Curiosity Watches a Dust Devil Go Past

Curiosity rover raises robotic arm high while scouting the Bagnold Dune Field and observing dust devils inside Gale Crater on Mars on Sol 1625, Mar. 2, 2017, in this navcam camera mosaic stitched from raw images and colorized. Note: Wheel tracks at right, distant crater rim in background. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Curiosity rover raises robotic arm high while scouting the Bagnold Dune Field and observing dust devils inside Gale Crater on Mars on Sol 1625, Mar. 2, 2017, in this navcam camera mosaic stitched from raw images and colorized. Note: Wheel tracks at right, distant crater rim in background. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Tis a season of incredible wind driven activity on Mars like few before witnessed by our human emissaries ! Its summer on the Red Planet and the talented scientists directing NASA’s Curiosity rover have targeted the robots cameras so proficiently that they have efficiently spotted a multitude of ‘Dust Devils’ racing across across the dunes fields of Gale Crater– see below.

The ‘Dust Devils’ are actually mini tornadoes like those seen on Earth.

But in this case they are dancing delightfully in the Bagnold Dune fields on Mars, as Curiosity surpassed 1625 Sols, or Martian days of exciting exploration and spectacular science and discovery.

This sequence of images shows a dust-carrying whirlwind, called a dust devil, on lower Mount Sharp inside Gale Crater, as viewed by NASA’s Curiosity Mars Rover during the summer afternoon of Sol 1613 (Feb. 18, 2017). The navcam camera images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. Contrast has been modified to make frame-to-frame changes easier to see. A black frame provides a marker between repeats of the sequence. Credit: NASA/JPL-Caltech/TAMU

Furthermore they whip up the dust more easily in the lower gravity field on Mars compared to Earth. Mars gravity is about one third of Earth’s.

Right now it’s summer inside the rovers southern hemisphere landing site at Gale Crater. And summer is the windiest time of the Martian year.

“Dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere,” as described by researchers.

So now is the best time to observe and photograph the dusty whirlwinds in action as they flitter amazingly across the craters surface carrying dust in their wake.

This sequence of images shows a dust-carrying whirlwind, called a dust devil, scooting across ground inside Gale Crater, as observed on the local summer afternoon of NASA’s Curiosity Mars Rover’s 1,597th Martian day, or sol (Feb. 1, 2017). Set within a broader southward view from the rover’s Navigation Camera, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated in this animation. Credits: NASA/JPL-Caltech/TAMU

Therefore researchers are advantageously able to utilize Curiosity in a new research campaign that “focuses on modern wind activity in Gale” on the lower slope of Mount Sharp — a layered mountain inside the crater.

NASA’s Curiosity rover explores sand dunes inside Gale Crater with Mount Sharp in view on Mars on Sol 1611, Feb. 16, 2017, in this navcam camera mosaic stitched from raw images and colorized. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Indeed, this past month Curiosity began her second sand dune campaign focusing on investigating active dunes on the mountain’s northwestern flank that are ribbon-shaped linear dunes.

“In these linear dunes, the sand is transported along the ribbon pathway, while the ribbon can oscillate back and forth, side to side,” said Nathan Bridges, a Curiosity science team member at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, in a statement.

The left side of this 360-degree panorama from NASA’s Curiosity Mars rover shows the long rows of ripples on a linear shaped dune in the Bagnold Dune Field on the northwestern flank of Mount Sharp. The rover’s Navigation Camera recorded the component images of this mosaic on Feb. 5, 2017. Credits: NASA/JPL-Caltech

These new dunes are different from those investigated during the first dune campaign back in late 2015 and early 2016 that examined crescent-shaped dunes, including Namib Dune in our mosaic below.

The initial dune campaign actually involved the first ever up-close study of active sand dunes anywhere other than Earth, as I reported at the time.

Curiosity explores Red Planet paradise at Namib Dune during Christmas 2015 – backdropped by Mount Sharp. Curiosity took first ever self-portrait with Mastcam color camera after arriving at the lee face of Namib Dune. This photo mosaic shows a portion of the full self portrait and is stitched from Mastcam color camera raw images taken on Sol 1197, Dec. 19, 2015. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

By snapping a series of targeted images pointed in just the right direction using the rovers mast mounted navigation cameras, or navcams, the researchers have composed a series of ‘Dust Devil’ movies – gathered together here for your enjoyment.

“We’re keeping Curiosity busy in an area with lots of sand at a season when there’s plenty of wind blowing it around,” said Curiosity Project Scientist Ashwin Vasavada of NASA’s Jet Propulsion Laboratory, Pasadena, California.

“One aspect we want to learn more about is the wind’s effect on sorting sand grains with different composition. That helps us interpret modern dunes as well as ancient sandstones.”

The movies amply demonstrate that Mars is indeed an active world and winds are by far the dominant force shaping and eroding the Red Planets alien terrain – despite the thin atmosphere less than 1 percent of Earth’s.

Indeed scientists believe that wind erosion over billions of years of time is what caused the formation of Mount Sharp at the center of Gale Crater by removing vast amounts of dust and sedimentary material — about 15,000 cubic miles (64,000 cubic kilometers) — as Mars evolved from a wet world to the dry, desiccated planet we see today.

Gale crater was originally created over 3.6 billion years ago when a gigantic asteroid or comet smashed into Mars. The devastating impact “excavated a basin nearly 100 miles (160 kilometers) wide. Sediments including rocks, sand and silt later filled the basin, some delivered by rivers that flowed in from higher ground surrounding Gale.”

Winds gradually carved away so much sediment and dirt that we are left with the magnificent mountain in view today.

The whirlwinds called “dust devils” have been recorded moving across terrain in the crater, in sequences of afternoon images taken several seconds apart.

The contrast has been enhanced to better show the dust devils in action.

Watch this short NASA video showing Martian Dust Devils seen by Curiosity:

Video Caption: Dust Devils On Mars Seen by NASA’s Curiosity Rover. On recent summer afternoons on Mars, navigation cameras aboard NASA’s Curiosity Mars rover observed several whirlwinds carrying Martian dust across Gale Crater. Dust devils result from sunshine warming the ground, prompting convective rising of air. All the dust devils were seen in a southward direction from the rover. Timing is accelerated and contrast has been modified to make frame-to-frame changes easier to see. Credit: NASA/JPL

The team is also using the probes downward-looking Mars Descent Imager (MARDI) camera for a straight down high resolution up-close view looking beneath the rover. The purpose is to check for daily movement of the dunes she is sitting on to see “how far the wind moves grains of sand in a single day’s time.”

