New results published in the journal Icarus suggest that caves on Mars may provide future astronauts with more than just shelter. In many locations, even far from the poles, the caves may actually trap water ice.
Ice caves are made of rock, but they contain ice year-round. (Not to be confused with glacier caves, which are caves made of ice!) Ice caves can be found on the Earth even where surface temperatures are above freezing for months at a time. This happens because cold winter air sinks into the cave and is trapped, but during the summer, the circulation in the cave shuts off: it is full of dense cold air so the warm air outside can’t get in.
Now, in a study led by Kaj Williams of NASA Ames, scientists have used simulations of the global climate and assumptions about the thermal properties of the surface to figure out where on Mars similar cold-trapping might occur. Their results show that a significant portion of the martian surface has the right conditions for ice to accumulate in caves.
Even more tantalizing, the huge volcanic provinces of Tharsis and Elysium look to be particularly good at accumulating ice. This is important because caves formed by collapsing lava tubes have been seen on the flanks of these volcanoes. Lava tube caves on Earth tend to have limited air circulation, making them good candidates for ice accumulation.
Astronauts on the surface of Mars will likely need to take cover underground to avoid the harsh radiation environment of the surface. Natural caves such as lava tubes have been suggested as ideal ready-made shelters for astronauts, and they are only looking better. Not only could ice caves provide water as a resource, the ice could preserve valuable records of past climate cycles, and the caves may be important habitats for past or present martian life.
Williams and his team plan to continue refining their models, particularly focusing on the Tharsis and Elysium regions, using higher-resolution atmospheric models and more precise geologic data to pinpoint areas that are best for cave-ice formation.
We just received an exciting note from Dr. Jeff Goldstein, the Director for the National Center for Earth and Space Science Education. There is a unique and historic opportunity for students in grades 5-12 to fly an experiment on the final scheduled space shuttle mission, STS-134, through the Student Spaceflight Experiments Program (SSEP).
There is room for 45 different experiments to be flown for 10 days aboard Shuttle Endeavour, each designed by middle school and high school classes across the U.S., and with astronauts operating the experiments. Launch is tentatively scheduled for November 2010, but a launch slip to mid-January is expected, enabling this extra student spaceflight experiments opportunity.
But it’s time-critical! All the details of the experiments have to be submitted by the first part of August, 2010, and each team does have to secure their own funding.
So check out the SSEP website for details, and spread the word to all the teachers, students and school administrators you know!
This program does hinge on whether the flight will be delayed until January. The issue is the big new spectrometer that is going to the International Space Station, which will use a different type of magnet than originally planned. The Alpha Magnetic Spectrometer was supposed to fly in July, then was switched to the final scheduled shuttle flight and tentatively delayed to November to allow for the change in magnets. But now it appears it might slip to January, 2011.
But the delay is also providing this potential new opportunity. So, teachers, students — take advantage! And good luck!
Six men from Europe, Russia and China embarked on a 520-day mock mission to Mars, heading out to a crew module in a warehouse in Moscow and locking the hatches behind them today. The mission runs from June 2010 to November 2011, and like a real Mars mission, the crew will live and work like astronauts, eating special food and exercising the same way as crews aboard the International Space Station. Additionally their communications with their mission control and anyone else from the rest of the world will have a delay of up to 40 minutes.
A joint project between the Russian space agency and ESA, officials said the mood was serious, intense but very determined in the Mars500 facility at the Institute of Biomedical Problems in Moscow as the crew talked to the press and then walked into the modules.
Diego Urbina and Romain Charles from Europe, Sukhrob Kamolov, Alexey Sitev, Alexandr Smoleevskiy and Mikhail Sinelnikov from Russia and Wang Yue from China will have a mission that is as ‘real’ as possible. Their mission is to ‘fly to Mars’ in 250 days, divide in two groups, ‘land on and explore Mars’ for a month and ‘return to Earth’ in 230 days, in their special facility imitating an interplanetary spacecraft, lander and Martian terrain.
“It will be trying for all of us. We cannot see our family, we cannot see our friends, but I think it is all a glorious time in our lives,” said Chinese participant Wang Yue, 27, ahead of the experiment.
In addition to evaluating many new technologies, Mars500 will test of human endurance and psychological issues of being confined in a small space and being away from family and friends and a normal Earth-life.
The crew will be keeping online diaries and provide video updates to ESA’s Mars500 site.
These ARE the droids we’ve been looking for. The Japanese space agency, JAXA, has plans to build a base on the Moon by 2020. Not for humans, but for robots, and built by robots, too. A panel authorized by Japan’s prime minister has drawn up preliminary plans of how humanoid and rover robots will begin surveying the moon by 2015, and then begin construction of a base near the south pole of the moon. The robots and the base will run on solar power, with total costs about $2.2 billion USD, according to the panel chaired by Waseda University President Katsuhiko Shirai.
Some of the planned droids weigh about 300 kg (660 pounds) and move on tank-like treads. Reportedly, they will be able to operate within a 100 km (60 mile) radius of the base. They’ll be equipped with solar panels, seismographs to investigate the moon’s inner structure, high-def cameras, and arms to gather rock samples, which will be returned to Earth via a sample return rocket.
The exact location for the base will be chosen from high-resolution images returned by Japan’s Kaguya orbiter, which has provided stunning images of the Moon’s surface.
Previously, JAXA had set a goal of constructing a manned lunar base starting in about 2030, and apparently, the robotic base would be a precursor. That plan calls for astronauts to visit the Moon by around 2020 which is about the same timetable as the Indian Space Research Organization (ISRO) is hoping to have a manned mission to the Moon. The China National Space Administration (CNSA) has said they would like to have a manned lunar mission in 2030. NASA? Not sure yet. The Constellation program to return to the Moon has seemingly been axed, but it’s not going down without a fight from members of Congress and others. But surely, even if NASA decides an asteroid or Mars is their destination of choice, they would have to start by practicing on the Moon.
