Ain’t no doubt about it… Space is cool! And this year Russian space exploration is not only cool – but ice cold. This year’s International Festival of Snow, Ice and Light sculptures “Vyugovey” will take place in Moscow from December 25 to February 28 in the Memorial Museum of Space Exploration {ark on Prospekt Mira, and is devoted to the 50th anniversary of Russian space exploration.
The contest was part of the Ice Sculpture Festival “in memory of Russian space exploration.” About 100 pieces of space-related sculptures were presented by local artists. Some 11 sculptors from countries and regions including Russia, Mexico, Japan and Bulgaria took part in the four-day event started on Monday. Moscow’s freezing temperature provided ideal conditions for their ice-made artwork. Sergey Korolkov from Russia’s Ural Autonomous Okrug of Yamalo-Nenets won the first prize with his work “Goddesses of Sun and Moon,” which he said was inspired by the ancient myth of goddesses saving the world. But carving this cool piece of work wasn’t easy. The champion said he had worked three days from 10:00 a.m. to 6:00 p.m. to finish the piece!
Festival visitors can see sculptures up to five meters tall, among them the legendary rockets Soyz and Vostok. There are also the heroes of “Star Wars “and fantastic galaxies. At night the composition turns more colorful, as different lights create a special space atmosphere. Check out the video coverage:
Now, let’s take a look at the beauty…
How “cool” is that?!
Video courtesy of RIA Novosti / Petr Chernov, STR, and still photos by RIA Novosti and Valery Melnikov.
Aldrin turns 80 years old on January 20th, 2010. Happy birthday, Buzz! Image Credit:NASA” src=”http://www.universetoday.com/wp-content/uploads/2010/01/260985main_01_BuzzAldrinMoon_800-600-580×435.jpg” alt=”” width=”580″ height=”435″ />On January 20th, former astronaut Buzz Aldrin – who was the second man to walk on the Moon and has been a longtime advocate of space exploration – will turn 80 years old. Wouldn’t you like to send him some birthday wishes? Well, you can! The Planetary Society is collecting birthday wishes to be put on a “ginormous card” honoring his 80th trip around the Sun. Originally, the card was to be presented at a ceremony where Stephen Hawking would also receive the Planetary Society’s Cosmos Award, but Hawking has been advised by his doctors to refrain from flying to California for the event.
The birthday card, which already has birthday wishes from people around the world, will still be presented to Buzz Aldrin, so be sure to go wish him a happy birthday using this link.
The new joint Mars exploration program of NASA and ESA is quickly pushing forward to implement an agreed upon framework to construct an ambitious new generation of red planet orbiters and landers starting with the 2016 and 2018 launch windows.
The European-led ExoMars Trace Gas Mission Orbiter (TGM) has been selected as the first spacecraft of the joint initiative and is set to launch in January 2016 aboard a NASA supplied Atlas 5 rocket for a 9 month cruise to Mars. The purpose is to study trace gases in the martian atmosphere, in particular the sources and concentration of methane which has significant biological implications. Variable amounts of methane have been detected by a martian orbiter and ground based telescopes on earth. The orbiter will likely be accompanied by a small static lander provided by ESA and dubbed the Entry, Descent and Landing Demonstrator Module (EDM).
The NASA Mars Program is shifting its science strategy to coincide with the new joint venture with ESA and also to build upon recent discoveries from the current international fleet of martian orbiters and surface explorers Spirit, Opportunity and Phoenix (see my earlier mars mosaics). Doug McCuiston, NASA’s director of Mars Exploration at NASA HQ told me in an interview that, “NASA is progressing quickly from ‘Follow the Water’ through assessing habitability and on to a theme of ‘Seeking the Signs of Life’. Looking directly for life is probably a needle in the haystack, but the signatures of past or present life may be more wide spread through organics, methane sources, etc”.