This pair of images shows effects of one Martian day of wind blowing sand underneath NASA’s Curiosity Mars rover on a non-driving day for the rover. Each image was taken just after sundown by the rover’s downward-looking Mars Descent Imager (MARDI). The area of ground shown in the images spans about 3 feet (about 1 meter) left-to-right. The images were taken on Jan. 23, 2017 (Sol 1587) and Jan. 24, 2017 (Sol 1588). The day-apart images by MARDI were taken as a part of investigation of wind’s effects during Martian summer, the windiest time of year in Gale Crater. Credit: NASA/JPL-Caltech/MSSS

These dune investigations have to be done now, because the six wheeled robot will soon ascend Mount Sharp, the humongous layered mountain at the center of Gale Crater.

Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.

“Before Curiosity heads farther up Mount Sharp, the mission will assess movement of sand particles at the linear dunes, examine ripple shapes on the surface of the dunes, and determine the composition mixture of the dune material,” researchers said.

NASA’s Curiosity rover extends robotic arm to investigate sand dunes inside Gale Crater on Mars on Sol 1619, Feb. 24, 2017. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Curiosity is also using the science instruments on the robotic arm turret to gather detailed research measurements with the cameras and spectrometers.

As of today, Sol 1625, March 2, 2017, Curiosity has driven over 9.70 miles (15.61 kilometers) since its August 2012 landing inside Gale Crater, and taken over 391,000 amazing images.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This map shows the two locations of a research campaign by NASA’s Curiosity Mars rover mission to investigate active sand dunes on Mars. In late 2015, Curiosity reached crescent-shaped dunes, called barchans. In February 2017, the rover reached a location where the dunes are linear in shape. Credits: NASA/JPL-Caltech/Univ. of Arizona
This map shows the route driven by NASA’s Mars rover Curiosity through Sol 1612 (February 17, 2017) of the rover’s mission on Mars. The base image from the map is from the High Resolution Imaging Science Experiment Camera (HiRISE) in NASA’s Mars Reconnaissance Orbiter. Image Credit: NASA/JPL-Caltech/Univ. of Arizona

So it Begins, Red Dragon Delayed 2 Years to 2020

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX

KENNEDY SPACE CENTER, FL – With so many exciting projects competing for the finite time of SpaceX’s super talented engineers, something important had to give. And that something comes in the form of slipping the blastoff of SpaceX’s ambitious Red Dragon initiative to land the first commercial spacecraft on Mars by 2 years – to 2020. Nevertheless it will include a hefty science payload, SpaceX’s President told Universe Today.

The Red Dragon launch postponement from 2018 to 2020 was announced by SpaceX president Gwynne Shotwell during a Falcon 9 prelaunch press conference at historic pad 39A at NASA’s Kennedy Space Center in Florida.

“We were focused on 2018, but we felt like we needed to put more resources and focus more heavily on our crew program and our Falcon Heavy program, said SpaceX Gwynne Shotwell at the pad 39a briefing.

“So we’re looking more in the 2020 time frame for that.”

And whenever Red Dragon does liftoff, it will carry a significant “science payload” to the Martian surface, Shotwell told me at the pad 39A briefing.

“As much [science] payload on Dragon as we can,” Shotwell said. Science instruments would be provided by “European and commercial guys … plus our own stuff!”

SpaceX President Gwynne Shotwell meets the media at Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 ahead of launch of the CRS-10 mission on 19 Feb 2017. Credit: Julian Leek

Another factor potentially at play is yesterdays (Feb 27) announcement by SpaceX CEO Elon Musk that he has two hefty, revenue generating paying customers for a manned Moonshot around the Moon that could blastoff on a commercial crew Dragon as soon as next year atop a Falcon Heavy from pad 39A – as I reported here.

Whereas SpaceX is footing the bill for the private Red Dragon venture.

Pad 39A is the same pad from which the Red Dragon mission will eventually blastoff atop a heavy lift SpaceX Falcon Heavy rocket – and which just reopened for launch business last week on Feb. 19 after lying dormant for more than 6 years since the retirement of NASA’s Space Shuttle Program in July 2011.

So at least the high hurdle of reopening pad 39A has been checked off!

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

SpaceX continues to dream big – setting its extraterrestrial sights on the Moon and Mars.

Musk founded SpaceX with the dream of transporting Humans to the Red Planet and establishing a ‘City on Mars’.

Artists concept for sending SpaceX Red Dragon spacecraft to Mars as early as 2020. Credit: SpaceX

Since launch windows to Mars are only available every two years due to the laws of physics and planetary alignments, the minimum Red Dragon launch delay automatically amounts to 2 years.

Furthermore the oft delayed Falcon Heavy has yet to launch on its maiden mission.

Shotwell said the maiden Falcon Heavy launch from pad 39A is planned to occur this summer, around mid year or so – after Pad 40 is back up and running.

And the commercial crew Dragon 2 spacecraft being built under contract to NASA to launch American astronauts to the International Space Station (ISS) has also seen its maiden launch postponed more than six months over the past calendar year.

Finishing the commercial crew Dragon is absolutely critical to NASA for launching US astronauts to the ISS from US soil – in order to end our total dependence on Russia and the Soyuz capsule at a cost in excess of $80 million per seat.

Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX

The bold Red Dragon endeavor which involved launching an uncrewed version of the firms Dragon cargo spacecraft to carry out a propulsive soft landing on Mars as soon as 2018, was initially announced with great fanfare by SpaceX less than a year ago in April 2016.

At that time, SpaceX signed a space act agreement with NASA, wherein the agency will provide technical support to SpaceX with respect to Mars landing technologies for ‘Red Dragon’ and NASA would reciprocally benefit from SpaceX technologies for Mars landing.

But given the magnitude of the work required for this extremely ambitious Mars landing mission, the two year postponement was pretty much expected from the beginning by this author.

The main goal is to propulsively land the heaviest payload ever on Mars – something 5-10 times the size of anything landed before.

“These missions will help demonstrate the technologies needed to land large payloads propulsively on Mars,” SpaceX noted last April.

Red Dragon will utilize supersonic retropropulsion to achieve a safe touchdown.

I asked Shotwell whether Red Dragon would include a science payload? Would Universities and Industry compete to submit proposals?

“Yes we had planned to fly [science] stuff in 2018, but people are also more ready to fly in 2020 than 2018,” Shotwell replied.