Let’s all work together on this and perhaps returning to the Moon will actually happen.
“The Orion capsule is the Congressionally approved program of record and we are moving forward with it”, says Larry Price, Lockheed’s Orion Deputy Program Manager in an interview with me. “Our work is continuing with the funding which is still approved until September 2010. Orion is a very functional vehicle. All subsystems will be state of the art.
“Orion is not Apollo on Steroids”, Price emphasized.
“We are building on what is known and it’s a very contemporary approach. The flight avionics are very similar to commercial airliners. We can take advantage of the latest advances in avionics and computing. Orion has been designed for long duration interplanetary functionality to operate beyond Low Earth Orbit (LEO) for 6 months or more to visit the Moon, Asteroids, Lagrange points and other targets of interest for scientific investigation”, Price explained.
“The Orion project status is we have just one more weld remaining on the crew cabin”, says Tim Knowles. He is the Orion GTA Vehicle manager for Lockheed Martin and discussed Orion development in an interview with me. “When all follow on work to prepare the GTA is done, the final Orion GTA crew cabin will look very much like a real Orion capsule,” Knowles said.
“The final close out weld will join the Forward Cone Assembly and Crew Tunnel to the barrel shaped Aft Assembly. This combined piece then comprises the habitable volume and forms the first structural framework for the first Orion Crew Cabin”.
“Inside the Aft Assembly is the backbone skeleton which provides structural stiffness to the cabin and also hardware mounting locations. The Aft Assembly is where the crew seats, storage lockers and other systems are installed onto compartments inside the backbone skeleton”.
“The welding process uses a technique called Friction Stir Welding (FSW)”, Knowles said. “It has produced acceptable results so far. It’s a learning process and not flawless, and improves each time we do it” added Knowles.
The welds for the final large segments ranged from about 300 to 450 inches in length. “These are the longest FSW welds ever attempted”, according to Larry Price.
“We use sound to evaluate the work and detect any flaws”, explained Knowles. “The testing method is called Phased Array Ultrasonic Testing (PAUT). It’s a Non-Destruction Evaluation (NDE) technique. Remember, the GTA is intended as a manufacturing pathfinder as well as a structural test article”.
“The actual welding times to combine the individual segments requires only about 45 minutes to an hour. Of course the real trick to getting a good weld is that it takes many many days of preparation work to get the parts and equipment and everything else set up properly,” explained Knowles.
“Most of the work on the parts needed to complete the GTA after completion of the welding is well along. They will be installed inside following a pressure test of the crew cabin that is scheduled for June. These include mass and volume simulators for items like the crew seats and consoles, lockers, waste management etc. On the outside we’ll add simulators for the parachutes, compressed gases, propellants and thrusters all around the shell we welded together”.
“Then we’ll add the simulated [cone shaped] thermal protection system (TPS) aeroshell around that, including a few real TPS tiles. We will also add a heat shield.”
“When we are done adding everything, the final Orion GTA will look very much like a real flight article of the Orion capsule”.
“The GTA will then be placed in a chamber and bombarded with acoustic energy for environmental correlation tests. These tests simulate the flight environment to collect data for the purpose of comparing the results to our predictive models, updating the models, and then refining the design of the crew cabin”.
“We are planning to ship the GTA to our Lockheed facility in Denver around the end of October. It will be integrated with a simulated Launch Abort System to form a launch abort vehicle (LAV) that will subjected to further vibro-acoustic tests next spring. Then the GTA crew module will be shipped to NASA Langley for water drop landing testing to simulate the impact. Those tests will run into 2012”.
“About 86 people are currently working on various aspects of the Orion GTA project at Michoud”, according to Lockheed spokesman Kevin Barre.
The GTA is a key pathfinder vehicle and the first full-sized, flight-like test article for Orion. It will be subjected to numerous stringent tests which are crucial learning exercises that will help validate the cabin design and will be used to incorporate changes to the tools and manufacturing processes that will eventually lead to a human rated production vehicle.
This Orion GTA capsule is an indispensible forerunner to the next generation Orion vehicle which NASA had planned for human flights to shot to the Moon and the International Space Station (ISS). It is not an unmanned “rescue capsule”, or lifeboat, as recently proposed by President Obama at his April 15 space policy speech at the Kennedy Space Center (KSC).
President Obama’s new announcement to resuscitate Orion as a “rescue capsule” was a significant refinement to his original plan of February 2010 to wholly terminate Orion and Project Constellation as part of his initial 2011 NASA Budget proposal which would radically alter the future path of NASA.
Bad weather postponed a scheduled multi-mission launch of an H-IIA rocket from Japan early Tuesday, which includes the first Japanese probe to Venus and an experimental solar sail. The next launch attempt for the “Akatsuki” Venus Climate Orbiter and the solar sail called IKAROS will be Thursday, May 20, at 21:58 UTC (May 20 at 5:58 EDT) – which is May 21 at 6:58 in Japan. Akatsuki is Japan’s first mission to Venus, and it will work closely with the ESA’s Venus Express, already at Venus. Also called Planet C, the box-shaped orbiter should arrive at Venus in December and observe the planet from an elliptical orbit, from a distance of between 300 and 80,000 kilometers (186 to 49,600 miles), looking for — among other things — signs of lightning and active volcanoes.
[/caption]
Another payload is the solar sail, or “space yacht” IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun). This 320kg, 1.8m-wide, disc-shaped spacecraft will deploy an ultra-thin, ultra-light, 14 meter sail that will propel the structure from the radiation pressure from sunlight hitting it.
