NASA’s Ames Director Announces “100 Year Starship”

NASA's Ames Center Director, Simon "Pete" Worden has announced that development of next-generation propulsion technologies are underway. Image Credit: NASA

[/caption]

The Director of NASA’s Ames Center, Pete Worden has announced an initiative to move space flight to the next level. This plan, dubbed the “Hundred Year Starship,” has received $100,000 from NASA and $ 1 million from the Defense Advanced Research Projects Agency (DARPA). He made his announcement on Oct. 16. Worden is also hoping to include wealthy investors in the project. NASA has yet to provide any official details on the project.

Worden also has expressed his belief that the space agency was now directed toward settling other planets. However, given the fact that the agency has been redirected toward supporting commercial space firms, how this will be achieved has yet to be detailed. Details that have been given have been vague and in some cases contradictory.

The Ames Director went on to expound how these efforts will seek to emulate the fictional starships seen on the television show Star Trek. He stated that the public could expect to see the first prototype of a new propulsion system within the next few years. Given that NASA’s FY 2011 Budget has had to be revised and has yet to go through Appropriations, this time estimate may be overly-optimistic.

One of the ideas being proposed is a microwave thermal propulsion system. This form of propulsion would eliminate the massive amount of fuel required to send crafts into orbit. The power would be “beamed” to the space craft. Either a laser or microwave emitter would heat the propellant, thus sending the vehicle aloft. This technology has been around for some time, but has yet to be actually applied in a real-world vehicle.

The project is run by Dr. Kevin L.G. Parkin who described it in his PhD thesis and invented the equipment used. Along with him are David Murakami and Creon Levit. One of the previous workers on the program went on to found his own company in the hopes of commercializing the technology used.

For Worden, the first locations that man should visit utilizing this revolutionary technology would not be the moon or even Mars. Rather he suggests that we should visit the red planet’s moons, Phobos and Deimos. Worden believes that astronauts can be sent to Mars by 2030 for around $10 billion – but only one way. The strategy appears to resemble the ‘Faster-Better-Cheaper’ craze promoted by then-NASA Administrator Dan Goldin during the 1990s.

DARPA is a branch of the U.S. Department of Defense whose purview is the development of new technology to be used by the U.S. military. Some previous efforts that the agency has undertaken include the first hypertext system, as well as other computer-related developments that are used everyday. DARPA has worked on space-related projects before, working on light-weight satellites (LIGHTSAT), the X-37 space plane, the FALCON Hypersonic Cruise Vehicle (HCV) and a number of other programs.

The Defense Advanced Research Projects Agency or DARPA has been involved with a number of advanced technology projects. Image Credit: DARPA

Source: Kurzweil

First Rickroll in Space

Those pranksters from Zug have now gone to the edge of space, sending their own DIY satellite up to 89,000 feet above Earth, and doing a little Rickrolling along the way. They claim they have now pulled the famous prank on the entire planet. Hmmm, hopefully this wasn’t the source of the radio signals that caused ESA’s Soil Moisture and Ocean Salinity (SMOS) probe to be “blinded from interference.” Surely strains of “Never Gonna Give You Up” could never do that….

The video above is a quick look at their balloon satellite launch and their results; here’s the whole story on Zug.

STS-133 Crew Conducts TCDT Training

The crew of STS-133 discusses their perspectives on the final flight of space shuttle Discovery with the media. Photo Credit: Universe Today/awaltersphoto.com

[/caption]

The crew for the last mission for space shuttle Discovery spent the week at NASA’s Kennedy Space Center conducting the Terminal Countdown Demonstration Test or as it is more commonly know – TCDT. The crew arrived Tuesday, Oct. 12 and immediately set to work. This week of training is the last major milestone on the path to launch, currently scheduled to take place on Nov. 1 at 4:40 p.m. EDT.

TCDT consists of is training that simulates the final hours up until launch. This provides training for both the crew and the launch team. The launch team practices launch day timelines as well other, crucial flight-day procedures. The crew on the other hand went through a number of exercises that included:

• Rescue training – The astronauts will run through several simulations where they practice what to do in the event of an emergency. The crew will be instructed on how to use the emergency baskets that will allow them to escape the launch pad in case there is a fire. They will also learn how to operate the tank-like M113 personnel carrier and other emergency equipment.
• The commander in pilot will perform abort landings and other flight aspects in the Shuttle Training Aircraft (STA). The plane is a Grumman Gulfstream II and it duplicates the shuttle’s approach profile and many of the orbiter’s handling qualities.
• Conduct a launch day simulation that includes everything that will happen on launch day – except the launch. The crew walked out in their bright orange launch and entry suits. TCDT also includes a simulated abort so that the crew is well-versed as to what do to in case of that scenario.