“Yes we are going to put as much [science] payload on Dragon as we can. By the way, just Dragon landing alone will be the largest mass ever put on the surface of Mars. Just the empty Dragon alone. That will be pretty crazy!”

“There are a bunch of folks that want to fly [science], including European customers, commercial guys.”

“Yeah there will be [science] stuff on Dragon – plus our own stuff!” Shotwell elaborated.

Whenever it does fly, SpaceX will utilize a recycled cargo Dragon from one of the space station resupply missions for NASA, said Jessica Jensen, SpaceX Dragon Mission manager at a KSC media briefing.

NASA’s still operating 1 ton Curiosity rover is the heaviest spaceship to touchdown on the Red Planet to date.

Dramatic wide angle mosaic view of butte with sandstone layers showing cross-bedding in the Murray Buttes region on lower Mount Sharp with distant view to rim of Gale crater, taken by Curiosity rover’s Mastcam high resolution cameras. This photo mosaic was assembled from Mastcam color camera raw images taken on Sol 1454, Sept. 8, 2016 and stitched by Ken Kremer and Marco Di Lorenzo, with added artificial sky. Featured at APOD on 5 Oct 2016. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

NASA’s agency wide goal is to send humans on a ‘Journey to Mars’ by the 2030s utilizing the SLS rocket and Orion deep space capsule – slated for their uncrewed maiden launch in late 2018.

Although NASA has just initiated a feasibility study to alter the mission and add 2 astronauts with a revised liftoff date of 2019.

Of course it all depends on whether the new Trump Administration bolsters NASA or slashes NASA funding.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Elon Musk Announces Daring SpaceX Dragon Flight Beyond Moon with 2 Private Astronauts in 2018

SpaceX CEO Elon Musk announced plans on Feb. 27, 2017 to launch a commercial crew SpaceX Dragon to beyond the Moon and back with two private astronauts in 2018 using a SpaceX Falcon Heavy launching from the Kennedy Space Center. Credit: SpaceX
SpaceX CEO Elon Musk announced plans on Feb. 27, 2017 to launch a commercial crew SpaceX Dragon to beyond the Moon and back with two private astronauts in 2018 using a SpaceX Falcon Heavy launching from the Kennedy Space Center. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Elon Musk, billionaire founder and CEO of SpaceX, announced today (27 Feb) a daring plan to launch a commercial manned journey “to beyond the Moon and back” in 2018 flying aboard an advanced crewed Dragon spacecraft paid for by two private astronauts – at a media telecon.

Note: Check back again for updated details on this breaking news story.

“This is an exciting thing! We have been approached to do a crewed mission to beyond the Moon by some private individuals,” Musk announced at the hastily arranged media telecon just concluded this afternoon which Universe Today was invited to participate in.

The private two person crew would fly aboard a human rated Dragon on a long looping trajectory around the moon and far beyond on an ambitious mission lasting roughly eight days and that could blastoff by late 2018 – if all goes well with rocket and spacecraft currently under development, but not yet flown.

“This would do a long leap around the moon,” Musk said. “We’re working out the exact parameters, but this would be approximately a week long mission – and it would skim the surface of the moon, go quite a bit farther out into deep space, and then loop back to Earth. I’m guessing probably distance wise, maybe 300,000 or 400,000 miles.”

The private duo would fly on a ‘free return’ trajectory around the Moon – but not land on the Moon like NASA did in the 1960s and 1970s.

But they would venture further out into deep space than any humans have ever been before.

No human has traveled beyond low Earth orbit in more than four decades since Apollo 17 – NASA’s final lunar landing mission in December 1972, and commanded by recently deceased astronaut Gene Cernan.

“Like the Apollo astronauts before them, these individuals will travel into space carrying the hopes and dreams of all humankind, driven by the universal human spirit of exploration,” says SpaceX.

Musk said the private crew of two would launch on a Dragon 2 crew spacecraft atop a SpaceX Falcon Heavy booster from historic pad 39A at the Kennedy Space Center in Florida – the same pad that just reopened for business last week with the successful launch of a cargo Dragon to the International Space Station (ISS) for NASA on the CRS-10 mission.

“They are two paying customers,” Musk elaborated. “They’re very serious about it.”

“But nobody from Hollywood.”

“They will fly using a Dragon 2 and Falcon Heavy next year in 2018.”

“The lunar orbit mission would launch about 6 months after the [first] NASA crew to the space station on Falcon 9/Dragon 2,” Musk told Universe Today.

Musk noted they had put down “a significant deposit” and will undergo extensive flight training.

He declined to state the cost – but just mentioned it would be more than the cost of a Dragon seat for a flight to the space station, which is about $58 million.

The Falcon Heavy, once operational, will be the most powerful rocket in the world. Credit: SpaceX

SpaceX is currently developing the commercial crew Dragon spacecraft for missions to transport astronauts to low Earth orbit (LEO) and the International Space Station (ISS) under a NASA funded a $2.6 billion public/private contract. Boeing was also awarded a $4.2 Billion commercial crew contract by NASA to build the crewed CST-100 Starliner for ISS missions.

The company is developing the triple barreled Falcon Heavy with its own funds – which is derived from the single barreled Falcon 9 rocket funded by NASA.

But neither the Dragon 2 nor the Falcon Heavy have yet launched to space and their respective maiden missions haven been postponed multiple time for several years – due to a combination of funding and technical issues.

So alot has to go right for this private Moonshot mission to actually lift off by the end of next year.

NASA is developing the new SLS heavy lift booster and Orion capsule for deep space missions to the Moon, Asteroids and Mars.

The inaugural uncrewed SLS/Orion launch is slated for late 2018. But NASA just announced the agency has started a feasibility study to examine launching a crew on the first Orion dubbed Exploration Mission-1 (EM-1) on a revamped mission in 2019 rather than 2021 on EM-2.

Thus the potential exists that SpaceX could beat NASA back to the Moon with humans.

I asked Musk to describe the sequence of launches leading up to the private Moonshot and whether a crewed Dragon 2 would launch initially to the ISS.

Musk replied that SpaceX hopes to launch the first uncrewed Dragon 2 test flight to the ISS by the end of this year on the firm’s Falcon 9 rocket – almost identical to the rocket that just launched on Feb. 19 from pad 39A.

That would be followed by crewed launch to the ISS around mid-2018 and the private Moonshot by the end of 2018.

“The timeline is we expect to launch a human rated Dragon 2 on Falcon 9 by the end of this year, but without people on board just for the test flight to the space station,” Musk told Universe Today.

