First Look at the Orion Crew Module

2007-1106orion.thumbnail.jpg

I know it seems like we’ve had the space shuttle forever, and will have it forever, but the program will actually be shut down in just a few short years. What comes next? The Constellation program will continue the US human spaceflight efforts, eventually bringing people back to the Moon. As part of the program, workers at NASA unveiled a mockup of the Orion crew module.

The lifesize Orion crew module was build by engineers at NASA’s Dryden Flight Research Center’s Fabrication Branch. No, this aluminum mockup won’t actually be flying. It won’t even be used for aerodynamic testing. It’s just going to help engineers figure out how to cram everything in.

As the engineers are developing the various avionics systems, instrumentation, wire harness routing, etc, they’ll want a life-size mockup of the module to test how things fit together. Eventually, you can imagine future astronauts crawling inside, and giving engineers their feedback on the placement of the instrumentation, the feel of the controls, and cushiness of the seats.

This mockup will help engineers until the first abort flight test vehicle, called “Boilerplate 1” arrives for testing. This next testing vehicle is a flying simulator that will mimic the flight characteristics of the actual vehicle. Boilerplate 1 will have the same mass, dimensions, and aerodynamic properties of the Orion capsule, so it can be tested in wind tunnels and atop rockets.

NASA is planning two pad abort, and four ascent tests of the launch abort system as early as 2008, and continuing on through 2011.

So, don’t worry, the age of the space shuttle is almost over, and the age of the Constellation program is almost here. Look out Moon, here we come.

Original Source: NASA Dryden News Release

NASA is Building the Third Tallest Roller Coaster in the World, as an Escape System

2007-1005ares.thumbnail.jpg

Let’s hope that nothing ever goes wrong while astronauts are preparing to launch on their Ares 1 rocket – the new vehicle that will replace the space shuttle. But if there is a problem, and the astronauts need to escape right now, they’ll have a fun ride down – on the 3rd tallest roller coaster in the world. It’s called the Orion Emergency Egress System, but really, it’s a roller coaster, designed to get the astronauts away from the vehicle and into a protective bunker in moments.

Take a good look at the image that goes along with this story. See the bright yellow rails over on the right hand side of the image, dropping straight down from the gray platform. That’s the escape system. You’ll note it goes straight down.

The purpose of the Orion Emergency Egress System is to get astronauts and support personnel away from the Ares 1 vehicle, and into a safety bunker within 4 minutes. The solution that NASA has come up with should be perfect, carrying astronauts and workers down away from the rocket, right to the bunker’s door.

For previous launch vehicles, NASA had cables near the door to the launch vehicle. If there was a problem, people could enter a basket that slides down a cable to an area near the bunker. The problem was that it was very difficult to get incapacitated people into the basket and down to the safety of the bunker. With the new egress system, healthy workers can just put the wounded in seats and let them ride down to safety.

NASA called in the world’s roller coaster designers to help them create the system. In fact, from a height of 116 metres (380 feet), the Orion Emergency Egress System would be the third tallest roller coaster in the world, after the Kingda Ka at Six Flags Great Adventure in Jackson, New Jersey, and the Top Thrill Dragster at Cedar Point in Sandusky, Ohio.

Original Source: NASA News Release

Tether to Keep Asteroid Explorers Grounded

2007-0926astronaut.thumbnail.jpg

Here on Earth, gravity keeps us firmly on solid ground. But when astronauts set foot on some of the more exotic objects in the Solar System, just walking is going to be a struggle. In the microgravity of an asteroid, every step astronauts take will send him flying up in a long arc, and maybe out into space. It would be almost impossible to get around. Fortunately, MIT researchers have developed a tether system that could keep astronauts firmly anchored to the surface, but still let them walk around.

When humans first set foot on the Moon, they learned right away that the lower gravity was going to cause problems getting around. It took a few missions, but astronauts finally perfected a silly-looking hop that allowed them to skip around in the 1/6th gravity. But on an asteroid which can be only a few kilometres across, the wrong step could put an astronaut into orbit; the gravity’s that low. As long as the asteroid is above 8 km or so, a wrong footed astronaut would eventually return to the surface, but it would make exploration infuriating.

What the MIT researchers have developed is a tether system that astronauts would attach to the surface of the asteroid. The ropes would be strung completely around the asteroid, sort of like putting a rubber band around a ball. Once the lightweight ropes were in place, they would apply pressure downward on the astronauts, giving them a sort of artificial gravity. The idea will be published in an upcoming issue of the journal Acta Astronautica.