STS-133 crew members arrive at NASA's Kennedy Space Center in their sleek T-38 jets. Photo Credit: Universe Today/awaltersphoto.com

These activities allow the crew and flight teams to do a rehearsal of all the events that will take place on launch day.

“This is a dress rehearsal for the real flight so the crew is kind of peaked up; they’ve put all the sequence of events together, when they go out to the pad they’ll do everything except igniting the main engines,” said Robert Springer a two-time shuttle veteran. “It’s a chance to review all your procedures and make sure everything is in place.”

The crew of STS-133 consists of Lindsey, Pilot Eric Boe and Mission Specialists, Michael Barratt, Tim Kopra, Alvin Drew and Nicole Stott. The crew is comprised entirely of space flight veterans.

NASA's official crew portrait of the crew of STS-133. Image Credit: NASA
[

STS-133 is an 11-day mission to the International Space Station (ISS) to deliver the Leonardo Permanent Multipurpose Module (PMM) which contains, among other thing, the first humanoid robot to fly into space – Robonaut-2 (R2). Also onboard is the Express Logistics Carrier-4 and spare parts for the orbiting laboratory.

Springer’s first flight was on space shuttle Discovery and as he watched the crew for her final mission his thoughts reflected on his experiences and the end of the shuttle era.

“It’s going to be a little tough, my personal experiences that I have of Discovery and my memories that I have of that time make it a little bittersweet to realize that this will be the last time that Discovery will go into space.”

Probing Exoplanets

Sometimes topics segue perfectly. With the recent buzz about habitable planets, followed by the raining on the parade articles we’ve had about the not insignificant errors in the detections of planets around Gliese 581 as well as finding molecules in exoplanet atmospheres, it’s not been the best of times for finding life. But in a comment on my last article, Lawrence Crowell noted: “You can’t really know for sure whether a planet has life until you actually go there and look on the ground. This is not at all easy, and probably it is at best possible to send a probe within a 25 to 50 light year radius.”

This is right on the mark and happens to be another topic that’s been under some discussion on arXiv recently in a short series of paper and responses. The first paper, accepted to the journal Astrobiology and led by Jean Schneider of the Observatory of Paris-Meudon, seeks to describe “the far future of exoplanet direct characterization”. In general, this paper discusses where the study of exoplanets could go from our current knowledge base. It proposes two main directions: Finding more planets to better survey the parameter space planets inhabit, or more in depth, long-term studying of the planets we do know.

But perhaps the more interesting aspect of the paper, and the one that’s generated a rare response, is what can be done should we detect a planet with promising characteristics relatively nearby. They first propose trying to directly image the planet’s surface and calculate the diameter of a telescope capable of doing so would be roughly half as large as the sun. Instead, if we truly wish to get a direct image, the best bet would be to go there. They quickly address a few of the potential challenges.

The first is that of cosmic rays. These high energy particles can wreak havoc on electronics. The second is simple dust grains. The team calculates that an impact with “a 100 micron interstellar grain at 0.3 the speed of light has the same kinetic energy than a 100 ton body at 100 km/hour”. With present technology, any spacecraft equipped with sufficient shielding would be prohibitively massive and difficult to accelerate to the velocities necessary to make the trip worthwhile.

But Ian Crawford, of the University of London, thinks that the risk posed by such grains may be overstated. Firstly, Crawford believes Schneider’s requirement of 30% of the speed of light is somewhat overzealous. Instead, most proposals of interstellar travel by probes generally use a value of 10% of the speed of light. In particular, the most exhaustive proposal yet created, (the Daedalus project) only attempted to achieve a velocity of 0.12c. However, the ability to produce such a craft was well beyond the means at the time. But with the advent of miniaturization of many electronic components, the prospect may need to be reevaluated.