“Then about 6 months later we would fly with a NASA crew to the space station on Falcon 9/Dragon 2.”

“And then about 6 months after that, assuming the schedule holds by end of next year, is when we would do the lunar orbit mission.”

I asked Musk about whether any heat shield modifications to Dragon 2 were required?

“The heat shield is quite massively over designed,” Musk told me during the telecom.

“It’s actually designed for multiple Earth orbit reentry missions – so that we can actually do up to 10 reentry missions with the same heat shield.”

“That means it can actually do at least 1 lunar orbit reentry velocity missions, and conceivably maybe 2.”

“So we do not expect any redesign of the heat shield.”

The reentry velocity and heat generated from a lunar mission is far higher than from a low Earth orbit mission to the space station.

Nevertheless the flight is not without risk.

The Dragon 2 craft will need some upgrades. For example “a deep space communications system” with have to be installed for longer trips, said Musk.

Dragon currently is only equipped for shorter Earth orbiting missions.

The flight must also be approved by the FAA before its allowed to blastoff – as is the case with all commercial launches like the Feb. 19 Falcon 9/Cargo Dragon mission for NASA.

SpaceX founder and CEO Elon Musk. Credit: Ken Kremer/kenkremer.com

Musk declined to identify the two individuals or their genders but did say they know one another.

They must pass health and training tests.

“We expect to conduct health and fitness tests, as well as begin initial training later this year,’ noted SpaceX.

The flight itself would be very autonomous. The private passengers will train for emergencies but would not be responsible for piloting Dragon.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Musk said he would give top priority to NASA astronauts for the Moonshot mission if the agency wanted to procure the seats ahead of the private passengers.

He noted that SpaceX would have the capability to launch one or 2 private moonshots per year.

“I think this should be a really exciting mission that gets the world really excited about sending people into deep space again. I think it should be super inspirational,” Musk said.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket launches from pad 39A at the Kennedy Space Center on Feb 19, 2017 for NASA on the Dragon CRS-10 delivery mission to the International Space Station (ISS). Credit: Julian Leek
SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com
An artist's illustration of the Falcon Heavy rocket. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. Image: SpaceX

SpaceX Dragon Arrives at Space Station with Tons of Earth and Human Science Experiments

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA
SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

KENNEDY SPACE CENTER, FL – A SpaceX Dragon supply ship jam packed with more than 2.5 tons of critical science gear, crew supplies and 40 mice successfully arrived this morning at the International Space Station (ISS) – where six humans from the US, Russia and France are living and working aboard.

Dragon reached the station four days after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory.

Astronauts Thomas Pesquet of ESA (European Space Agency) and station commander Shane Kimbrough of NASA deftly maneuvered the space station’s 57.7-foot (17.6-meter) Canadian-built Canadarm2 robotic arm to reach out and flawlessly capture the Dragon CRS-10 spacecraft at about 5:44 a.m. EST early Thursday, after it arrived at the station.

The SpaceX CRS-10 Dragon is pictured in the grips of the Canadarm2 shortly after its capture by astronauts Shane Kimbrough and Thomas Pesquet on Feb. 23, 2017. Credit: NASA TV

Pesquet and Kimbrough were working at the robotics work station inside the seven windowed Cupola module as they monitored Dragon’s approach for capture by the grappling snares on the terminus of the robotic arm this morning as the station was soaring over the northwest coast of Australia.

“Looks like we have a great Dragon capture,” said capcom astronaut Mike Hopkins.

“We want to congratulate all the teams working around the world for the successful arrival,” said Pesquet.

The million pound station is orbiting approximately 250 miles (400 km) above Earth.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The commercial Dragon cargo freighter arrived about 16 minutes earlier than originally planned.

The duo were assisted by experienced NASA astronaut Peggy Whitson. The 57 year old Whitson will soon set a record for most time spent in space by an American on April 24.

The gumdrop shaped Dragon cargo freighter slowly and methodically approached the station and the capture point through the required approach corridor during the final stages of the orbital chase.

After hovering at the capture point in free drift at a distance of about 34 feet (11 m) from the orbiting outpost, the crew members extended the robotic arm and Dragon was successfully plucked from free space using Canardarm2 at the grapple fixture located on the side of the supply ship.

The entire thrilling approach and grappling sequence was broadcast live on NASA TV.

SpaceX Dragon arrives at the 30 meter hold point during final approach to International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

Robotics officers on the ground at the NASA’s Johnson Space Center then took over and berthed Dragon to the Earth facing port on the Harmony module at about 8 a.m. as the mated craft were soaring over central America.

16 latches and bolts on the stations Common Berthing Mechanism (CBM) will hold Dragon firmly in place for a hard mate to the stations Harmony module.

4 gangs of 4 bolts were driven into place with ground commands from the robotics officer to firmly bolt Dragon to the nadir port on Harmony.

The second stage capture and Dragon installation was confrmed at 8:12 a.m. Feb 23 as the craft were flying over the US East Coast.

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

“Today was smooth sailing as Dragon arrived below the space station and maneuvered its way through a carefully choreographed procedure to the grapple position for rendezvous and capture.”

“Dragon is now firmly attached to the International Space Station and the crew will begin unloading critical science payloads and supplies this afternoon.”

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

Yesterday’s rendezvous was automatically aborted when a bad bit of navigational data was uplinked to Dragons relative GPS navigation system as it was about 0.7 miles below the station.

“The Dragon’s computers received an incorrect navigational update, triggering an automatic wave off. Dragon was sent on a “racetrack” trajectory in front of, above and behind the station for today’s second rendezvous attempt.”

There was never any danger to the crew, space station or Dragon. It merely arrived a day later than planned as it is fully equipped to do if needed.

The SpaceX Dragon was successfully installed to the Harmony module a few hours after it was captured with the Canadarm2 by the crew on Feb 23, 2017. This artists concept shows the location of several visiting vehicles including Dragon, Soyuz and BEAM expandable module. Credit: NASA

CRS-10 counts as the company’s tenth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The Dragon is the first of two cargo craft arriving at the station over two consecutive days.

The unpiloted Russian Progress 66 supply ship launched yesterday from Baikonur is slated to arrive early Friday morning with 2.9 tons of supplies. It will automatically dock at the Pirs docking module at about 3:45 a.m., with a trio of Russian cosmonauts monitoring all the action.

After conducting leak checks, the crew plans to open the hatch to Dragon later today.

They will quickly begin removing the highest priority science investigations and gear first.

Dragon will remain at the station for about 30 days.