NASA and ESA will issue an “Announcement of Opportunity for the orbiter in January 2010” soliciting proposals for a suite of science instruments according to McCuiston. “The science instruments will be competitively selected. They are open to participation by US scientists who can also serve as the Principal Investigators (PI’s)”. Proposals are due in 3 months and will be jointly evaluated by NASA and ESA. Instrument selections are targeted for announcement in July 2010 and the entire cost of the NASA funded instruments is cost capped at $100 million.
“The 2016 mission must still be formally approved by NASA after a Preliminary Design Review, which will occur either in late 2010 or early 2011. Funding until then is covered in the Mars Program’s Next Decade wedge, where all new-start missions reside until approved, or not, by the Agency”, McCuiston told me. ESA’s Council of Ministers just gave the “green light” and formally approved an initial budget of 850 million euros ($1.2 Billion) to start implementing their ExoMars program for the 2016 and 2018 missions on 17 December at ESA Headquarters in Paris, France. Another 150 million euros will be requested within two years to complete the funding requirement for both missions.
ESA has had to repeatedly delay its own ExoMars spacecraft program since it was announced several years ago due to growing complexity, insufficient budgets and technical challenges resulting in a de-scoping of the science objectives and a reduction in weight of the landed science payload. The ExoMars rover was originally scheduled to launch in 2009 and is now set for 2018 as part of the new architecture.
The Trace Gas orbiter combines elements of ESA’s earlier proposed ExoMars orbiter and NASA’s proposed Mars Science Orbiter. As currently envisioned the spacecraft will have a mass of about 1100 kg and carry a roughly 115 kg science payload, the minimum deemed necessary to accomplish its goals. The instruments must be highly sensitive in order to be capable of detecting the identity and extremely low concentration of atmospheric trace gases, characterizing the spatial and temporal variation of methane and other important species, locating the source origin of the trace gases and determining if they are caused by biologic or geologic processes. Current photochemical models cannot explain the presence of methane in the martain atmosphere nor its rapid appearance and destruction in space, time or quantity.
Among the instruments planned are a trace gas detector and mapper, a thermal infrared imager and both a wide angle camera and a high resolution stereo color camera (1 – 2 meter resolution). “All the data will be jointly shared and will comply with NASA’s policies on fully open access and posting into the Planetary Data System”, said McCuiston.
Another key objective of the orbiter will be to establish a data relay capability for all surface missions up to 2022, starting with 2016 lander and two rovers slotted for 2018. This timeframe could potentially coincide with Mars Sample Return missions, a long sought goal of many scientists.
If the budget allows, ESA plans to piggyback a small companion lander (EDM) which would test critical technologies for future missions. McCuiston informed me that, “The objective of this ESA Technology Demonstrator is validating the ability to land moderate payloads, so the landing site selection will not be science-driven. So expect something like Meridiani or Gusev—large, flat and safe. NASA will assist ESA engineering as requested, and within ITAR constraints.” EDM will use parachutes, radar and clusters of pulsing liquid propulsion thrusters to land.
“ESA plans a competitive call for instruments on their 3-4 kg payload”, McCuiston explained. “The Announcement of Opportunity will be open to US proposers as well so there may be some US PI’s. ESA wants a camera to ‘prove’ they got to the ground. Otherwise there is no significant role planned for NASA in the EDM”.
The lander would likely function as a weather station and be relatively short lived, perhaps 8 Sols or martian days, depending on the capacity of the batteries. ESA is not including a long term power source, such as from solar arrays, so the surface science will thus be limited in duration.
The orbiter and lander would separate upon arrival at Mars. The orbiter will use a series of aerobraking maneuvers to eventually settle into a 400 km high circular science orbit inclined at about 74 degrees.
The joint Mars architecture was formally agreed upon last summer at a bilateral meeting between Ed Weiler (NASA) and David Southwood (ESA) in Plymouth, UK. Weiler is NASA’s Associate Administrator for the Science Mission Directorate and Southwood is ESA’s Director of Science and Robotic Exploration. They signed an agreement creating the Mars Exploration Joint Initiative (MEJI) which essentially weds the Mars programs of NASA and ESA and delineates their respective program responsibilities and goals.