“The purpose of IKAROS is to demonstrate the technology of the Solar Power Sail,” said Osamu Mori, project leader of IKAROS. “Simply put, the solar sail is a ‘space yacht.’ A yacht moves forward on water, pushed by wind captured in its sails. A solar sail is propelled by sunlight instead of wind, so it’s a dream spaceship – it doesn’t require an engine or fuel. Part of IKAROS’s sail is covered by a solar cell made of an ultra-thin film, which generates electricity from sunlight.”
So far, solar sails have only been tested, but never flown successfully. It is hoped IKAROS will be the world’s first solar-powered sail, and that the structure will sail towards Venus, following Akatsuki.
The experimental sail is thinner than a human hair, is also equipped with thin-film solar cells to generate electricity, creating what JAXA calls “a hybrid technology of electricity and pressure.”
To control the path of IKAROS, engineers will change the angle at which sunlight particles bounce off the sail.
If you are a member of The Planetary Society, your name will be heading to Venus on both Akatsuki and IKAROS. The Planetary Society, a long-time proponent of solar sail technology, and Japan’s space exploration center, JSPEC/JAXA, have an agreement to collaborate and cooperate on public outreach and on technical information and results from IKAROS, which will help TPS plan for its upcoming launch of its own solar sail vehicle, LightSail-1, which they hope to launch in early 2011.
The H-IIA will also carry four other small satellites, developed by Japanese universities and other institutions. They include:
The 2-pound Negai CubeSat, developed by Soka University of Japan. Negai will test an information processing system during a three-week mission.
The WASEDA-SAT2, developed by Waseda University. The 2.6-pound spacecraft will conduct technology experiments in orbit.
The 3.3-pound KSAT spacecraft developed by Kagoshima University will conduct Earth observation experiments.
The 46-pound UNITEC-1 satellite from the Japanese University Space Engineering Consortium will test computer technologies and broadcast radio waves from deep space for decoding by amateur radio operators.
The rocket will launch from Japan’s Tanegashima Space Center in southern Japan.
Our readers had questions about our series “13 Things That Saved Apollo 13,” and NASA engineer Jerry Woodfill has graciously answered them. Below is the final round of Q & A with Jerry; but if you missed them, here are part 1 and part 2. Again, our sincere thanks to Jerry Woodfill for not only answering all these questions — in great detail — but for being the impetus and inspiration of the entire series to help us all celebrate the 40th anniversary of Apollo 13.
Question from Dennis Cottle: I am wondering how much information was held back from one division to another in NASA regarding safety aspects of vehicles and for that matter the entire mission . In other words did the left hand have any idea what the right hand was doing in regards to safety?
Jerry Woodfill: One of the greatest achievements of Apollo was the management structure, i.e., how a program involving three main NASA Centers (Manned Spacecraft Center, Marshall Spaceflight Center, and Kennedy Space Center) with dozens of divisions among their civil servants and contractors could achieve a lunar landing. No, I didn’t experience any “holding back of safety information”, but I can vouch for the idea that the right hand DID KNOW what the left hand was doing.
I contend that this is the case because of my experience as the Caution and Warning Project Engineer for both the Command/Service Module and the Lunar Module. Despite Universe Today granting me the unspeakable privilege of explaining Apollo 13, at the time (1965-1972), I was a very-very low level engineer. Yet, when it came to how the management system regarded my opinion and input, I was treated with the same respect and consideration as the Apollo Program Manager. This was the brilliance of the program, intimately involving everyone’s contribution. Such a posture led to ferreting out safety issues. If someone was trying to hide something, another group would relish the opportunity to shine a laser light on the item.
Here are examples: I remember sitting at my desk talking by phone with a Grumman engineer about the status of the lander’s warning electronics. When I looked up, there was Apollo astronaut Jack Lousma standing before me. Jack had a question about one of the caution and warning alarms. On another occasion, the head of the entire Lunar Lander Project at the Manned Spacecraft Center, Owen Morris, called me directly asking how the warning system detected a “run-away” thruster. (Owen was at least five levels above my station at the Manned Spacecraft Center.) Not only do these examples speak to the openness of the Apollo teaming effort, they also reveal how intimately knowledgeable were all levels of workers, from Astronaut to Program Manager. The example of the Apollo 13 team’s fix of the CO2 filter problem, given in the duct tape account, likewise demonstrates the teamwork. Any of us might be consulted to assist. There was nothing hidden from one-another.
I always felt Grumman got a “bad rap” in the movie “Apollo 13” which was altogether undeserved. This regarded the scene about using the descent engine in a novel way for the rescue. Contrary to that scene, the Grumman guys were altogether thorough, cooperative, and excellent engineers…proactive to almost a fault. I’d have treated that scene differently from my experience with the Bethpage GAEC engineers.
Let me cite another example. After the Apollo One tragedy, I was asked to lead a NASA/Grumman team to review what changes need be made to the lander’s warning system. I’d travel to Long Island once a week to meet with the instrumentation group. Earlier, I’d had this thought about one of the Caution and Warning alarms, the Landing Radar Temperature alarm. The way the sensor functioned might cause it to ring a nuisance alarm. This might occur during Armstrong and Aldrin’s moon-walk, leaving the lander unoccupied. My concern was, if the thermal environmental near that sensor behaved “inappropriately”, the alarm would sound, aborting the EVA.
Rushing back to the LM, they’d discover a system no longer used after touchdown had sounded an alarm. This would have wasted, perhaps, an hour of their time. (Can you imagine what an hour of EVA time was worth on Apollo 11’s brief two and one-half hour walk?) I simply mentioned this to Jimmy Riorden, the Grumman manager. He set his guys to work, and they verified my concern. Furthermore, they suggested and implemented a fix, saving the program millions of dollars based on Armstrong and Aldrin’s hourly moonwalk cost. That’s the kind of cooperation that I experienced working with Grumman. This was the norm, not an exception.