Aside from the overestimate on necessary velocities, Crawford suggests that Schneider’s team overstated the size of dust grains. In the solar neighborhood, dust grains are estimated to be nearly 100 times smaller than reported by Schneider’s team. The combination of the change in size estimation and that of velocity takes the energy released on collision from a whopping 4 x 107 Joules, to a mere 4.5 Joules. At absolute largest, recent studies have shown that the upper limit for dust particles is more in the range of 4.5 micrometers.

Lastly, Crawford suggests that there may be alternative ways to offer shielding than the brute force wall of mass. If a spacecraft were able to detect incoming particles using radar or another technique, it is possible that it could destroy the incoming particles using lasers, or deflect it using a electromagnetic field.

But Schneider wasn’t finished. He issued a response to Crawford’s response. In it, he criticizes Crawford’s optimistic vision of using nuclear or anti-matter propulsion systems. He notes that, thus far, nuclear propulsion has only been able to produce short impulses instead of continuous thrust and that, although some electronics have been miniaturized, the best analogue yet developed, the National Ignition Facility, is, “with all its control and cooling systems, is presently quite a non-miniaturized building.”

Anti-matter propulsion may be even more difficult. Currently, our ability to produce anti-matter is severely limited. Schneider estimates that it would take 200 terrawatts of energy to produce the required amounts. Meanwhile, the overall energy of the entire Earth is only 20 terrawatts.

In response to the charge of overestimation, Schneider notes that, although such large dust grains would be rare, but “even two lethal or severe collisions are prohibitory”, but does not go on to make any honest estimations of what the actual probability of such a collision would be.

Ultimately, Schneider concludes that all discussion is, at best, extremely preliminary. Before any such undertaking would be seriously considered, it would require “a precursor mission to secure the technological concept, including shielding mechanisms, at say 500 to 1000 Astronomical Units.” Ultimately, Schneider and his team seems to remind us that the technology is not yet there and that there are legitimate threats we must address. Crawford, on the other hand suggests that some of these challenges are ones that we may already be well on the road to addressing and constraining.

Attempt to Break Free-Fall Record Halted by Lawsuit

Baumgartner, left with Joe Kittinger. Credit: Red Bull Stratos

[/caption]

An attempt to reach supersonic speeds during freefall has hit a snag as a promoter who says the stunt was originally his idea has filed a lawsuit against the Red Bull Stratos team. Daniel Hogan claims he pitched the idea of breaking a 50-year old freefall record to Red Bull in 2004, and that Red Bull said they weren’t interested, but later, the company went forward with the idea. Hogan has filed a multi-million dollar lawsuit against the energy drink company, prompting Red Bull to stand down with the record-breaking attempt until the issue can be resolved.

Red Bull issued this statement today:

“Despite the fact that many other people over the past 50 years have tried to break Colonel (Ret.) Joe Kittinger’s record, and that other individuals have sought to work with Red Bull in an attempt to break his record, Mr. Hogan claims to own certain rights to the project and filed a multimillion dollar lawsuit earlier this year in a Californian court. Red Bull has acted appropriately in its prior dealings with Mr. Hogan, and will demonstrate this as the case progresses. Due to the lawsuit, we have decided to stop the project until this case has been resolved.”

Austrian Skydiver Felix Baumgartner had been scheduled to jump from a balloon at 120,000 feet and attempt a freefall jump that would, for the first time, reach supersonic speeds as well as, Red Bull says, deliver valuable scientific data. If successful, it would break a record set in 1960 by US Air Force captain named Joe Kittinger when he jumped from 31,000 meters (102,800 feet). His jump contributed valuable data that provided ground work for spacesuit technology and knowledge about human physiology for the US space program. There have been several attempts to surpass Kittinger’s record, but none have succeeded, and people have given their lives for the quest.

Kittinger has been supportive of Baumgartner’s attempt and appeared in this video with him.

Hogan says he pitched the idea to Red Bull as a “marriage of daredevil, record-breaking ‘stuntsmanship’ and cutting-edge technology.” After a year of talks, during which Hogan says Red Bull executives encouraged him to reveal the minutest details of the project, the company backed out.

In January this year, Red Bull announced the Red Bull Stratos dive, which Hogan said is precisely the project he pitched except for two things: the name was been changed and he was cut out of it.

