet Union at the height of the Cold War era.

“He has paved the way for so many people to follow in his footsteps,” said DeMauro.

All of Orbital ATK’s Cygnus freighters have been named after deceased American astronauts.

Glenn is probably America’s most famous astronaut in addition to Neil Armstrong, the first man to walk on the moon during Apollo 11 in 1969.

John Glenn went on to become a distinguished U.S. Senator from his home state of Ohio on 1974. He served for 24 years during 4 terms.

He later flew a second mission to space aboard the Space Shuttle Discovery in 1998 as part of the STS-95 crew at age 77. Glenn remains the oldest person ever to fly in space.

“Glenn paved the way for America’s space program, from moon missions, to the space shuttle and the International Space Station. His commitment to America’s human space flight program and his distinguished military and political career make him an ideal honoree for the OA-7 mission,” Orbital ATK said in a statement.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

“The OA-7 mission is using the Enhanced Cygnus Pressurized Cargo Module (PCM) to deliver cargo to the International Space Station,” said DeMauro.

Cygnus will carry 7,700 pounds (3500 kg) of cargo to the station with a total volumetric capacity of 27 cubic meters.

“All these teams have worked extremely hard to get this mission to this point and we are looking forward to a great launch.”

Orbital ATK Cygnus OA-7 supply ship named the SS John Glenn undergoes processing inside the Payload Hazardous Servicing Facility at KSC on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission.

“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions.

“Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Overall this is Orbital ATK’s seventh commercial resupply services mission (CRS) to the space station under contract to NASA.

OA-7 also counts as NASA’s second supply mission of the year to the station following last month’s launch of the SpaceX Dragon CRS-10 capsule on Feb. 19 and which is currently berthed to the station at a Earth facing port on the Harmony module.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 mission will launch again from NASA Wallops in the summer of 2017, DeMauro told me.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Posing with the newly christened SS John Glenn for the Cygnus OA-7 resupply mission to the ISS are Vern Thorp, United Launch Alliance Program program manager for Commercial Missions, Ken Kremer, Universe Today and Frank DeMauro, Orbital ATK vice president and general manager of Orbital ATK’s Advanced Programs division inside the Payload Hazardous Servicing Facility cleanroom at NASA’s Kennedy Space Center on March 9, 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA's Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)
Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)

PORT CANAVERAL – Bit by bit, piece by piece, the first of NASA’s SLS megarockets designed to propel American astronauts on deep space missions back to the Moon and beyond to Mars is at last coming together on the Florida Space Coast. And the first big integrated piece of actual flight hardware – the powerful second stage named the Interim Cryogenic Propulsion Stage (ICPS) – has just arrived by way of barge today (Mar. 7) at Port Canaveral, Fl.

The ICPS will propel NASA’s new Orion crew capsule on its maiden uncrewed mission around the Moon – currently slated for blastoff on the inaugural SLS monster rocket on the Exploration Mission-1 (EM-1) mission late next year.

SLS-1/Orion EM-1 will launch from pad 39B at NASA’s Kennedy Space Center in late 2018. The SLS will be the most powerful rocket in world history.

NASA is currently evaluating whether to add a crew of 2 astronauts to the SLS-1 launch which would result in postponing the inaugural liftoff into 2019 – as I reported here.

The interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket arrived at Port Canaveral, Florida on March 7, 2017 loaded inside a shipping canister (right) aboard the ULA Delta Mariner barge that set sail from Decatur, Alabama a week ago. The ICPS shared the shipping voyage along with a ULA Delta IV first stage rocket core seen at left. Credit: Ken Kremer/kenkremer.com

The SLS upper stage – designed and built by United Launch Alliance (ULA) and Boeing – arrived safely by way of the specially-designed ship called the Delta Mariner early Tuesday morning, Mar. 7, into the channel of Port Canaveral, Florida – as witnessed by this author.