Question from ND: To quote from the article, part 5: “While a fix had been planned for Apollo 14, time did not permit its implementation on Apollo 13’s Saturn V.”
But did it really need to be the hindsight of the Apollo 13 launch to know that this was a dangerous thing to do? Was delaying the Apollo 13 launch not an option?
Jerry Woodfill: I’m trying to be generous in giving opinions about those things which proved to be detrimental to Apollo. This is because I wasn’t involved in many of the situations I’ve been asked to discuss. So my answer should be classified as conjecture. In such cases, I’m trying to share examples from my experience where I made a decision which later proved to be the wrong one. The same mechanism which led to Apollo 13’s Oxygen Tank’s explosion probably speaks to your question. Nancy detailed all the series of WRONG THINGS, which, at the time, were considered to be the RIGHT THINGS which led to the explosion.
Yes, in looking back, for sure, the better thing, as you suggest, would be fix the problem and delay the launch. Yet, I’m sure those who made the decision to press forward believed they were justified in moving forward. I have saved most of my notes from day-to-day issues I dealt with on the lander’s warning system from 1966 forward. There are scores of the kinds of decisions I approved. These are like the decision to postpone the pogo fix until Apollo 14.
In fact, the configurations for my warning system differed for LM-1, LM-2, and LM-3 and subsequent landers. LM-5 landed on the Moon. This was the nature of Apollo engineering. I can still review each decision I made with regard to delaying an improvement. Sometimes it was based on meeting a schedule. In other instances, an analysis revealed the problem simply had no impact on the type of mission the LM would have.
Trying to reconstruct my justifications for a system I knew intimately is extremely difficult, even with my notes. So I really can’t confidently address your question other than to say it was probably based on the same kinds of decisions I made, whether good or bad. However, I do recall researching the second stage POGO problem months ago which led to it being included among the “13 Things…” Below is some of what I found:
Mitigating Pogo on Liquid-Fueled Rockets, Aerospace Corporation Crosslink magazine, Winter 2004 edition : Later missions included anti-pogo modifications, which had been under development since before Apollo 13, that solved the problem. The modifications were the addition of a helium gas reservoir in the center engine liquid oxygen line to dampen pressure oscillations in the line, plus an automatic cutoff for the center engine in case this failed, and simplified propellant valves on all five second-stage engines.
Perhaps, the following sentence in the above summary is the explanation: “…but on Apollo 13 (POGO) had been amplified by an unexpected interaction with the cavitation in the turbo-pumps.”
Question from Cydonia: I always thought, that idea to use SPS and turn 13 around right after explosion was fiction of Apollo 13 movie. Somebody could explain to me, how could SPS be used to do that? They would need to change delta v for some 20 km/s! Doesn’t they?They used whole Saturn V to get half of that. What’s the math to make such maneuver possible?
Jerry Woodfill: Cydonia, recently an excellent paper (referenced in Part 6 of “13 things…) touched briefly on your question. Here is the link to that paper.
Here is information from the paper referring to your question:
B. Direct Return to Earth.
Soon after the incident Mission Control personnel examined direct return to Earth aborts that did not include a lunar fly-by. These burns had to be performed with the SM SPS before ~61 hours GET, when the spacecraft entered the lunar sphere of gravitational influence. Landings in both the Pacific and Atlantic could be made. A direct return to Earth (no lunar fly-by) with a landing at 118 hours GET could only be accomplished by jettisoning the LM and performing a 6,079 foot/second SM SPS burn (Table 2). Abort maneuver data for this burn was already on-board the spacecraft as a part of normal mission procedures. However, this option was unacceptable due to possible damage to the SPS and the necessity of using LM systems and consumables (power, water, oxygen, etc.) for crew survival.
Question from G2309: I’m really enjoying these posts I’ve always found the story fascinating. But what I don’t understand why they didn’t just replace the damaged tank rather than repair it. I understand the tank must be expensive but not compared to the cost of a failed space flight. ‘they couldn’t detect what damage might have occurred on the inside so why take the risk?
Jerry Woodfill: Since Tank 2, despite being “jarred,” exhibited no significant problems in retests, (see the four items below) the consensus was no damage was done. Below are the findings of the NASA Apollo 13 Investigation. I’ve included them as the justification given to your question about “why take the risk?” Indeed, on hindsight, the answer would be in the negative, i.e., don’t take the risk.
1.) It was decided that if the tank could be filled, the leak in the fill line would not be a problem in flight, since it was felt that even a loose tube resulting in an electrical short between the capacitance plates of the quantity gage would result in an energy level too low to cause any other damage.
2.) Replacement of the oxygen shelf in the CM would have been difficult and would have taken at least 45 hours. In addition, shelf replacement would have had the potential of damaging or degrading other elements of the SM in the course of replacement activity. Therefore, the decision was made to test the ability to fill oxygen tank no. 2 on March 30, 1970, twelve days prior to the scheduled Saturday, April 11, launch, so as to be in a position to decide on shelf replacement well before the launch date. Accordingly, flow tests with GOX were run on oxygen tank no. 2 and on oxygen tank no. 1 for comparison. No problems were encountered, and the flow rates in the two tanks were similar. In addition, Beech was asked to test the electrical energy level reached in the event ofa short circuit between plates of the quantity probe capacitance gage. This test showed that very low energy levels would result. On the filling test, oxygen tanks no. 1 and no. 2 were filled with LOX to about 20 percent of capacity on March 30 with no difficulty. Tank no. 1 emptied in the normal manner, but emptying oxygen tank no. 2 again required pressure cycling with the heaters turned on 4-22
3.) As the launch date approached, the oxygen tank no. 2 detanking problem was considered by the Apollo organization. At this point, the “shelf drop” incident on October 21, 1968, at NR was not considered and it was felt that the apparently normal de-tanking which had occurred in 1967 at Beech was not pertinent because it was believed that a different procedure was used by Beech. In fact, however, the last portion of the procedure was quite similar, although a slightly lower GOX pressure was utilized.