Earlier this year, Hogan sought an injunction to halt the project, disgorgement of any profits and punitive damages. He also sought a declaration that Red Bull has certain, specific duties to him.

In his complaint in Los Angeles Superior Court, Hogan claims the daredevil stunt would be worth $375 million to $625 million in advertising to any corporate sponsor.

Hogan claims his proposed dive would be made from 130,000 feet. He also said he had assembled a team that included Per Lindstrand, who holds the hot-air balloon altitude record, Dr. Coy Foster, a former NASA flight surgeon, Dr. Steve Lingard, an expert in the aerodynamics of the human body, filmmaker Slim McDonald, and a Russian company that agreed to develop the spacesuit.

Hogan claims that in meetings, emails and other communications Red Bull received specifications for the gondola to be used, the spacesuit, the timeline for developing and testing the equipment, and a list of potential corporate partners.

But on Oct. 13, 2005, Hogan says the company sent him an email stating that “after a very detailed investigation of your proposal, we finally came to the conclusion that we would not like to continue our joint work on the space Dive project.”

Hogan says Red Bull never acknowledged his idea nor has it offered to compensate him for his contributions or sought permission to use information that he disclosed in confidence.

Sources: Red Bull Stratos, Courthouse News Service

Astronomy Without A Telescope – Solar Or RTG?

The 'edge of the envelope' solar powered Juno mission - scheduled for launch in 2011.

[/caption]

It used to be the case that if you wanted to send a spacecraft mission out past the asteroid belt, you’d need a chunk of plutonium-238 to generate electric power – like for Pioneers 10 and 11, Voyagers 1 and 2, Galileo, Cassini, even Ulysses which just did a big loop out and back to get a new angle on the Sun – and now New Horizons on its way to Pluto.

But in 2011, the Juno mission to Jupiter is scheduled for launch – the first outer planet exploration mission to be powered by solar panels. And also scheduled for 2011, in another break with tradition – Curiosity, the Mars Science Laboratory will be the first Mars rover to be powered by a plutonium-238 radioisotope thermoelectric generator – or RTG.

I mean OK, the Viking landers had RTGs, but they weren’t rovers. And the rovers (including Sojourner) had radioisotope heaters, but they weren’t RTGs.

So, solar or RTG – what’s best? Some commentators have suggested that NASA’s decision to power Juno with solar is a pragmatic one – seeking to conserve a dwindling supply of RTGs – which have a bit of a PR problem due to the plutonium.

However, if it works, why not push the limits of solar? Although some of our longest functioning probes (like the 33 year old Voyagers) are RTG powered, their long-term survival is largely a result of them operating far away from the harsh radiation of the inner solar system – where things are more likely to break down before they run out of power. That said, since Juno will lead a perilous life flying close to Jupiter’s own substantial radiation, longevity may not be a key feature of its mission.

Perhaps RTG power has more utility. It should enable Curiosity to go on roving throughout the Martian winter – and perhaps manage a range of analytical, processing and data transmission tasks at night, unlike the previous rovers.

With respect to power output, Juno’s solar panels would allegedly produce a whopping 18 kilowatts in Earth orbit, but will only manage 400 watts in Jupiter orbit. If correct, this is still on par with the output of a standard RTG unit – although a large spacecraft like Cassini can stack several RTG units together to generate up to 1 kilowatt.

So, some pros and cons there. Nonetheless, there is a point – which we might position beyond Jupiter’s orbit now – where solar power just isn’t going to cut it and RTGs still look like the only option.

Left image: a plutonium-238 ceramic pellet glowing red hot, like most concentrated ceramicised radioisotopes will do. Credit: Los Alamos National Laboratory. Right image: the Apollo 14 ALSEP RTG, almost identical to Apollo 13's RTG which re-entered Earth's atmosphere with the demise of the Aquarius lunar module. Credit: NASA

RTGs take advantage of the heat generated by a chunk of radioactive material (generally plutonium 238 in a ceramic form), surrounding it with thermocouples which use the thermal gradient between the heat source and the cooler outer surface of the RTG unit to generate current.