“The key to moving forward on Mars exploration is international collaboration with Europe”, Weiler said to me in an interview. “We don’t have enough money to do these missions separately. The easy things have been done and the new ones are more complex and expensive. Cost overruns on Mars Science Lab (MSL) have created budgetary problems for future mars missions”. To pay for the MSL overrun, funds have to be taken from future mars budget allocations from fiscal years 2010 to 2014.
“2016 is a logical starting point to work together. NASA can have a 2016 mission if we work with Europe but not if we work alone. We can do so much more by working together since we both have the same objectives scientifically and want to carry out the same types of mission”. Weiler and Southwood instructed their respective science teams to meet and lay out a realistic and scientifically justifiable approach. Weiler explained to me that his goal and hope was to reinstate an exciting Mars architecture with new spacecraft launching at every opportunity which occurs every 26 months and which advance the state of the art for science. “It’s very important to demonstrate a critical new technology on each succeeding mission”.
More on the 2018 mission plan and beyond in a follow up report.
Growing up on Star Trek, I was always told that space was the final frontier. What they never told me was that space is about as friendly to the human body as being microwaved alive in a frozen tundra–in essence, shelter is a necessity.
Like any Earthen home or building, an off world shelter on the Moon or Mars will need energy to keep its residents comfortable (not to mention alive), and power outages of any sort will not be tolerated–unless a person desires to be radiated and frozen (which is probably not a great way to “kick the bucket”).
While some may look towards solar power to help keep the lights on and the heat flowing, it may be wiser instead to look at an upcoming “fission battery” from Hyperion Power Generation to power future colonies on the Moon, Mars, and perhaps an plasma rocket powered starship as well.
Originally created by Dr. Otis Peterson while on staff at the Los Alamos National Laboratory in New Mexico, Hyperion Power Generation (which I’ll call HPG for short) has licensed Dr. Peterson’s miniature nuclear reactor which are actually small enough to fit inside a decent sized hot tub.
Despite their small stature (being 1.5 meters by 2.5 meters), one of these mini-reactors could provide enough energy to power 20,000 average sized American homes (or 70 MW’s of thermal energy in geek speak) and can last up to ten years.
Since HPG is designing these mini-nuclear reactors to require little human assistance (the “little” having to do with burying the reactors underground), these “nuclear batteries” would enable NASA (or a wealthy space company) to power an outpost on the Moon or Mars without having to rely upon the Sun’s rays–at least as a primary source for power.
HPG’s mini-reactors could also help power future star ships heading towards Jupiter or Saturn (or even beyond), providing enough energy to not only keep the humans on board alive and comfortable, but provide enough thrust via plasma rockets as well.
Scheduled to be released in 2013, these mini-reactors are priced at around $50 million each, which probably puts it outside the price range of the average private space corporation.
Despite the cost, it may be wise for NASA, the European Space Agency, Japan, India and (if the US is in a really good trusting mood) China to consider installing one (or several) of these mini-reactors for their respective bases, as it could enable humanity to actually do what has been depicted in scifi films and television shows–seek out new homes on new worlds and spread ourselves throughout the universe.
The U.S. House of Representatives Subcommittee on Space & Aeronautics held a hearing yesterday on the issue of how to ensure the future safety of human flight into space for both commercial and governmental agencies. The hearing was attended by a number of witnesses that represented NASA, one from the Commercial Spaceflight Federation, the CEO of a risk-analysis firm, and a former astronaut. The subcommittee was chaired by Rep. Gabrielle Giffords.
This hearing comes on the tails of the Augustine Commission final report, which examined the future of spaceflight in the U.S. and laid out a “flexible path” plan that includes utilizing private, commercial firms for human transport into Low Earth Orbit (LEO) and the International Space Station.