4.) Throughout these considerations, which involved technical and management personnel of KSC, MSC, NR, Beech, and NASA Headquarters, emphasis was directed toward the possibility and consequences of a loose fill tube; very little attention was paid to the extended operation of heaters and fans except to note that they apparently operated during and after the detanking sequences. Many of the principals in the discussions were not aware of the extended heater operations. Those that did know the details of the procedure did not consider the possibility of damage due to excessive heat within the tank, and therefore did not advise management officials of any possible consequences of the unusually long heater operations.
Question from Spoodle 58: In your opinion, as you have built the equipment to get man into space, do you think we as a species are being too cautious in our approach to exploring space? Or are we afraid of incidents like Apollo 13 happening again or worse like the shuttle Columbia, or do you think we should just get out there like the explorers of Earth in middle ages, take on space, take on the risk of being in space not just leaving robots and probes doing the work but to get some real people out there?
Jerry Woodfill: I like your question because it is one all of us at NASA continually ask ourselves. This results in a culture which does attempt to learn from past mistakes. It’s like the idea of sins of “omission an commission.” What did I fail to see about Apollo One, Columbia, or Challenger that could have avoided the tragedy? This is a question each of us who worked in any capacity on these vehicles and missions ask ourselves. I know I did.
When we speak of NASA, we are speaking collectively, not of the individuals that comprise the agency. But the thousands of individual employees, (I’m one of them.) are responsible for what you have asked. It’s always easy to hide behind the collective name for us NASA, but actually, it comes down to a single employee or small group who either did something exceptionally beneficial, or, woefully, hurtful. From time-to-time I’ve been in both groups. Over 45 years of NASA employment, I could cite many examples in each category. But most have been satisfactorily reported by the press such that changes have been made for the better.
An example would be the Columbia tragedy. Now, each tile and thermal surface is carefully examined post-launch to insure integrity of the reentry system prior to the orbiter’s return. For Apollo, an extra Oxygen Tank was added independent from the pair which failed. Additionally, a battery with 400 amp hours capacity was added as a backup should the fuel cell system failed. These changes were directly a result of reviewing the mishap so that fixes would be implemented to prevent a recurrence.
On September 12, 1962, I, a Rice junior Electrical Engineering student, listened in Rice Stadium to President John Kennedy. It led to my NASA career. Listen especially carefully about why, as you put it, we should taking on space and taking on the risks:
(This is a video of Jerry Woodfill reciting President Kennedy’s speech at Rice University)
Also, there were several people who had questions about why the damaged Service Module wasn’t jettisoned immediately following the accident (or as soon as it was ascertained that the tank had ruptured).
Jerry Woodfill: I want to congratulate the readers of “13 Things…” Before Nancy suggested I reply to the questions as well as added queries, many of you had already given the right analysis. This was among them: The answer was, “not wanting to expose the heat shield to the severe hot and cold space environment for many days.”
Like the use of the lander’s descent engine, in a new way, the heat shield had not experienced such an extended thermal environment. The thought was, “Why add the risk?” Of course, some would argue that trying to steer the assemblage was extremely difficult with the attached service module. This placed the center of gravity in a cumbersome location for Jim Lovell’s steering via the lander’s thrusters. In fact, at first, Jim had difficulty avoiding what is known as “gimbal-lock”, a condition like a bicycle rider losing balance and falling over. But Jim triumphed over the steering problem faster than most of us can adapt to a new video game joy-stick.
NASA successfully tested the pad abort system developed for the Orion crew vehicle on Thursday morning at the White Sands Missile Range near Las Cruces, New Mexico. The 97-second flight test was the first fully integrated test of the Launch Abort System developed for Orion. “It was a big day for our exploration team,” said Doug Cooke, NASA’s Associate Administrator for Exploration following the test. “It looked flawless from my point of view. This is the first abort system the US has developed since Apollo, but it uses much more advanced technologies. It was a tremendous effort to get to this point, designing such a complex system, and we’ve been working on this for about 4 years. I appreciate the amount of dedication and focus from the team. It was beautiful, a tremendous team effort.” Continue reading “Successful Test for Orion Launch Abort System”
Now that our series on “13 Things That Saved Apollo 13” is complete, NASA engineer Jerry Woodfill has graciously agreed to answer questions from our readers. We have a lot of questions, so we will post some of Jerry’s answers today and more over the next few days.
Question from Daniel Roy: Did we ever find out why Apollo 13’s trajectory was too shallow on the way back in spite of TCMs? I have trouble believing that the low impulse/ slow venting/ random pointing from ruptured tanks could explain the delta V.
Jerry Woodfill: The shallowing trajectory resulted from the lunar lander’s cooling system discharging vapor during the coast back to Earth. It was not a result of residual release of remnant gases from service module damage. No Apollo mission returned to Earth with a LM attached except for Apollo 13. For that reason the slight but, nevertheless, noticed contribution to the shallowing entry angle had to be dealt with by the Apollo 13 retro. To this day, I find it remarkable that, though the retro did not know the source of the shallowing, he was certain it would cease after the last corrective compensating burn. And, of course it did, after the LEM was jettisoned.
Question from wjwbudro about how much residual power was provided by the fuel cells after the explosion
Jerry Woodfill: Your question about how much residual power the fuel cells contributed prior to employing the emergency (or some call them reenty batteries) launched me into some research about the chemistry of fuel cell operation. I’ve always shared that the reaction of hydrogen and oxygen produce electricity with two by-products extremely useful to human space exploration, breathable oxygen and water. Both oxygen and hydrogen must be present for the reaction to continue.