In response to any OMG it’s radioactive concerns, remember that RTGs travelled with the Apollo 12-17 crews to power their lunar surface experiment packages – including the one on Apollo 13 – which was returned unused to Earth with the lunar module Aquarius – the crew’s life boat until just before re-entry. Allegedly, NASA tested the waters where the remains of Aquarius ended up and found no trace of plutonium contamination – much as expected. It’s unlikely that its heat tested container was damaged on re-entry and its integrity was guaranteed for ten plutonium-238 half-lives, that is 900 years.

In any case, the most dangerous thing you can do with plutonium is to concentrate it. In the unlikely event that an RTG disintegrates on Earth re-entry and its plutonium is somehow dispersed across the planet – well, good. The bigger worry would be that it somehow stays together as a pellet and plonks into your beer without you noticing. Cheers.

Could a Human Mars Mission Be Funded Commercially?

An artists illustration of a manned mission to Mars. Credit: NASA

[/caption]

What will it take to actually get humans to Mars? The best answer is probably money. The right amount of cold, hard cash will certainly solve a lot of problems and eliminate hurdles in sending a human mission to the Red Planet. But cash-strapped federal space agencies aren’t currently in the position to be able to direct a mission to another world – at least in the near term – and seemingly, a trip to Mars is always 20-30 years off into the future. But how about a commercially funded effort?

At first glance, a paper published recently in the somewhat dubious Journal of Cosmology appears to have some merits on using an independent corporation to administer and supervise a marketing campaign – similar to what sports teams do to sell merchandise, gain sponsors, garner broadcasting rights and arrange licensing initiatives. The paper’s author, a psychologist named Dr. Rhawn Joseph, says that going to Mars and establishing a colony would likely cost $150 billion dollars over 10 years, and he lays out a plan for making money for a sustained Mars mission through the sale of merchandise, naming rights and even creating a reality TV show and selling property rights on Mars.

Could such a scheme work?

Not according to former NASA engineer Jim McLane, who has a fairly unique scheme of his own to get humans to Mars: a one-way, one person mission.

For years, McLane has been a proponent of getting humans to Mars as quickly as possible, and his plans for a one-way mission are outlined in a very popular article Universe Today published in 2008. So, what does he think of a commercially funded effort?

Artists impression of a future human mission to Mars. Credit: NASA

“I am a vocal proponent of an early settlement on Mars,” McLane replied to a query from UT, “ So I should have welcomed Dr. Joseph’s proposal to establish a colony in 10 years with private funds and clever marketing. Regrettably, after reading the details of his scheme I believe the good Doctor should stick to peddling his patented herbal sexual dysfunction treatment and refrain from speculating about technologically intensive endeavors like a trip to Mars.”

For starters, McLane wonders about the costs that Joseph proposes. “It’s questionable,” he said. “One cannot propose a cost without first devising a technical approach and he has not done that. He justifies the large investment by alleging that there will be significant financial returns, for example the investors might be able to claim the mineral wealth of the entire planet. However owning such an asset is of dubious value since there is no way to send anything valuable back to Earth.”

Unlike ancient Spanish treasure fleets loaded with silver that sailed every year from the New World, McLane said, nothing on planet Mars will ever be worth the expense of shipping it home. Plus, selling real estate on Mars might not even be a viable option. The 1967 Outer Space Treaty prohibits governments from making extraterrestrial property rights claims, and even though some especially ambitious entrepreneurs have tried selling real estate on the Moon and Mars, ownership of extraterrestrial real estate is not recognized by any authority. According to current space law, any “deed” or claim on another extraterrestrial body has no legal standing.

McLane was also not impressed with Joseph’s statement about the wastefulness of spending on the US military as a justification for spending money on a Mars mission. “It is not as if one program could be substituted for the other,” said McLane. “But, substitution is not what Dr. Joseph proposes. He feels inclined to speculate on the wastefulness of current wars even though this is an essay on Space.”

Some of the ideas Joseph outlined for marketing does have some validity, McLane said. “Long ago NASA should have realized that the image they cultivate of nerdy, ethically and sexually diverse astronauts does not inspire the tax payer nearly as much as the early astronauts who we expected to be risk taking, hell raising test pilots,” he said.

In respect to finances, McLane said he agrees with Joseph that there is a place for private capital, but not in regards to the venture capital proposal.