Yesterday’s hearing was meant to help inform members of Congress about the safety concerns presented to manned flights, and what future regulations will be needed if commercial companies start to have a larger role in human spaceflight. The hearing’s charter states as its purpose:
On December 2, 2009 the Subcommittee on Space and Aeronautics will hold a hearing focused on issues related to ensuring the safety of future human space flight in government and non-government space transportation systems. The hearing will examine (1) the steps needed to establish confidence in a space transportation system’s ability to transport U.S. and partner astronauts to low Earth orbit and return them to Earth in a safe manner, (2) the issues associated with implementing safety standards and establishing processes for certifying that a space transportation vehicle is safe for human transport, and (3) the roles that training and experience play in enhancing the safety of human space missions.
Witnesses at the hearing included Chief of Safety and Mission Assurance for NASA Bryan O’Connor, Constellation Program Manager Jeff Hanley, Aerospace Safety Advisory Panel Council Member John C. Marshall, President of the Commercial Spaceflight Federation Bretton Alexander, Vice President of Valador, Inc. Dr. Joseph R. Fragola, and former astronaut Lt. Gen. Thomas P. Stafford, USAF, who flew in some of the Apollo and Gemini missions.
Each witness gave statements to the panel, all of which is available in .pdf format on the committee’s site. After hearing the testimony of these witnesses, Rep. Giffords said:
“At the end of the day, I am left with the firm conviction that the U.S. government needs to ensure that it always has a safe way to get its astronauts to space and back. As I have said in the past, I welcome the growth of new commercial space capabilities in America and do not see them as competitors with, but rather complementary to the Constellation systems under development. Based on what we’ve heard today, I see no justification for a change in direction on safety-related grounds. Instead, I am very impressed with the steps that have been taken to infuse safety into the Constellation program, and want to encourage their continued efforts to make Ares and Orion as safe as possible.”
Part of the reason for the hearing was to compare the safety of commercial vehicles to the Constellation program for getting astronauts to the International Space Station after the Shuttle program is shut down. Constellation won’t be ready to go until 2015 at the earliest, so the gap of five years could potentially be filled by private contractors.
Of course, you might notice that only one of the members of the witness panel of six represents commercial interests, which has caused some critics – like the Orlando Sentinel – to call the safety hearing a “Pro-Constellation rally.” The Space Politics blog also pointed this lack of representation out.
Though commercial aerospace companies like SpaceX, Masten Space Systems and XCOR weren’t represented directly on the witness panel, they are members of the Commercial Spaceflight Federation. Bretton Alexander stressed the importance of safety in his statement, and also pointed out that private space companies could take over the majority LEO launches here at home to allow NASA and its partners the resources to go to the Moon (and beyond).
Future lunar astronauts may want to brush up on their spelunking skills: the first lava tube has been discovered on the moon.
In a recent paper published in Geophysical Research Letters, Junichi Haruyama and colleagues report that they have discovered a mysterious hole in the lunar surface in high resolution images from the Kaguya spacecraft. The hole is 65 meters in diameter and is located in the volcanic Marius Hills region on the near side of the moon, right in the middle of a long sinuous rille. Sinuous rilles are thought to be formed by flowing lava, either on the surface or in enclosed lava tubes.
Of course, there are a lot of ways to form a hole in the surface of the moon. The most obvious is with an impact: the moon has literally been battered to pieces over the years by rocks from space. Couldn’t this hole be a fresh impact crater? Nope. Haruyama’s team observed the hole nine separate times, at various illumination angles, and even when the sun was almost directly overhead it looked mostly black, suggesting that it is very deep. They calculate a depth of around 88 meters, so the hole is deeper than it is wide. No impact crater is like that.
Another possibility is that the hole is due to some sort of volcanic eruption, but there is no sign of volcanic deposits like lava flows or ash emanating from the hole. The hole is isolated, so it isn’t likely to be due to a fracture in the lunar crust either – you would expect such a fracture to form a chain of holes.