“We are proud to be working with The Boeing Company and NASA to further deep space exploration!” ULA said in a statement.

Major assembly of the ICPS was completed at ULA’s Decatur, Alabama, manufacturing facility in December 2016.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket has arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. The ICPS will be moved to United Launch Alliance’s Delta IV Operation Center at the Cape for processing for the SLS-1/Orion EM-1 launch currently slated for late 2018 launch from pad 39B at NASA’s Kennedy Space Center. Credit: ULA

The ICPS is the designated upper stage for the first maiden launch of the initial Block 1 version of the SLS.

It is based on ULA’s Delta Cryogenic Second Stage which has successfully flown numerous times on the firm’s Delta IV family of rockets.

In the event that NASA decides to add a two person crew to the EM-1 mission, Bill Hill, NASA’s deputy associate administrator for Exploration Systems Development in Washington, D.C., stated that the agency would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on the EM-2 mission.

The ULA Delta Mariner barge arriving in Port Canaveral, Florida on March 7, 2017 after transporting the interim cryogenic propulsion stage (ICPS) hardware for the first flight of NASA’s Space Launch System (SLS) rocket from Decatur, Alabama. SLS-1 launch from the Kennedy Space Center is slated for late 2018. Credit: Ken Kremer/kenkremer.com

The ICPS was loaded onto the Delta Mariner and departed Decatur last week to began its sea going voyage of more than 2,100 miles (3300 km). The barge trip normally takes 8 to 10 days.

“ULA has completed production on the interim cryogenic propulsion stage (ICPS) flight hardware for NASA’s Space Launch System and it’s on the way to Cape Canaveral aboard the Mariner,” ULA noted in a statement last week.

The 312-foot-long (95-meter-long) ULA ship docked Tuesday morning at the wharf at Port Canaveral to prepare for off loading from the roll-on, roll-off vessel.

The Delta Mariner can travel on both rivers and open seas and navigate in waters as shallow as nine feet.

“ICPS, the first integrated SLS hardware to arrive at the Cape, will provide in-space propulsion for the SLS rocket on its Exploration Mission-1 (EM-1) mission,” according to ULA.

The next step for the upper stage is ground transport to United Launch Alliance’s Delta IV Operation Center on Cape Canaveral Air Force Station in Florida for further testing and processing before being moved to the Kennedy Space Center.

ULA will deliver the ICPS to NASA in mid-2017.

“It will be the first integrated piece of SLS hardware to arrive at the Cape and undergo final processing and testing before being moved to Ground Systems Development Operations at NASA’s Kennedy Space Center,” said NASA officials.

“The ICPS is a liquid oxygen/liquid hydrogen-based system that will provide the thrust needed to send the Orion spacecraft and 13 secondary payloads beyond the moon before Orion returns to Earth.”

The upper stage is powered by a single RL-10B-2 engine fueled by liquid hydrogen and oxygen and generates 24,750 pounds of thrust. It measures 44 ft 11 in (13.7 m ) in length and 16 ft 5 in (5 m) in width.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket as it completed major assembly at United Launch Alliance in Decatur, Alabama in December 2016. The ICPS just arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. It will propel the Orion EM-1 crew module around the Moon. The SLS-1/Orion EM-1 launch is currently slated for late 2018 launch from NASA’s Kennedy Space Center. Credit: ULA

All major elements of the SLS will be assembled for flight inside the high bay of NASA’s iconic Vehicle Assembly Building which is undergoing a major overhaul to accommodate the SLS. The VAB high bay was extensively refurbished to convert it from Space Shuttle to SLS assembly and launch operations.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

The ICPS sits on top of the SLS core stage.

The next Delta IV rocket launching with a Delta Cryogenic Second Stage is tentatively slated for March 14 from pad 37 at the Cape.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

File photo of the ULA Delta Mariner barge arriving in Port Canaveral, Florida after transporting rocket hardware from Decatur, Alabama