“Private money could jump start a manned Mars mission,” McLane said, “but persuading billionaires to invest based on some speculative financial return is doomed to fail. I believe rich folks might be willing to help pay to put a human on Mars, but the motivations would be philanthropy and patriotism, not financial gain. Several wealthy citizens might contribute seed money (say a quarter billion dollars or so) to finance a detailed study of the design options for a one way human mission – a concept that thus far NASA refuses to consider. Such a study would reveal the technical practicality of the one-way mission and the relative cheapness of the approach. The study would probably show that a human presence on Mars would cost little more than a human moon base assuming the same 10 year time span for accomplishing both programs.”

Dr. Joseph concludes his paper by asserting that several foreign countries “are already planning on making it to Mars in the next two decades.” McLane said this seems highly improbable since the funds spent today by these nations on manned spaceflight are a tiny fraction of what the US currently spends.

Artist concept of a future human Mars mission. Credit: NASA

While Joseph – and seemingly the current President and NASA leaders favor an international effort to get to Mars, McLane believes this is short-sighted for two reasons.

One, there would be enormous technological returns from a human Mars landing that would greatly stimulate business and the economy. “Why should the US share these large returns with foreign countries,” McLane asked? And second, an all American effort could potentially take advantage of classified US military technology.

McLane did say previously, however, that the world would be excited and unified by a mission to Mars. “The enthusiasm would be the greatest effect of a program that places a man on Mars, over and above anything else, whether it makes jobs, or stimulates the economy, or creates technology spinoffs. We’re all humans and the idea of sending one of our kind on a trip like that would be a wonderful adventure for the entire world. The whole world would get behind it.”

McLane has written a recent article in The Space Review that Mars is the key to NASA’s future.

A Conversation with Jim Lovell, part 2: Looking Back

Jim Lovell with artist Marla Friedman who painted Lovell's portrait for the Abraham Lincoln Presidential Library and Museum. Image: Nancy Atkinson

[/caption]

Apollo astronaut Jim Lovell was awarded the Lincoln Leadership Prize by the Abraham Lincoln Presidential Library and Museum foundation last week, and while humbled to receive the award, Lovell said he really is just an ordinary person. “I was just at the right place at the right time with the right credentials; there was nothing so extra special about me that got me where I am.”

But those in attendance at a reception to unveil a portrait of Lovell which will hang at the presidential library in Springfield, Illinois said Lovell embodies the intersection of heroism and legacy.


Lovell speaking at a reception in his honor at the Abraham Lincoln Presidential Museum. Image: Nancy Atkinson

“NASA had a leader at the exact moment they needed it,” said Richard K. Davis, Chair, President and CEO of US Bancorp, who introduced the former Apollo astronaut at the reception. “With the help of many, Lovell and his crew created the outrageous but amazing solution to plot Apollo 13 back home. NASA found they had a cool, calm, competent leader, a hero who took this crew and a nation from ‘Houston we have a problem’ to America, we have a miracle.

Davis said one of his all-time favorite quotes comes from Lovell: “There are people who make things happen, there are people who watch things happen, and there are people who wonder what happened. To be successful you need to be a person who makes things happen.”

Earlier in the week, Lovell talked with members of the media about his life and his thoughts on NASA’s current budget situation. You can read part one of the interview here, and following is the continuation of the conversation with Jim Lovell, where he talks about some of his memories of his flights to space, and what it took for him to realize that Apollo 13 was more than just a failure:

We’re coming up to almost the 40th anniversary of the last person who landed on the Moon—what are your thoughts about that?

Lovell: It is a rather sad remembrance. I think it is an end of an era. I think the anniversaries will end—we probably won’t get together much anymore. We should look ahead to have a space program that everyone can be proud of, regardless of what it ends up to be. Sometimes we live too much in the past. But the future is here.

Why did you decide to become an astronaut?

Lovell: When I was in high school I was interested in both astronomy and rockets. There was a fellow I admired, the father of modern rocketry named Robert Goddard. I really wanted to be a rocket engineer. So I wrote to the secretary of the American Rocket Society, and asked how I could become one. He told me there was no school at that time that offered that type of study specifically, but I should take mechanics and mathematics, thermodynamics and either go to MIT or CalTech.