SpaceX Falcon 9 rocket and Dragon cargo ship rests horizontal atop Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 as work crews use the access room to load ‘late stow’ science experiments aboard Dragon – as seen from inside the pad perimeter. This is the first rocket launched from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission occurred on 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

1000 pounds of ‘late stow’ experiments were loaded the day before the originally planned Feb. 18 liftoff of the SpaceX Falcon 9 rocket.

Dragon was successfully launched from NASA’s Kennedy Space Center atop the 213-foot-tall (65-meter) SpaceX Falcon 9 rocket at 9:38 a.m. EST on Feb. 19, 2017 from historic Launch Complex 39A to low Earth orbit.

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

The 40 mice will be used in a wound healing experiment to test therapies in microgravity.

An advanced plant growth habitat will launch soon to test better technologies for growing crops in space that could contribute to astronauts nutrition on long duration spaceflights.

SpaceX Dragon CRS-10 Cargo manifest from NASA:

TOTAL CARGO: 5489.5 lbs. / 2490 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3373.1 lbs. / 1530 kg

• Science Investigations 1613.8 lbs. / 732 kg
• Crew Supplies 652.6 lbs. / 296 kg
• Vehicle Hardware 842.2 lbs. / 382 kg
• Spacewalk Equipment 22.0 lbs. / 10 kg
• Computer Resources 24.2 lbs. / 11 kg
• Russian Hardware 48.5 lbs. / 22 kg

UNPRESSURIZED

• SAGE-III & STP-H5 Lightning Imaging Sensor 2116.4 lbs. / 960 kg

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 Goes Vertical with Station Science at KSC Pad 39A – Watch Live Feb. 19

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 18 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Just hours before blastoff, the first ever SpaceX Falcon 9 set to soar to the space station from historic pad 39A at NASA’s Kennedy Space Center (KSC), the rocket went vertical below delightfully dark skies on the Florida Space Coast.

UPDATE- The launch was scrubbed until Feb. 19 after a hold was called to deal with a thrust vector control issue. Story updated

Packed with over a thousand pounds of research experiments and science instruments probing the human body and our home planet from the heavens above, the Falcon 9 rocket is poised for liftoff at 9:38 a.m., Sunday morning, Feb. 19, from Launch Complex 39A (LC-39A) at KSC.

Everything is on track for Sunday’s launch of the 229 foot tall (70 meter) SpaceX Falcon 9 on the NASA contracted SpaceX CRS-10 resupply mission for NASA to the million pound orbiting lab complex.

And the weather looks promising at this time.

At a meeting with reporters at pad 39A on Friday, Feb. 17, SpaceX President Gwynne Shotwell confirmed the success of the static fire test of the two stage rocket and all nine first stage Merlin 1D engines conducted on Sunday afternoon, Feb. 12 – minus the SpaceX Dragon cargo freighter payload.

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39-A at the Kennedy Space Center on 17 Feb 2017 as seen from inside the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

The successful test firing of the engines cleared the path to orbit for liftoff of Dragon on a critical cargo flight for NASA to deliver over two and a half tons of supplies and science on the CRS-10 resupply mission to the six person crew living and working aboard the International Space Station (ISS).

Shotwell then said technicians integrated with the unmanned Dragon CRS-10 cargo freighter with the Falcon 9 rocket.

SpaceX President Gwynne Shotwell meets the media at Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 ahead of launch of the CRS-10 mission on 19 Feb 2017. Credit: Julian Leek

The 22 story tall rocket rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A on Thursday morning using a dedicated transporter-erector, so ground crews could begin final preparations for the Saturday morning blastoff. Now reset to Sunday.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39-A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 18 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Thousands and thousands of spectators from across the globe, local residents, media and scientists and engineers and their families have flocked to the Florida Space Coast, filling area hotels to witness the historic maiden blastoff of a Falcon 9 from seaside pad 39A at KSC at 9:38 a.m. EST Sunday, Feb. 19.

SpaceX will also attempt to achieve a secondary mission goal of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

If you can’t personally be here to witness the launch in Florida, you can also watch NASA’s live coverage on NASA Television and the agency’s website.

The SpaceX/Dragon CRS-10 launch coverage will be broadcast on NASA TV beginning at 8:30 a.m. EDT Saturday, Feb. 18, with additional commentary on the NASA launch blog.

SpaceX will also feature their own live webcast beginning approximately 20 minutes before launch at 9:41 a.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can also watch the launch live at SpaceX Webcast at – spacex.com/webcast

The launch window is instantaneous, meaning that any delays due to weather or technical issues results in a minimum 1 day postponement.

The long awaited FAA launch license was finally granted at the last minute on Friday afternoon – less than 24 hours before launch.

The weather outlook currently is improving from earlier in the week and looks good for Saturday morning with a 70% chance of favorable condition at launch time. The concerns are for thick clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

In case of a scrub for any reason on Feb. 18, the backup launch opportunity is 9:38 a.m. Sunday, Feb. 19. with NASA TV coverage starting at about 8:10 a.m. EDT.

CRS-10 marks only the third time SpaceX has attempted a land landing of the 15 story tall first stage booster.

Shotwell confirmed they are attempting the secondary mission of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located about 9 miles south of launch pad 39a.

And it won’t take long to learn the results – the ground landing at LZ -1 will take place about 9 minutes after liftoff.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

This marks the first time any fully integrated rocket has stood on pad 39A for a scheduled launch since the retirement of NASA’s Space Shuttles in July 2011 on the STS-135 mission to the space station.

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions as far back as the 1960s.

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere.

The LIS lightning mapper will measure lightning from the altitude of the ISS. NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Feb 17- 19: “SpaceX CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39-A at the Kennedy Space Center on 16 Feb 2017 as seen from Launch Complex 39-B. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb. Credit: Ken Kremer/Kenkremer.com
First SpaceX Falcon 9 rocket atop Launch Complex 39A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb. 2017 as seen from Space View Park, Titusville, Fl. Liftoff is slated for no earlier than 19 Feb. 2017. Credit: Ken Kremer/Kenkremer.com

At T Minus 1 Day from ISS Liftoff SpaceX Rolls Falcon 9 to KSC Pad 39A – Feb. 18 Ignition Hinges on FAA License Approval

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39-A at the Kennedy Space Center on 16 Feb 2017 as seen from Launch Complex 39-B. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff slated for 18 Feb. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39-A at the Kennedy Space Center on 16 Feb 2017 as seen from Launch Complex 39-B. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff slated for 18 Feb. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Its getting down to the wire at T Minus 1 Day from liftoff for SpaceX and NASA as a Falcon 9 rocket was rolled out to historic Launch Complex 39A today, Feb 16, and the Feb. 18 ignition to the space station hinges on the approval of a launch license yet to be granted, the Federal Aviation Administration (FAA) confirmed late today to Universe Today.