For Apollo 13, the sequence of the loss of the ability of the fuel cells to produce power relates to the loss of O2 and H2 entering them. Sy Liebergot has a wonderful CDROM where he deals with “how the data read.” Sy had to contend with analyzing what was going on (IN REAL TIME) with regard to the timing of loss of the O2 cryo-tanks, the fuel cells, etc. Google Sy on the Internet, and you’ll find a wealth of information discussing the issue. My admiration of how Sy dealt with such an overwhelming failure so masterfully continues 40 years after the event. But the bottom line is…no O2 into the cells no water, oxygen, or electrical power out. That was the reason for employing the emergency batteries. The fuel cells weren’t much help after because the rupture of the plumbing caused O2 tank One’s O2 to vent into space after O2 tank 2 exploded (I always say “exploded” though some disagree contending it to be a rapid heating of cryogenic O2 being vented into space, sort of like heating air in an empty sealed container until the vessel ruptures.)
Question from science teacher Christopher Becke from Warhill High School: What were the specs of the onboard computers, both in the LM and the Command Module? What was the clock speed and how much (and what type of) memory did they have? I’m trying to impress upon my students that their graphing calculators are more powerful than the computers that brought astronauts to the moon.
Jerry Woodfill: About a year ago, I felt like comparing Apollo 13’s computer to today’s state of the art. Besides the computers (CSM and LM), the only integrated circuit contained among the millions of spacecraft parts was an octal counter in my lunar lander’s caution and warning system’s brain known as the Caution and Warning Electronic Assembly or C&WEA for short. There was an excellent article I discovered at this link from the Download Squad.
These documents are a national treasure for recreating the technical history of Apollo. I authored the warning system portion of the Apollo Experience Report on the lunar lander’s Caution and Warning System.
I recall that the strength of the Apollo computer, though it was a “lightweight” in RAM and Hard-Memory, was its “multi-tasking” ability. (Better than an iPhone, since Apple chose not to include that capability presently in mine.) However, when my warning system began to ring “Program Alarms,” (warnings, five of them to be exact) this multitasking capability proved altogether helpful in making Armstrong the first man on the Moon.
One of the Apollo Computer’s “subtasks” was akin to a kind of low level housekeeping info thing which generated an alarm. But the priority executive routine of providing landing control continued undisturbed. Ignoring the program alarms by Flight Controllers Steve Bales and John Garman was a huge reason Neil Armstrong was first on the Moon, that President Kennedy’s prediction and challenge was fulfilled in that decade, and, most importantly, for me…that I didn’t go down in engineering/aerospace infamy whose warning system sounded a “false-alarm” making Pete Conrad and Allan Bean the first men on the Moon on Apollo 12. Thanks Steve and John!
Question from Greg: Should NASA be spending more time reviewing the Apollo 13 mission and other mishaps in order to better anticipate and respond more effectively to new and unexpected mishaps in future missions?
Jerry Woodfill: The neat thing about every one of these questions is they launch potential investigations which can only help future space travelers. Whether it was Apollo One, Apollo 13, Challenger or Columbia, each tragedy resulted in fixing a later situation which might have been fatal if corrective steps had not been taken to learn from failure. This question is one that I’ve addressed extensively in unpublished books I’ve authored.
Now, regarding failure to fix potentially fatal items; yes, over the course of my 45 year career, it is easy to reflect and study failures after the fact and cite instances where people, groups, circumstances resulted in disaster and tragedy. I’m one of those guilty people. I should have done a better job with regard to the Apollo One warning system. Collectively, and, perhaps, individually, we share the burden of not having done a better job for Gus, Roger, and Ed.
Specifically, I remember the final review at North American of Spacecraft 012 where Ed, Gus, and Roger sat at the front of the conference room. They were included with a NASA review panel determining how to disposition “open items” or “squawks” needing fixing before or after shipment of their Apollo One spacecraft to the Cape.
My warning system was a problem for me because it became sort of the “wolf crying boy” who is always the one to aggravate those who want to ignore a root problem blaming it on the messenger. During the initial factory tests of this, the first of the litter of subsequent Apollo Command modules, there were dozens of times the alarm system sounded Master Alarms.
In summary, virtually none were the fault of the alarm system. But, nevertheless, it was blamed until I could find the actual culprit. Some said, “The electronics are simply too sensitive ringing alarms when all that has happened is a momentary switch actuation causing a brief electrical transient which triggers that Master Alarm.”
After dealing with all the culprits, I had only one unexplained alarm remaining. This was the one I was called to present to the board which included Ed, Gus and Roger. “Next item, O2 FLOW unexplained Caution and Warning Alarm.” It was July of 1966. My wife Betty and I had been married less than a month, and here I was dealing with a life-threatening situation.
To digress here, I think the movie APOLLO 13 would have been better served with this event as the opening scene because all the players in the Apollo program were involved. I remember Apollo 7 crewman Walt Cunningham, one of the Apollo One back-up astronauts along with Wally Schirra and Donn Eisele, rooting around in the Spacecraft 012 mockup. Walt emerged with some kind of handle he had accidentally severed from the ship’s interior. Amazed and disgusted, Walt held it up for all to see. Perhaps, that was a precursor for what was to follow?
My explanation was that the O2 Hi alarm was another of those momentary transient things. I shared that nonthreatening events like a routine turning on of the cyclic accumulator demanded added O2 flow into the cabin actuating the alarm. In fact, in route to the Moon, even a urine-dump would cause the O2 flow to increase ringing the alarm. (Later, that was one of my jobs, to indicate in Apollo 11’s check-list that an O2 Hi master alarm could be expected for that reason.) If it was a problem, it would surface once more during Cape testing and be dealt with then. My assessment was accepted by the board.