But my father had died earlier that year and I didn’t have the money to go to either of those places, so I gave that up. But I did apply to get an ROTC scholarship and was accepted. I went to the University of Wisconsin for two years and won an appointment to the Naval Academy. I went there for four years and got into the Navy and became a naval aviator – which was a second goal for me, as my uncle had been a naval aviator and had regaled me with all his stories. Then I went to test pilot school for the Navy. And when NASA was asking for astronauts, it seemed to me to be the perfect opportunity: here was a marrying of flight and rockets all coming together for me as if I had planned it all this time.

You couldn’t have seen a more disappointed person when I wasn’t selected for the first original seven astronauts. I made it to the final 32 candidates. But then, for round two, I was selected.

Universe Today: What are your favorite memories from your four flights to space?

Lovell: Apollo 8 was the most inspirational flight to me, and I hope it brought a message back to the Earth of what we have.

The most impressive sight I saw was not the moon, not the far side that we never see, or the craters. It was Earth. The Earth was the most impressive sight. As we came around the far side of the Moon and saw the Earth come up above the horizon, we could see the only color in our part of the Universe. The blues of the oceans, the white clouds, the tans, the pinks. I could put my thumb up and hide the Earth completely. Then it dawned on me how completely insignificant we are. Everything I had ever known – my family, my country, my world – was behind my thumb.

So there in the distance was this small body orbiting a rather normal sun, — nothing so particular about it — tucked away on the outer edge of the galaxy we call the Milky Way.

I thought how fortunate we are to live on this small body, with everyone – all those ‘astronauts’ — living together like on a starship, with limited resources. So, in a way that was just like Apollo 13, and we have to learn to live and work together. And I hope we could bring that message back to the people of Earth.

But I also have to say one of my other favorite memories was from Apollo 13: the splashdown! Seeing the parachutes, feeling the capsule swaying in the ocean, and having one of the divers come to knock on the window was a great feeling. It was pretty impressive, too.

Jim Lovell speaking at the museum, in front of a replica of the White House. Image: Nancy Atkinson

What was scarier, the explosion of Apollo 13 or seeing the service module after it was jettisoned and wondering if the heat shield was still intact?

Lovell: The low point was the explosion – which we didn’t realize was an explosion until I saw the oxygen leaking outside the spacecraft, and saw from our instruments that we would be completely out of oxygen. This also meant we would be out of electrical power, and because we used the electrical power to control the rocket engine, we also lost the propulsion system. We knew we were losing the command module, but that was the only thing that had the heat shield to get us back to Earth.

As we were going through and solving all the problems one by one, when we came back towards Earth and jettisoned the Service Module and saw the explosion had blown out the entire side panel, we wondered about that heat shield which was right behind us, if the explosion had cracked it. But there was nothing we could do at that point. There was no solution. You just crossed your fingers. Once we entered the atmosphere we just had to hope the heat shield was intact. And it was.

Lovell and museum officials at the unveiling of a portrait of Lovell that will hang in the Abraham Lincoln Presidential Museum. Image: Nancy Atkinson


You went from the space program to the tugboat business. What was that like?

After I retired from NASA and the Navy, and I was looking for something to do. I went to the advanced management program at Harvard and learned enough about business to be dangerous. Some friends of ours had a tugboat company and he offered me a job leading the company. Since I was a Navy officer — which has something to do with ships and water – I thought I could handle that. I was in that about five years. Then I got into the telecommunications business, which was fortunate timing because the deregulation of AT&T was just around the corner. We sold digital systems, where AT&T had analog systems, and we could sell the systems instead of how it was done the past where customers leased equipment from the phone company.

As you sit in this museum and library, what are your thoughts about studying the past?

This library and museum is not just something to look back on the era of Lincoln, it is an education for all ages coming through here of how we can keep the country together in the future. At the various museums around the country, like at the Air and Space museum, we show what people have done in the past in spaceflight. Here, and there, we show how people are committed to do things. Lincoln was committed to preserve the country. This type of an institution gives young people the chance to learn about those who were committed to make our country strong, and it should give everyone hope about our future.

You didn’t write the book “Lost Moon” for over 20 years after the Apollo 13 mission. What took so long?

Lovell: When we first got back from Apollo 13, the three of us astronauts said, this was a pretty unusual flight, so we should write a book about this. So, we said, we’re going to get together and write something. Well, as it often happens, as time went on, we all had jobs to do and life got busy for all of us. Jack Swigert went into politics in Colorado, and then, of course, he passed away. Fred Haise went into the aerospace business with Grumman, and I went into the telephone business. But just after I retired I got a call from a young man (Jeffrey Kluger) who said he had never written a book before, but he was a science writer for the Discover Magazine.