Previous researchers have suggested that astronauts could bolt themselves to the surface of the asteroid, but that might not be possible. Researcher Ian Garrick-Bethell describes the flaw in that plan, “it would be like trying to bolt yourself to a pile of gravel or sand.”

The team envisions a rocket that would fly around the asteroid, unraveling a spool of rope. Once the spacecraft completes an orbit of the asteroid, the loop is formed and then tightened.

Nobody still really knows what the surface of an asteroid will be like. Even this might now work, as the rope might cut into the surface of the asteroid and not be usable to hold an astronaut down. But at least they could use it as a handhold to drag themselves along without flying away.

Original Source: MIT News Release

Everything’s Go for Saturday’s Phoenix Lander Launch

world.thumbnail.jpg

All systems look good for Saturday’s launch of NASA Phoenix Mars Lander from Florida’s Cape Canaveral. If everything goes as planned, the latest visitor to the Red Planet will blast off as early as August 4th at 0926 UTC (5:26 am EDT) atop a Boeing Delta II rocket. A second launch windows is also possible later on in the day.

The Delta II rocket will carry the Phoenix into orbit, and then give it a push into its flight trajectory about 90 minutes later. This will begin the 8 month journey to reach the Red Planet; the spacecraft will eventually cover a distance of 679 million kilometres, arriving at Mars on May 25, 2008.

When it reaches Mars, the spacecraft will enter the planet’s atmosphere directly, aiming for a landing spot at 68.35 degrees north latitude – the equivalent of northern Alaska back on Earth. It will reach the surface using a combination of parachutes and retro-rockets.

Once it gets to the ground, the Mars Phoenix Lander is stuck; it’s a lander, not a rover. It’ll use a collection of scientific instruments, including a long digging arm to investigate its surroundings. Its will be to probe down into the ground beneath the surface, searching for water. The lander’s instruments are designed to search for evidence of periodic melting of the ice. This would help scientists know if this region represents a habitable environment for microbes.

Good luck Phoenix.

Original Source:NASA JPL News Release

Carnival of Space #14

2007-0802pluto.thumbnail.jpg

The carnival is back in town. Once again, I’m happy to host all manner of space blogs with the Carnival of Space. This gives you a chance to see how there’s a great big Universe of space writing out there. It’s a big group this week.

On the 38th anniversary of the first Moon landing, FlyingSinger recalled where he was on that day, how a supportive teacher had helped him get there, and how being there helped him to get into college and beyond. It’s really the story of how a young space nerd eventually became… a much older space nerd.

Astroblog has some stupid mobile phone tricks. Following “Animations of Venus”, made with low cost equipment, the ultimate low cost astrophotography, with a mobile phone camera. Amaze your friends!

After a terrible week for NASA, voices are again being raised accusing the space program of being too expensive and too dangerous, an extravagant luxury we can’t afford. This post on Cumbrian Sky looks at the recent events that have dominated the headlines, and concludes that despite setbacks like this, the “conquest of space” is ultimately inevitable, and something we should celebrate and support, not dismiss.

Phil for Humanity jumps into the debate whether people or robots should explore outer space. He gives a more detailed investigation into both sides of the argument.

Poor Pluto. As we near the one year anniversary of the IAU’s historic ‘re-definition-ing’ of the word planet, many people know that Pluto is no longer a planet, but a large majority of people don’t know why Pluto is not a planet. The common misconception is that Pluto itself was demoted, when in fact, the definition of the word ‘Planet’ was changed; and Pluto just did not fit the definition. Astroversity gives you an easy-to-follow explanation of why Pluto is no longer a planet.

The Moon is an ideal location for a variety of observations. A Babe in the Universe has an article about how a 2-meter multi-wavelength instrument could be placed on the Moon in a short time at a surprisingly low cost.

Advancednano discusses a variant of the nuclear thermal gaseous core rocket, which does not put any radiation into the atmosphere yet has 6.7 times the ISP of the space shuttle and can lift 40 times the cargo of the space shuttle.

Want to hunt comets and asteroids using images from the STEREO spacecraft? Astroblog gives you a handy guide to help you along, and an important note on the pesky problem of parallax.

Astropixie talks about the Martian blueberries, how they were formed, and their implications for water and life on Mars.

When astronauts get back to the Moon, it would be handy if they could pick up their oxygen locally. Spacefiles explains the ways you can extract oxygen from lunar regolith.