On January 27th, 1967, Ed, Gus, and Roger were hours into what was called a “plugs-out” test simulating a voyage to the Moon. Suddenly came the call, “We’ve got a fire in here!” In seconds three men perished. When Deke Slayton arrived later and surveyed the interior of Spacecraft 012, he looked up at the alarm panel. The O2 flow hi light was still on. Likely, the ECS (Environmental Control System) should have called for the high flow of Oxygen feeding the fire, but I will never know if it came on before the fire to warn the astronauts to take action. So that is why I cannot “white-wash” this question because it is simply these kinds of events that result in the failures we have experienced over the course of human space flight. Whenever one happens, it is because of people like me who should have done a better job.
Question from Dirk Alan: My question is about the free return trajectory. After rounding the moon, could a spacecraft head back to earth – travel round the earth and head back to the moon? Could it round the moon and head back to earth again and again ? I’m asking if a space station would be feasible in a circumlunar orbit re-supplied now and again with fuel for course corrections to shuttle between the earth and moon?
Jerry Woodfill: The short answer is yes to all of the above. For Apollo 13, the free return trajectory has been much discussed. I’ve often reflected about it, as well. In fact, the first consideration in the rescue was to return to the free return trajectory after the explosion. (BTW, I think I erred in my No. 12 submittal of the “13 Things..” in suggesting that a lander-less-Apollo 13 would have resulted in cremating the crew days later if the explosion had occurred in the circumstance at 55 hours 54 minutes 54 seconds. They were not in the free return mode at that time having departed from it by an earlier burn.)
In actuality, the crew, shortly after the explosion, used the lander’s descent engine to return to free-return. Recently, in conjunction with Apollo 13’s 40th anniversary, added study has been done. The investigation sought to determine how close Apollo 13 would have come to Earth based on its free-return orbit. Here is the link to a YouTube video summarizing the effort. It’s really neat!
Hey, I just listened once more and watched this again. Apparently, I was right predicting the crew without the lander would have been cremated after all, five weeks later in May of 1970. Don’t ascribe this to any talent I have. It’s just lucky. But watching the video will do much to answer every question you have above about space stations, etc. You might Google other terms like Hohmann Transfer Orbit, Aldrin Cycler Orbit, Libration Points, and Sling-Shot orbits. These are strategies in orbital mechanics considered when planning planetary exploration, manned and unmanned.
Questions from Gadi Eidelheit, Quasy and Tom Nicolaides about the Hatch That Would Not Close
Jerry Woodfill: I’ve shared the account of “the hatch that would not close” virtually every time I’ve shared the Apollo 13 story. ( This is approaching a 1000 talks. Do the math. Simply telling the story once a month for nearly 40 years adds up to nearly 500 times.) One man believed the inability to make the hatch close resulted from differential pressure between the vehicles. I tend to discount that because the hatch had been open for some time stabilizing the interior atmospheric pressure throughout the assemblage.
Others who have considered the problem, think that Jack Swigert and Jim Lovell’s belief that a meteor had punctured the LM caused Jack and Jim’s hasty efforts to be flawed and inexact. The misalignment in the hurried closing was responsible. This was addressed in one of the crew debriefs I reviewed several years ago.
Now, I just had the thought, “The Apollo 13 capsule is available at the Kansas Cosmosphere.” To my knowledge, no one since the rescue has actually tried to reproduce the hatch closing problem. But, again, I simply don’t know if that has been the case. (As we press on, I’m going to be honest about what I know and don’t know. This is one of those things I really can’t answer satisfactorily.)
From Hans-Peter Dollhopf: Question about Why an Apollo 13 Movie and not an Apollo 11 Movie:
Jerry Woodfill: Another question I wanted to address among those left at the close of each of the “13 Things…” articles concerns why a movie was made about Apollo 13 and not about Apollo 11. My thought is because of the circumstance of how the movie came into production. I have a close friend named Jerry Bostick. Jerry was the lead FIDO for Apollo 13. We knew one another through the local Methodist Church, too. Jerry’s son Mike was in one of the Sunday school class sessions I taught.
Well, Mike went on to work for Ron Howard as a producer for Universal Studios. Being familiar with the Apollo 13 rescue because his dad, Jerry Bostick, had played a key role, Mike suggested to Ron Howard that Universal buy the rights to Jim Lovell’s book LOST MOON, for a movie. Incidentally, Jerry Bostick is the source of the quote, “Failure is not an option.”
Google Jerry Bostick’s name, and you’ll be able to read the story. Now had Neil Armstrong’s child worked for Ron Howard, and, if Neil had written a book focused on Apollo 11, it might have competed for an academy award like Apollo 13. Incidentally, there are moments in Apollo 11’s mission just as perilous and potentially fatal as the Apollo 11 mission. Perhaps, Nancy will let me address them in another Universe Today series! I can count a half dozen so it won’t be “11 Things That Saved Apollo 11.”
Question: Didn’t the Soviets Plan also use LOR?
Jerry Woodfill: About the Soviet Direct Ascent approach. Prior to the dismantling of the “iron curtain” and the cooling of the “Cold War”, information about Soviet Manned Space endeavors was sketchy. I found, in 1977, that a Soviet rocket scientist had proposed a lunar orbit rendezvous technique in the early days of rocketry, even before Sputnik. Unfortunately, or fortunately, with regard to America’s efforts, his approach was not accepted initially. Earliest Soviet approaches, like America’s, tended toward the Direct Ascent scheme. Probably the same debate ongoing with American lunar planners existed in the Soviet Union.
The simplicity of a single vehicle based on a NOVA class booster led at the onset. Ultimately, perhaps, as Soviets studied America’s choice of LOR, and its LEM offspring, an approach similar to America’s was pursued. Nevertheless, the ultimate Soviet booster N-1 was much more powerful than the Saturn V. (10,000,000 pounds of first stage thrust versus approximately, 7,500,000.)