To make a long story short, I liked the way he wrote and we got together and wrote the book about 22 years after Apollo 13. But you have to remember that Apollo 13 was a failure. I mean, the only experiment that was completed was really done by the mission control team when they maneuvered the third stage of our booster to hit the Moon so that the Apollo 12 seismometers could pick up the results of the hit to learn something about the lunar surface. So there were no other successful experiments. The only thing we were doing was trying to figure out how to get home.

So, for years after we got back, I was frustrated. I wanted to land on the Moon like the other crews had, but I didn’t. But as we started to write the book, I realized that in its initial mission, yes, the flight was a failure. But as we wrote and I found out more about how hard the mission control team worked to get us back, I realized it really was a triumph in the way people handled a crisis: good leadership at all levels at NASA, teamwork that was generated because of that leadership, the use of imagination and initiative to figure out how to get us home by using just what we had on board, the perseverance of people who kept on going when it looked like initially that we didn’t have a chance. Jules Bergman (ABC science reporter) only gave us a 10 per cent chance, and my wife never forgave him for that!

But this is why Apollo 13 went from being a failure to a triumph.

The movie is very accurate, by the way. Ron Howard followed the real story very well. All the incidents were true except for the argument between Haise and Swigert, but Ron Howard had to figure out a way to portray the tension we all felt, and decided to do it in that way.

Previous winners of the Lincoln Leadership Prize are archbishop Desmond Tutu and Supreme Court Justice Sandra Day O’Connor. For more information about the Lincoln Prize and the Presidential Museum and Library, see the ALPLM website.

Fleet of Solar Sail Spacecraft Envisioned for Future Data Gathering Missions

Artist concept of data clippers in space. Credit: Thales Alenia Space

[/caption]

Future missions to explore the outer planets could employ fleets of ‘data-clippers’, maneuverable spacecraft equipped with solar sails, to ship vast quantities of scientific data back to Earth. According to Joel Poncy of satellite developer Thales Alenia Space, the technology could be ready in time to support upcoming missions to the moons of Jupiter and Saturn.

“Space-rated flash memories will soon be able to store the huge quantities of data needed for the global mapping of planetary bodies in high resolution.” said Poncy. “But a full high-res map of, say, Europa or Titan, would take several decades to download from a traditional orbiter, even using very large antennae. Downloading data is the major design driver for interplanetary missions. We think that data clippers would be a very efficient way of overcoming this bottleneck.”

Poncy and his team have carried out a preliminary assessment for a data clipper mission. Their concept is for a clipper to fly close to a planetary orbiter, upload its data and fly by Earth, at which point terabytes of data could be downloaded to the ground station. A fleet of data clippers cruising around the Solar System could provide support for an entire suite of planetary missions.

“We have looked at the challenges of a data clipper mission and we think that it could be ready for a launch in the late 2020s. This means that the technology should be included now in the roadmap for future missions,” said Poncy.

Spurred by the success of the Japanese Space Agency’s current solar sail mission, IKAROS, Poncy’s team have assessed the communications systems and tracking devices that a data clipper would need, as well as the flyby conditions and pointing accuracy required for the massive data transfers. Recent advances in technology mean that spacecraft propelled by solar sails, which use radiation pressure from photons emitted by the Sun, or electric sails, which harness the momentum of the solar wind, can now be envisaged for mid-term missions.

“Using the Sun as a propulsion source has the considerable advantage of requiring no propellant on board. As long as the hardware doesn’t age too much and the spacecraft is maneuverable, the duration of the mission can be very long. The use of data clippers could lead to a valuable downsizing of exploration missions and lower ground operation costs – combined with a huge science return. The orbiting spacecraft would still download some samples of their data directly to Earth to enable real-time discoveries and interactive mission operations. But the bulk of the data is less urgent and is often processed by scientists much later. Data clippers could provide an economy delivery service from the outer Solar System, over and over again,” said Poncy.

Poncy will be presenting an assessment of data clippers at the European Planetary Science Congress in Rome on Monday September, 20, 2010.

Source: European Planetary Science Congress