Emily Lakdawalla from the Planetary Society blog has an article about Saturn’s moon Helene. Voyager 2’s best view of Helene showed a blob a few pictures across. Cassini has been getting closer and closer to Dione’s co-orbital moon, and the most recent pictures showed a blocky world with sharp craters and mountainous ridges.

Selenian Boondocks has a brief overview of some recent research that suggests the our nearest neighbor might be a much more interesting place – both scientifically and economically – than previously imagined.

Centauri Dreams has an article called Galactic Drift and Mass Extinction. It looks at recent work on a possible cycle in mass extinction events on Earth that may be related to the Solar System’s position in the Milky Way.

Normally cynical, the Space Cynics are downright excited by the new 25 meter sub-millimeter telescope being built in Chile.

Before people can dream about mining asteroids, we are going to need to figure out how to land on them first – a problem that NASA and DigitalSpace may have already solved. Colony Worlds has the story.

Robot Guy has the space video of the week. This time, it’s the X-Prize winning flight of Scaled Composites’ SpaceShipOne.

Dr. Pamela Gay has all the details on a new study of 231 low metallicity stars in the local neighborhood points to past objects getting eaten by the Milky Way. As these stars pass though out area as the orbit in from the Halo, they let us learn about their past: where they came from and when they where eaten.

Phil Plait highlights some beautiful photographs of the Veil Nebula, captured by the Hubble Space Telescope.

And finally, for my own humble submission, I look forward through time, though the End of Everything.

Prototype Moon Rovers Tested in the Arctic

2007-0720moonrover.thumbnail.jpg

The question of whether humans or robots should explore space has been decided by NASA: it’ll be both. In the future, NASA anticipates that humans will work with robotic explorers to gather and analyze data more efficiently than either could do alone. This will be the eventual scenario when humans set foot on the Moon again, as part of the Vision for Space Exploration.

Two prototype Moon rovers are currently crawling around a polar desert in the Arctic Circle, helping scientists develop the skills and experience they’ll need to do this for real on other worlds. The robots are named K10 Black and K10 Red, and carry 3-D laser scanners and ground-penetrating radar.

They arrived at the Haughton Crater on Devon Island, Canada on July 12, and will continue their operations until July 31. The robots are using different techniques to study the interior of the 20 km (12.4 mile) crater. For example, their 3-D laser scanner can map topographic features as much as a kilometre away, and the ground penetrating radar can peer down 5 metres. The robots are just covering the terrain like lawn mowers, mapping it out strip by strip.

Over the course of the study, the rovers will cover an area of approximately 120 acres of terrain, operated completely remotely from the Haughton-Mars base camp located several kilometres away.

Original Source: NASA News Release

The Mars Landing Approach: Getting Large Payloads to the Surface of the Red Planet

The first true-colour image of Mars from ESA’s Rosetta generated using the OSIRIS orange (red), green and blue colour filters. The image was acquired on 24 February 2007 at 19:28 CET from a distance of about 240 000 km. Credit: MPS for OSIRIS Team MPS/UPD/LAM/ IAA/ RSSD/ INTA/ UPM/ DASP/ IDA

Some proponents of human missions to Mars say we have the technology today to send people to the Red Planet. But do we? Rob Manning of the Jet Propulsion Laboratory discusses the intricacies of entry, descent and landing and what needs to be done to make humans on Mars a reality.

There’s no comfort in the statistics for missions to Mars. To date over 60% of the missions have failed. The scientists and engineers of these undertakings use phrases like “Six Minutes of Terror,” and “The Great Galactic Ghoul” to illustrate their experiences, evidence of the anxiety that’s evoked by sending a robotic spacecraft to Mars — even among those who have devoted their careers to the task. But mention sending a human mission to land on the Red Planet, with payloads several factors larger than an unmanned spacecraft and the trepidation among that same group grows even larger. Why?

Nobody knows how to do it.

Surprised? Most people are, says Rob Manning the Chief Engineer for the Mars Exploration Directorate and presently the only person who has led teams to land three robotic spacecraft successfully on the surface of Mars.

“It turns out that most people aren’t aware of this problem and very few have worried about the details of how you get something very heavy safely to the surface of Mars,” said Manning.

He believes many people immediately come to the conclusion that landing humans on Mars should be easy. After all, humans have landed successfully on the Moon and we can land our human-carrying vehicles from space to Earth. And since Mars falls between the Earth and the Moon in size, and also in the amount of atmosphere it has then the middle ground of Mars should be easy. “There’s the mindset that we should just be able to connect the dots in between,” said Manning.