Haruyama’s team concluded that the most likely explanation is that the hole that they discovered is a “skylight” – a location where the roof of a lava tube collapsed, either when the lava filling the tube flowed away, or later in the moon’s history due to an impact, moonquake, or tidal forces from the Earth. If it is a lava tube, their calculations based on the multiple images of the hole show that the tube could be 370 meters across.
Lava tubes are important in understanding how lava was transported on the early moon, but they are not just a scientific curiosity: they may also provide valuable refuges for future human explorers. The surface of the moon is not protected from the harsh radiation of space by a magnetic field or a thick atmosphere, so a long term human presence would be most feasible if astronauts could spend most of their time shielded underground. Digging a hole large enough to fit an entire moon colony in it would be a huge engineering challenge, but lava tubes could provide ready-made locations for a well-shielded base, making future astronauts the most technologically advanced cave-dwellers in history.
The Dawn spacecraft – which is on a course to study the asteroid Vesta and dwarf planet Ceres – has taken up permanent residence in the asteroid belt as of November 13th. Dawn is officially the first human-made object to become a part of the asteroid belt, which is sandwiched between the orbits of Mars and Jupiter.Dawn didn’t move in without checking the place out first, though; this is the second visit for the craft, which remained there for 40 days in June of 2008. The lower boundary of the asteroids belt is defined as the furthest Mars gets away from the Sun during its orbit – 249,230,000 kilometers, or 154,864,000 miles.
Dawn, which was launched in September 2007, is on an eight-year, 4.9-billion kilometer (3-billion mile) journey to study the asteroid Vesta and the dwarf planet Ceres. By studying these members of the asteroid belt, NASA scientists hope to learn more about the formation of our Solar System. Because Vesta and Ceres are some of the largest members of the ring of asteroids between Mars and Jupiter, they are the most intact from when they were formed, and should act as a ‘time capsule’ to preserve information about what the early Solar System was like.
Dawn got a gravity assist from Mars in February of 2009, which propelled it past the planet and into the asteroid belt.
The spacecraft is expected to visit Vesta in August of 2011. Vesta is believed to be the source of most of the asteroid-origin meteorites that fall to ground here on Earth, and further study of the asteroid should confirm this.
In May of 2012, Dawn will make its way to Ceres, which lies further out in the asteroid belt. It will arrive there in July of 2015, where it will spend the remainder of its mission studying the icy dwarf planet, which may even have a tenuous atmosphere.
If you want to keep tabs on Dawn in its new home, the mission web site has a tool updated hourly, found here, which allows you to see where Dawn is right now. The tool includes simulated views of the Earth, Mars, Sun and Vesta from the vantage point of the spacecraft.
JPL has a fun article on their website detailing what future robotic exploration might entail: an armada of robots could one day fly above the mountain tops of Saturn’s moon Titan, cross its vast dunes and sail in its liquid lakes. This is the vision of Wolfgang Fink, from the California Institute of Technology. He says we are on the brink of a great paradigm shift in planetary exploration, and the next round of robotic explorers will be nothing like what we see today.
“The way we explore tomorrow will be unlike any cup of tea we’ve ever tasted,” said Fink. “We are departing from traditional approaches of a single robotic spacecraft with no redundancy that is Earth-commanded to one that allows for having multiple, expendable low-cost robots that can command themselves or other robots at various locations at the same time.”
Fink and his team members at Caltech, the U.S. Geological Survey and the University of Arizona are developing autonomous software and have built a robotic test bed that can mimic a field geologist or astronaut, capable of working independently and as part of a larger team. This software will allow a robot to think on its own, identify problems and possible hazards, determine areas of interest and prioritize targets for a close-up look.
The way things work now, engineers command a rover or spacecraft to carry out certain tasks and then wait for them to be executed. They have little or no flexibility in changing their game plan as events unfold; for example, to image a landslide or cryovolcanic eruption as it happens, or investigate a methane outgassing event.