I was altogether astounded to discover the evolution of the Soviet approach when sketches, and even videos, were released with the collapse of the Soviet Union and its posture of manned space secrecy. But, I still contend, that the early focused efforts by NASA championed by Dr. Houbolt on the LOR lunar architecture won out over, I believe, tardy acceptance by the same in the Soviet Union. One of the finest compliments one receives is the adoption of a competitor’s approach. Simply comparing BURAN to the Space Shuttle tends to make this case as well.
Check back tomorrow for more answers from NASA engineer Jerry Woodfill.
The phrase “last but not least” was likely never more appropriate. Though this is the last article of our “13 Things That Saved Apollo 13” series, it might be the most important. “Each time I’ve heard Jim Lovell or Fred Haise speak of the rescue,” said NASA engineer Jerry Woodfill, “they have always expressed their gratitude to the folks on the ground who contributed to saving their lives.”
And it wasn’t just the astronauts who were grateful. As a testament to the appreciation the rest of the country felt, the Mission Operations Team for Apollo 13 — those who worked in the Mission Operation Control Room (MOCR – more commonly called Mission Control) and the Mission Evaluation Room (MER) — were awarded a Presidential Medal of Freedom.
“We fulfilled the latter part of President Kennedy’s mandate,” said Woodfill, “by returning them safely to Earth.”
In previous articles in this series, we’ve highlighted just a few people who made significant – and some unsung – contributions to the Apollo 13 rescue. But likely every person who was part of the mission operations team made a contribution.
The words of President Richard Nixon as he presented the medal on April 18, 1970, perhaps say it best:
“We often speak of scientific ‘miracles’ – forgetting that these are not miraculous happenings at all, but rather the product of hard work, long hours and disciplined intelligence.
The men and Women of the Apollo XIII mission operations team performed such a miracle, transforming potential tragedy into one of the most dramatic rescues of all time. Years of intense preparation made this rescue possible. The skill coordination and performance under pressure of the mission operations team made it happen. Three brave astronauts are alive and on Earth because of their dedication and because at the critical moments the people of that team were wise enough and self-possessed enough to make the right decisions. Their extraordinary feat is a tribute to man’s ingenuity, to his resourcefulness and to his courage.”
But, says Woodfill, it wasn’t just those whose names are listed on the initial award.
“There were a thousand more who never were named though their contribution was huge. I could write another hundred accounts of specific acts which, had they not been done, could have resulted in disaster. There was an unseen “cloud of helpers” whom I now know helped just as much as I did though they were never recognized. These folks weren’t even NASA employees or affiliated with the supporting contractors, Grumman (GAEC) or North American Aviation (NAA). Universe Today could go on for months, on a daily basis if I could add all these accounts. Studying something for 40 years brings forth this kind of thing.”
But since Apollo 13 happened 40 years ago, many of those involved are no longer alive. Woodfill said astronaut Jack Swigert is an example. A 40th anniversary celebration of the Apollo 13 mission at Johnson Space Center in April included a panel discussion with Jim Lovell, Fred Haise, Gene Kranz, Glenn Lunney, John Aaron, and was moderated by Jeffrey Kluger, co-author with Lovell of the book Lost Moon.
“During that two hour exchange, I added a half dozen more insights of unique things that saved Apollo 13,” said Woodfill. “But when the Q&A launched, I all but ran to the microphone to ask the first question: ‘Jim and Fred, could you comment on Jack Swigert’s contribution?’ Their remarks were gracious and appreciative, remembering their friend and crewmate. Neither they nor the country has forgotten Jack. He is the only astronaut to be honored by a statue in Congress, as he became an elected representative in Congress from the State of Colorado. Sadly, cancer took Jack’s life before he could serve. But I think if Jack could speak to us about his experience on Apollo 13, he might select the Mission Operations Team as well. In a sense, he represents all those no longer with us. They helped make it possible for Jim and Fred to have blessed us for the past 40 years with the altogether inspirational story of the rescue of Apollo 13.”
So, while we have only scratched the surface among the many stories of Apollo 13’s rescue, surely there are thousands more tales of people being in the right place at the right time, decisions made years earlier that led to working at NASA, and chance meetings or discussions that opened up opportunities or jogged ideas for the rescue.
Jerry Woodfill is an example of such a story. He was attending Rice University on a basketball scholarship, a dream that inexplicably came true.
“However, my career as a college basketball player was as dismal as America’s early endeavors in space,” Woodfill admitted. “Sadly, I hold the record of the lowest shooting percentage in Rice University history…one out of eighteen shots! And the one shot I made at Baylor University with seconds left in the first half was a desperate 35 foot pass to our center under the basket. It sailed too high and went through the hoop. My only basket was actually a bad pass! In truth, I was zero for eighteen.”
He wasn’t doing very well in his classes, either. But then President John Kennedy came to Rice University to give a speech, a speech which helped launch the US to the Moon:
“But why, some say, the moon? Why choose this as our goal? And they may well ask why climb the highest mountain? Why, 35 years ago, fly the Atlantic? Why does Rice play Texas? We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are unwilling to postpone, and one which we intend to win, and the others, too.”
— John F. Kennedy, in his speech at Rice University, September 12, 1962
Inspired by Kennedy’s speech, Woodfill turned in his basketball shoes and focused on his studies of electrical engineering, hoping to become part of the space program to send people to the Moon – and return them safely to the Earth.
Yes, Woodfill become one of the half million Americans teaming up together to put the first men on the Moon.
And the rest is history.
Our extreme thanks to Jerry Woodfill for sharing his story, insights, and expertise as well as his warmth, humor and passion for NASA’s mission. “Godspeed to all you Apollo 13 rescuers, past and present, known and unknown!”