“My previous background still applies,” FAA spokesman Hank Price confirmed to Universe Today.

“The FAA is working closely with SpaceX to ensure the activity described in the application meets all applicable regulations for a launch license.”

“The FAA will continue to work with SpaceX to provide a license determination in a timely manner.”

Blastoff of the Falcon 9 from seaside pad 39A at NASA’s Kennedy Space Center in Florida is slated for 10:01 a.m. EST Saturday, Feb. 18.

NASA plans live coverage of the launch beginning at 8:30 a.m. on NASA Television and the agency’s website.

SpaceX currently has license applications pending with the FAA for both the NASA cargo launch and pad 39A. No commercial launch can take place without FAA approval.

No License, No Launch – that’s the bottom line!

Assuming the FAA grants a launch license at the last minute on Friday the weather outlook currently is iffy for Saturday with a 60% chance of favorable conditions at launch time. The concerns are for rains and clouds according to Air Force weather forecasters.

In case of a scrub for any reason on Feb. 18, the backup launch opportunity is 9:38 a.m. Sunday, Feb. 19.

Technically all appears to be on track for the historic first launch of a Falcon 9 from pad 39A pending further reviews and updates from NASA and SpaceX on Friday.

First SpaceX Falcon 9 rocket atop Launch Complex 39-A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb 2017 as seen from Space View Park, Titusville, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Credit: Ken Kremer/Kenkremer.com

After a successful static fire test of the two stage rocket and all nine first stage Merlin 1D engines on Sunday afternoon, Feb. 12, the path to orbit was cleared for a critical Dragon cargo flight for NASA to deliver over two and a half tons of science and supplies on the CRS-10 resupply mission to the six person crew living and working on the International Space Station (ISS).

First SpaceX Falcon 9 rocket minus Dragon spacecraft stands erect atop Launch Complex 39-A at the Kennedy Space Center as seen from Playalinda Beach, Fl, following static fire test on 12 Feb 2017. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Ken Kremer/Kenkremer.com

The SpaceX Falcon 9 rocket was then integrated with the unmanned Dragon CRS-10 cargo freighter was rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A this morning using a dedicated transporter-erector, so crew could begin final preparation for the Saturday morning blastoff.

From atop KSC pad 39B I witnessed the rocket residing horizontally atop pad 39A as technicians further moved the rocket to launch position.

The 22 story tall Falcon 9/Dragon vehicle was erected to vertical launch position later this afternoon at about 4:50 p.m. to conduct additional ground checks and testing.

It will again be lowered to the horizontal position, so that late load cargo items can be stowed inside the Dragon spaceship on Friday before raising the rocket again into the final launch configuration.

This marks the first time any fully integrated rocket has stood on pad 39A for a scheduled launch since the retirement of NASA’s Space Shuttles in July 2011 on the STS-135 mission to the space station.

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions as far back as the 1960s.

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere.

The LIS lightning mapper will measure lightning from the altitude of the ISS. NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

About 10 minutes after launch, Dragon will reach its preliminary orbit, deploy its solar arrays and begin a carefully choreographed series of thruster firings to reach the space station.

As a secondary objective SpaceX s planning to attempt to land its Falcon 9 first stage on land at Landing Zone 1 at Cape Canaveral Air Force Station.

‘Astronauts Shane Kimbrough of NASA and Thomas Pesquet of ESA (European Space Agency) will use the station’s robotic arm to capture Dragon when it arrives at the space station after its two-day journey. The spacecraft will be berthed to the Earth-facing port on the Harmony module. The following day, the space station crew will pressurize the vestibule between the station and Dragon, then open the hatch that leads to the forward bulkhead of Dragon,’ according to NASA.

First SpaceX Falcon 9 rocket minus Dragon spacecraft stands erect atop Launch Complex 39-A at the Kennedy Space Center as seen from Playalinda Beach, Fl, following static fire test on 12 Feb 2017. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Ken Kremer/Kenkremer.com

Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Feb 17- 19: “SpaceX CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA To Study Launching Astronauts on 1st SLS/Orion Flight

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

KENNEDY SPACE CENTER, FL – In a potentially major change in direction for NASA’s human spaceflight architecture, the agency is officially studying the possibility of adding a crew of astronauts to the first flight of the Orion deep space crew capsule and the heavy lift Space Launch System (SLS) rocket currently in development, announced Acting NASA Administrator Robert Lightfoot.

Lightfoot made the announcement in a speech to the Space Launch System/Orion Suppliers Conference in Washington, D.C. as well as an agency wide memo circulated to NASA employees on Wednesday, Feb. 15.

The move, if implemented, for the first joint SLS/Orion flight on Exploration Mission-1 (EM-1) would advance the date for sending American astronauts back to the Moon by several years – from the next decade into this decade.

Lightfoot has directed Bill Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate, to start detailed studies of what it would take to host astronauts inside the Orion EM-1 crew capsule.

“I have asked Bill Gerstenmaier to initiate a study to assess the feasibility of adding a crew to Exploration Mission-1, the first integrated flight of SLS and Orion,” Lightfoot said.

NASA’s current plans call for the unmanned blastoff of Orion EM-1 on the SLS-1 rocket later next year on the first test flight – roughly in the September to November timeframe from Launch Complex 39B at the Kennedy Space Center.

“The study will examine the opportunities it could present to accelerate the effort of the first crewed flight and what it would take to accomplish that first step of pushing humans farther into space,” NASA officials added in a statement.

But because of all the extra work required to upgrade a host of systems for both Orion and SLS for humans ahead of schedule, liftoff of that inaugural mission would have to slip by at least a year or more.

“I know the challenges associated with such a proposition, like reviewing the technical feasibility, additional resources needed, and clearly the extra work would require a different launch date” Lighfoot elaborated.

“That said, I also want to hear about the opportunities it could present to accelerate the effort of the first crewed flight and what it would take to accomplish that first step of pushing humans farther into space.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

The Orion EM-1 capsule is currently being manufactured at the Kennedy Space Center.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Welding is nearly complete on the liquid hydrogen tank will provide the fuel for the first flight of NASA’s new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank has now completed welding on the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The 2018 launch of NASA’s Orion on the unpiloted EM-1 mission counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago.