“In the future, multiple robots will be in the driver’s seat,” Fink said. These robots would share information in almost real time. This type of exploration may one day be used on a mission to Titan, Mars and other planetary bodies. Current proposals for Titan would use an orbiter, an air balloon and rovers or lake landers.
In this mission scenario, an orbiter would circle Titan with a global view of the moon, with an air balloon or airship floating overhead to provide a birds-eye view of mountain ranges, lakes and canyons. On the ground, a rover or lake lander would explore the moon’s nooks and crannies. The orbiter would “speak” directly to the air balloon and command it to fly over a certain region for a closer look. This aerial balloon would be in contact with several small rovers on the ground and command them to move to areas identified from overhead.
“This type of exploration is referred to as tier-scalable reconnaissance,” said Fink. “It’s sort of like commanding a small army of robots operating in space, in the air and on the ground simultaneously.”
A rover might report that it’s seeing smooth rocks in the local vicinity, while the airship or orbiter could confirm that indeed the rover is in a dry riverbed – unlike current missions, which focus only on a global view from far above but can’t provide information on a local scale to tell the rover that indeed it is sitting in the middle of dry riverbed.
A current example of this type of exploration can best be seen at Mars with the communications relay between the rovers and orbiting spacecraft like the Mars Reconnaissance Orbiter. However, that information is just relayed and not shared amongst the spacecraft or used to directly control them.
“One day an entire fleet of robots will be autonomously commanded at once. This armada of robots will be our eyes, ears, arms and legs in space, in the air, and on the ground, capable of responding to their environment without us, to explore and embrace the unknown,” he added.
I very much enjoyed chatting with Buzz Aldrin a couple of weeks ago, for some stories leading up to the 40th anniversary of the July 20, 1969 Apollo 11 landing on the moon. I found him honest, personable and generous with his time.
But when his publicist offered to send a copy of his new book, “Magnificent Desolation,” I didn’t set my expectations too high. I didn’t know what to make of an autobiography by a retired Air Force pilot and astronaut. Doesn’t that history put the “Rocket Hero” pretty squarely in the category of techie or a jock — a non-writer type?
Well, color me impressed. The book arrived late last week, and I turned the last page this morning — looking for more to read!
Granted, Aldrin got help when he teamed up with writer Ken Abraham. But no writer can spin a book like “Magnificent Desolation” without an incredible story, and Aldrin is a master of that.
The book opens with a few chapters on the Apollo program that made him famous. Even though I’ve dabbled in some research the past few weeks — including catching up on the movie “In the Shadow of the Moon” and leafing through some books — I learned new details both whimsical and serious.
Who knew, for example, that American astronauts traditionally eat steak and eggs prior to launch? Or that Aldrin is such a font of deep thoughts, which has apparently been true for a long time:
“From space there were no observable borders between nations, no observable reasons for the wars we were leaving behind,” he remembers musing as the Earth got smaller in Apollo 11’s windows.
“Magnificent Desolation” is about as revealing as you can get in personal realms. Aldrin engages in a lengthy discussion of his decade of deep depression and alcoholism following the Apollo years, from which he eventually escaped. At his rock bottom, Aldrin had lost faith in himself, had no vision for his purpose in life, and was failing at his job — as a salesman of Cadillacs.
During our interview, Aldrin said he turned his life around by deciding that he could share his experiences for a greater good.
“Do you continue to descend into an abyss? Or do you try to make a difference with what you know best?” he remembers thinking.
These days, Aldrin lives a life fitting for a hero. He hobnobs with greats in every field, from journalists and athletes to international leaders, scientists and movie stars. He and his wife, Lois, have traveled the world for scuba diving excursions, ski trips and unflagging efforts to promote his primary passion (besides Lois): a return to the collective national motivation that helped fuel the lunar landings. He desperately wants to see America lead the charge toward space exploration — to Mars and/or a moon of Mars, and beyond.