But as of now, the dots will need to connect across a large abyss.

“We know what the problems are. I like to blame the god of war,” quipped Manning. “This planet is not friendly or conducive for landing.”

The real problem is the combination of Mars’ atmosphere and the size of spacecraft needed for human missions. So far, our robotic spacecraft have been small enough to enable at least some success in reaching the surface safely. But while the Apollo lunar lander weighed approximately 10 metric tons, a human mission to Mars will require three to six times that mass, given the restraints of staying on the planet for a year. Landing a payload that heavy on Mars is currently impossible, using our existing capabilities. “There’s too much atmosphere on Mars to land heavy vehicles like we do on the moon, using propulsive technology completely,” said Manning, “and there’s too little atmosphere to land like we do on Earth. So, it’s in this ugly, grey zone.”

But what about airbags, parachutes, or thrusters that have been used on the previous successful robotic Mars missions, or a lifting body vehicle similar to the space shuttle?

None of those will work, either on their own or in combination, to land payloads of one metric ton and beyond on Mars. This problem affects not only human missions to the Red Planet, but also larger robotic missions such as a sample return. “Unfortunately, that’s where we are,” said Manning. “Until we come up with a whole new trick, a whole new system, landing humans on Mars will be an ugly and scary proposition.”

Road Mapping
In 2004 NASA organized a Road Mapping session to discuss the current capabilities and future problems of landing humans on Mars. Manning co-chaired this event along with Apollo 17 astronaut Harrison Schmitt and Claude Graves, who has since passed away, from the Johnson Space Center. Approximately 50 other people from across NASA, academia and industry attended the session. “At that time the ability to explain these problems in a coherent way was not as good,” said Manning. “The entry, descent and landing process is actually made up of people from many different disciplines. Very few people really understood, especially for large scale systems, what all of the issues were. At the Road Mapping session we were able to put them all down and talk about them.”

The major conclusion that came from the session was that no one has yet figured out how to safely get large masses from speeds of entry and orbit down to the surface of Mars. “We call it the Supersonic Transition Problem,” said Manning. “Unique to Mars, there is a velocity-altitude gap below Mach 5. The gap is between the delivery capability of large entry systems at Mars and the capability of super-and sub-sonic decelerator technologies to get below the speed of sound.”

Plainly put, with our current capabilities, a large, heavy vehicle, streaking through Mars’ thin, volatile atmosphere only has about ninety seconds to slow from Mach 5 to under Mach 1, change and re-orient itself from a being a spacecraft to a lander, deploy parachutes to slow down further, then use thrusters to translate to the landing site and finally, gently touch down.

No Airbags
When this problem is first presented to people, the most offered solution, Manning says, is to use airbags, since they have been so successful for the missions that he has been involved with; the Pathfinder rover, Sojourner and the two Mars Exploration Rovers (MER), Spirit and Opportunity.

But engineers feel they have reached the capacity of airbags with MER. “It’s not just the mass or the volume of the airbags, or the size of the airbags themselves, but it’s the mass of the beast inside the airbags,” Manning said. “This is about as big as we can take that particular design.”

In addition, an airbag landing subjects the payload to forces between 10-20 G’s. While robots can withstand such force, humans can’t. This doesn’t mean airbags will never be used again, only that airbag landings can’t be used for something human or heavy.

Even the 2009 Mars Science Laboratory (MSL) rover, weighing 775 kilograms (versus MER at 175.4 kilograms each) requires an entirely new landing architecture. Too massive for airbags, the small-car sized rover will use a landing system dubbed the Sky Crane. “Even though some people laugh when they first see it, my personal view is that the Sky Crane is actually the most elegant system we’ve come up with yet, and the simplest,” said Manning. MSL will use a combination of a rocket-guided entry with a heat shield, a parachute, then thrusters to slow the vehicle even more, followed by a crane-like system that lowers the rover on a cable for a soft landing directly on its wheels. Depending on the success of the Sky Crane with MSL, it’s likely that this system can be scaled for larger payloads, but probably not the size needed to land humans on Mars.

Atmospheric Anxiety and Parachute Problems
“The great thing about Earth,” said Manning “is the atmosphere.” Returning to Earth and entering the atmosphere at speeds between 7-10 kilometers per second, the space shuttle, Apollo and Soyuz capsules and the proposed Crew Exploration Vehicle (CEV) will all decelerate to less than Mach 1 at about twenty kilometers above the ground just by skimming through Earth’s luxuriously thick atmosphere and using a heat shield. To reach slower speeds needed for landing, either a parachute is deployed, or in the case of the space shuttle, drag and lift allow the remainder of the speed to bleed away.