Now it might actually include humans.

Details to follow.

An artist’s interpretation of NASA’s Space Launch System Block 1 configuration with an Orion vehicle. Image: NASA

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

This artist concept depicts the Space Launch System rocket rolling out of the Vehicle Assembly Building at NASA’s Kennedy Space Center. SLS will be the most powerful rocket ever built and will launch the agency’s Orion spacecraft into a new era of exploration to destinations beyond low-Earth orbit. Credits: NASA/Marshall Space Flight Center

SpaceX Falcon 9 Breathes First Fire at KSC Pad 39A – Successful Static Fire Test Paves Path to Feb. 18 ISS Launch

First SpaceX Falcon 9 rocket atop Launch Complex 39-A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb 2017 as seen from Space View Park, Titusville, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Credit: Ken Kremer/Kenkremer.com
First SpaceX Falcon 9 rocket atop Launch Complex 39-A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb 2017 as seen from Space View Park, Titusville, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Credit: Ken Kremer/Kenkremer.com

SPACE VIEW PARK/KENNEDY SPACE CENTER, FL – For the first time in more than half a decade, a rocket came to life at NASA’s Kennedy Space Center when a SpaceX Falcon 9 breathed her first fire at historic pad 39A today, Sunday, Feb. 12 – successfully completing a critical static test firing of the first stage engines that opens the door to a launch to the space station next weekend for NASA.

The hot fire test generated a huge plume of smoke exhausting out the north side of the flame trench of Launch Complex 39A at approximately 4:30 p.m. EST, Feb. 12.

The hold down engine test with the erected rocket involved the ignition of all nine Merlin 1D first stage engines generating some 1.7 million pounds of thrust at pad 39A – which has been repurposed from its days as a shuttle launch pad.

The Merlin 1D engines fired for about 3 seconds while the two stage rocket was restrained on the pad.

SpaceX confirmed the test via social media shortly after it took place.

“First static fire test of Falcon 9 at historic launch complex 39A completed in advance of Dragon’s upcoming mission to the @Space_Station,” SpaceX tweeted in a very brief announcement.

I watched excitedly from a public viewing spot at Space View Park in Titusville as the exhaust plume grew quickly in size to a gigantic grey-white colored mushroom cloud of smoke and ash, heaving out the north side of the flame trench silent since the shuttle era.

Then just as quickly the smoke cloud dissipated completely within about 10 minutes leaving barely a trace of what we can expect to see soon.

Titusville offers a prime viewing location for anyone interested in traveling to the Florida Space Coast to see this Falcon 9 launch in person.

First SpaceX Falcon 9 rocket atop Launch Complex 39A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb. 2017 as seen from Space View Park, Titusville, Fl. Liftoff is slated for no earlier than 18 Feb. 2017. Credit: Ken Kremer/Kenkremer.com

The test confirms that both the first stage engines and the rocket are suited for liftoff. Over the past few days, launch teams also tested the pad equipment, raised and lowered the rocket and conducted fit checks of the rocket at the pad.

The test had been delayed several days as technicians coped with issues until all was right to carry out the static fire test.

The positive outcome paves the path for a Falcon 9.Dragon blastoff as soon as next Saturday.

This marks the first time any rocket has stood on pad 39A and fired its engines since the retirement of NASA’s Space Shuttles in July 2011 on the STS-135 mission to the space station.

First SpaceX Falcon 9 rocket atop Launch Complex 39A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb. 2017 as seen from Space View Park, Titusville, Fl. Liftoff is slated for no earlier than 18 Feb. 2017. Credit: Ken Kremer/Kenkremer.com

Liftoff of the Falcon 9 is slated for no earlier than next Saturday, 18 Feb 2017 on a critical cargo flight for NASA to deliver over two and a half tons of science and supplies to the six person crew living and working on the International Space Station (ISS).

The rocket – minus the payload comprising the Dragon cargo spacecraft – was rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A on Friday morning using a dedicated transporter-erector.

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace

After the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and the Dragon resupply ship will be integrated on top.

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.

Dragon will be loaded with more than 5500 pounds of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

SpaceX was previously employing pad 40 on Cape Canaveral Air Force Station for Falcon 9 launches to the ISS as well as commercial launches.

But pad 40 suffered severe damage following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test.

An accident investigation revealed that a second stage helium tank burst due to friction ignition during the fueling test.

SpaceX modified the fueling procedures as a short term fix and is working on redesigning the second stage as a long term fix.

SpaceX is working to repair and refurbish pad 40. It is not known when it will be ready to resume launches.

Thus SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, speeding up the refurbishing and repurposing work which at last is sufficient to launch rockets again.

Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

First SpaceX Falcon 9 Erected at Historic Launch Pad 39A for Feb. 18 Blastoff

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace
First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace

KENNEDY SPACE CENTER, FL – The first SpaceX Falcon 9 rocket ever to grace historic launch pad 39A at NASA’s Kennedy Space Center in Florida was erected this afternoon, Friday, Feb. 10, to prepare the booster for a critical static fire sometime Saturday, and a launch to the space station next weekend – if all goes well.

This marks the first time any rocket has stood on pad 39A since the retirement of NASA’s Space Shuttles in July 2011.

Liftoff of the Falcon 9 is slated for no earlier than next Saturday, 18 Feb 2017 on a critical cargo flight for NASA to deliver over two and a half tons of science and supplies to the six person crew living and working on the International Space Station (ISS).

The rocket – minus the payload comprising the Dragon cargo spacecraft – was rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A this morning using a dedicated transporter-erector.

A wider-angle shot from the top of the CBS bureau at KSC showing the first SpaceX Falcon 9 atop pad 39A 3.1 miles away on Feb 20, 2017. Credit: Bill Harwood/CBS News

The booster was then hoisted into launch position this afternoon.

The scene was viewed by spectators including my space journalist colleague Jeff Seibert.

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.

SpaceX CEO Elon Musk also posted a photo on instagram with this caption:

“Falcon 9 rocket now vertical at Cape Canaveral on launch complex 39-A. This is the same launch pad used by the Saturn V rocket that first took people to the moon in 1969. We are honored to be allowed to use it.”

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017. The photo was posted to Instagram by SpaceX CEO Elon Musk. Credit: Elon Musk/SpaceX

After the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and the Dragon resupply ship will be integrated on top.