Aldrin admits he’s been criticized in the past, even by some of his astronaut peers, for garnering so much publicity as the second man (after Neil Armstrong) to set foot on the moon.
“The truth was, no other astronaut, active or inactive, was out in the public trying to raise awareness about America’s dying space program. None of them,” he writes. He points out that he is not promoting himself: “I did not want ‘a giant leap for mankind’ to be nothing more than a phrase from the past.”
Besides pushing for a new era of space exploration, the book is also a testament to the benefits of citizen space travel, which Aldrin avidly promotes through his outreach efforts, including his non-profit Sharespace Foundation. Among them: “The United States will capture the lion’s share of the global satellite market,” and “NASA’s planetary probes will become far more affordable.”
Aldrin has used traditional channels to advance his ideas, addressing international audiences of all stripes and testifying before Congress. But the really fun stuff comes when he reaches out to younger audiences. He seems to stop at nothing to reach out to the next generations, to ensure that his space exploration dreams will stay alive.
“I look forward to these things happening during my lifetime,” he writes, “but if they don’t, please keep this dream alive; please keep going; Mars is waiting for your footsteps.”
This review is cross-posted at the writer’s website, anneminard.com.
Why do we explore? In the days of Magellan, Columbus and da Gama, undoubtedly the average person thought it was foolish to risk lives and spend large amounts of money to find out what was beyond the horizon. Those explorers didn’t find what they expected, but their explorations changed the world.
What drives us to explore and discover is what we don’t know, and the spirit of exploration inspires us to create and invent so that we can go explore and possibly change the world. We don’t know yet exactly what we’ll find if humans ever go to Mars, Europa or beyond, but if we stay in our caves we’ll never find out. Similarly, space probes and telescopes like Hubble, as well as ground-based telescopes have helped us explore remotely and have facilitated the discovery of so many things we didn’t know — and didn’t expect — about our universe.
However, exploration takes money.
The most often-used argument against space exploration is that we should use that money to alleviate problems here on Earth. But that argument fails to realize that NASA doesn’t just pack millions of dollar bills into a rocket and blast them into space. The money NASA uses creates jobs, providing an opportunity for some of the world’s brightest minds to use their talents to, yes, actually benefit humanity. NASA’s exploration spurs inventions that we use everyday, many which save lives and improve the quality of life. Plus, we’re expanding our horizons and feeding our curiosity, while learning so, so much and attempting to answer really big questions about ourselves and the cosmos.
NASA’s annual budget for fiscal year 2009 is $17.2 billion. The proposed budget for FY 2010 would raise it to about $18.7 billion. That sounds like a lot of money, and it is, but let’s put it in perspective. The US annual budget is almost $3 trillion and NASA’s cut of the US budget is less than 1%, which isn’t big enough to create even a single line on this pie chart. A few other things to put NASA’s budget in perspective:
Former NASA administrator Mike Griffin mentioned recently that US consumers spend more on pizza ($27 billion) than NASA’s budget. (Head nod to Ian O’Neill)
Miles O’Brien recently brought it to our attention that the amount of money Bernie Maddof scammed with his Ponzi scheme ($50 billion) is way bigger than NASA’s budget.
Americans spend a lot of money on some pretty ridiculous things. Returning to that oft-used phrase about spending the money used in space to solve the problems on Earth, consider this: *
Annually, Americans spend about $88.8 billion on tobacco products and another $97 billion on alcohol. $313 billion is spent each year in America for treatment of tobacco and alcohol related medical problems.
Likewise, people in the US spend about $64 billion on illegal drugs, and $114.2 billion for health-related care of drug use.
Americans also spend $586.5 billion a year on gambling. Italian’s also spend quite a bit – according to Stranieri, in 2011 gamblers in Italy spent more than 100 billion euros on gambling!
It’s possible we could give up some other things to help alleviate the problems in our country without having to give up the spirit of exploration.
*the numbers used here are from various years, depending on what was readily available, but range from the years 2000 and 2008.