During the brief static fire test, all 9 Merlin 1D first stage engines are ignited for a few seconds to confirm they and the rocket are suited for liftoff while hold down clamps restrain the rocket on the pad.

Dragon will be loaded with more than 5500 pounds of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX crews are renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. New rocket processing hangar sits at left. Credit: Ken Kremer/kenkremer.com

A Novel Concept For Braking Breakthrough Starshot

Artist concept of lightsail craft approaching the potentially habitable exoplanet Proxima b. Credit: PHL @ UPR Arecibo

In April of 2016, Russian billionaire Yuri Milner announced the creation of Breakthrough Starshot. As part of his non-profit scientific organization (known as Breakthrough Initiatives), the purpose of Starshot was to design a lightsail nanocraft that would be capable of reaching the nearest star system – Alpha Centauri (aka. Rigel Kentaurus) – within our lifetime.

Since its inception, the scientists and engineers behind the Starshot concept have sought to address the challenges that such a mission would face. Similarly, there have been many in the scientific community who have also made suggestions as to how such a concept could work. The latest comes from the Max Planck Institute for Solar System Research, where two researchers came up with a novel way of slowing the craft down once it reaches its destination.

To recap, the Starshot concept involves a small, gram-scale nanocraft being towed by a lightsail. Using a ground-based laser array, this lightsail would be accelerated to a velocity of about 60,000 km/s (37,282 mps) – or 20% the speed of light. At this speed, the nanocraft would be able to reach the closest star system to our own – Alpha Centauri, located 4.37 light-years away – in just 20 years time.

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity’s first interstellar voyage. Credit: breakthroughinitiatives.org

Naturally, this presents a number of technical challenges – which include the possibility of a collision with interstellar dust, the proper shape of the lightsail, and the sheer energy requirements for powering the laser array. But equally important is the idea of how such a craft would slow down once it reached its destination. With no lasers at the other end to apply breaking energy, how would the craft slow down enough to begin studying the system?

It was this very question that René Heller and Michael Hippke chose to address in their study, “Deceleration of high-velocity interstellar photon sails into bound orbits at Alpha Centauri“. Heller is an astrophysicts who is currently assisting the ESA with its preparations for the upcoming PLAnetary Transits and Oscillations of stars (PLATO) mission – an exoplanet hunter being deployed as part of their Cosmic Vision program.

With the help IT specialist Michael Hippke, the two considered what would be needed for interstellar mission to reach Alpha Centauri, and provide good scientific returns upon its arrival. This would require that braking maneuvers be conducted once it arrived so the the spacecraft would not overshoot the system in the blink of an eye. As they state in their study:

“Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple Alpha Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth.”

The projected path a lightsail mission to Alpha Centauri could take, which would allow it to detour to Proxima Centauri. Credit: PHL @ UPR Arecibo.

For the sake of their calculations, Heller and Hippke estimated that the craft would weigh less than 100 grams (3.5 ounces), and would be mounted on a sail measuring 100,000 m² (1,076,391 square foot) in surface area. Once these were complete, Hippke adapted them into a series of computer simulations. Based on their results, they proposed an entirely new mission concept that do away with the need for lasers entirely.

In essence, their revised concept called for an Autonomous Active Sail (AAS) craft that would provide for its own propulsion and stopping power. This craft would deploy its sail while in the Solar System and use the Sun’s solar wind to accelerate it to high speeds. Once it reached the Alpha Centauri System, it would redeploy its sail so that incoming radiation from Alpha Centauri A and B would have the effect of slowing it down.

An added bonus of this proposed maneuver is that the craft, once it had been decelerated to the point that it could effectively explore the Alpha Centauri system, could then use a gravity assist from these stars to reroute itself towards Proxima Centauri. Once there, it could conduct the first up-close exploration of Proxima b – the closest exoplanet to Earth – and determine what its atmospheric and surface conditions are like.

Since the existence of this planet was first announced by the European Southern Observatory back in August of 2016, there has been much speculation about whether or not it could be habitable. Having a mission that could examine it to check for the telltale markers – a viable atmosphere, a magnetosphere, and liquid water on the surface – would surely settle that debate.

As Heller explained in a press release from the Max Planck Institute, this concept presents quite a few advantages, but comes with its share of trade offs – not the least of which is the time it would take to get to Alpha Centauri. “Our new mission concept could yield a high scientific return, but only the grandchildren of our grandchildren would receive it,” he said. “Starshot, on the other hand, works on a timescale of decades and could be realized in one generation. So we might have identified a longterm, follow-up concept for Starshot.”

At present, Heller and Hippke are discussing their concept with Breakthrough Starshot to see if it would be viable. One individual who has looked over their work is Professor Avi Loeb, the Frank B. Baird Jr. Professor of Science at Harvard University, and the chairman of the Breakthrough Foundation’s Advisory Board. As he told Universe Today via email, the concept put forth by Heller and Hippke is worthy of consideration, but has its limitations:

“If it is possible to slow down a spacecraft by starlight (and gravitational assist), then it is also possible to launch it in the first place by the same forces… If so, why is the recently announced Breakthrough Starshot project using a laser and not Sunlight to propel our spacecraft? The answer is that our envisioned laser array can push the sail with an energy flux that is a million times larger than the local solar flux.

“In using starlight to reach relativistic speeds, one must use an extremely thin sail. In the new paper, Heller and Hippke consider the example of a milligram instead of a gram-scale sail. For a sail of area ten square meters (as envisioned in our Starshot concept study), the thickness of their sail must be only a few atoms. Such a surface is orders of magnitude thinner than the wavelength of light that it aims to reflect, and so its reflectivity would be low. It does not appear feasible to reduce the weight by so many orders of magnitude and yet maintain the rigidity and reflectivity of the sail material.

“The main constraint in defining the Starshot concept was to visit Alpha Centauri within our lifetime. Extending the travel time beyond the lifetime of a human, as advocated in this paper, would make it less appealing to the people involved. Also, one should keep in mind that the sail must be accompanied by electronics which will add significantly to its weight.”

In short, if time is not a factor, we can envision that our first attempts to reach another Solar System may indeed involve an AAS being propelled and slowed down by solar wind. But if we’re willing to wait centuries for such a mission to be completed, we might also consider sending rockets with conventional engines (possibly even crewed ones) to Alpha Centauri.

But if we are intent on getting there within our own lifetimes, then a laser-driven sail or something similar will have be the way to go. Humanity has spent over half a century exploring what’s in our own backyard, and some of us are impatient to see what’s next door!

Further Reading: Max Planck Institute, ArXiv