But Mars’ atmosphere is only one per cent as dense as Earth’s. For comparison, Mars atmosphere at its thickest is equivalent to Earth’s atmosphere at about 35 kilometers above the surface The air is so thin that a heavy vehicle like a CEV will basically plummet to the surface; there’s not enough air resistance to slow it down sufficiently. Parachutes can only be opened at speeds less than Mach 2, and a heavy spacecraft on Mars would never go that slow by using just a heat shield. “And there are no parachutes that you could use to slow this vehicle down,” said Manning. “That’s it. You can’t land a CEV on Mars unless you don’t mind it being a crater on the surface.”

That’s not good news for the Vision for Space Exploration. Would a higher lift vehicle like the space shuttle save the day? “Well, on Mars, when you use a very high lift to weight to drag ratio like the shuttle,” said Manning, “in order to get good deceleration and use the lift properly, you’d need to cut low into the atmosphere. You’d still be going at Mach 2 or 3 fairly close to the ground. If you had a good control system you could spread out your deceleration to lengthen the time you are in the air. You’d eventually slow down to under Mach 2 to open a parachute, but you’d be too close to the ground and even an ultra large supersonic parachute would not save you.”

Supersonic parachute experts have concluded that to sufficiently slow a large shuttle-type vehicle on Mars and reach the ground at reasonable speeds would require a parachute one hundred meters in diameter.

“That’s a good fraction of the Rose Bowl. That’s huge,” said Manning. “We believe there’s no way to make a 100-meter parachute that can be opened safely supersonically, not to mention the time it takes to inflate something that large. You’d be on the ground before it was fully inflated. It would not be a good outcome.”

Heat Shields and Thrusters

It’s not that Mars’ atmosphere is useless. Manning explained that with robotic spacecraft, 99% of the kinetic energy of an incoming vehicle is taken away using a heat shield in the atmosphere. “It’s not inconceivable that we can design larger, lighter heat shields,” he said, “but the problem is that right now the heat shield diameter for a human-capable spacecraft overwhelms any possibility of launching that vehicle from Earth.” Manning added that it would almost be better if Mars were like the moon, with no atmosphere at all.

If that were the case, an Apollo-type lunar lander with thrusters could be used. “But that would cause another problem,” said Manning, “in that for every kilogram of stuff in orbit, it takes twice as much fuel to get to the surface of Mars as the moon. Everything is twice as bad since Mars is about twice as big as the moon.” That would entail a large amount of fuel, perhaps over 6 times the payload mass in fuel, to get human-sized payloads to the surface, all of which would have to be brought along from Earth. Even on a fictitious air-less Mars that is not an option.

But using current thruster technology in Mars’ real, existing atmosphere poses aerodynamic problems. “Rocket plumes are notoriously unstable, dynamic, chaotic systems,” said Manning. “Basically flying into the plume at supersonics speeds, the rocket plume is acting like a nose cone; a nose cone that’s moving around in front of you against very high dynamic pressure. Even though the atmospheric density is very low, because the velocity is so high, the forces are really huge.”

Manning likened theses forces to a Category Five hurricane. This would cause extreme stress, with shaking and twisting that would likely destroy the vehicle. Therefore using propulsive technology alone is not an option.

Using thrusters in combination with a heat shield and parachute also poses challenges. Assuming the vehicle has used some technique to slow to under Mach 1, using propulsion just in last stages of descent to gradually adjust the lander’s trajectory would enable the vehicle to arrive very precisely at the desired landing site. “We’re looking at firing thrusters less than 1 kilometer above the ground. Your parachute has been discarded, and you see that you are perhaps 5 kilometers south of where you want to land,” said Manning. “So now you need the ability to turn the vehicle over sideways to try to get to your landing spot. But this may be an expensive option, adding a large tax in fuel to get to the desired landing rendezvous point.”

Additionally, on the moon, with no atmosphere or weather, there is nothing pushing against the vehicle, taking it off target, and a la Neil Armstrong on Apollo 11, the pilot can “fly out the uncertainties” as Manning called it, to reach a suitable or desired landing site. On Mars, however, the large variations in the density of the atmosphere coupled with high and unpredictable winds conspire to push vehicles off course. “We need to have ways to fight those forces or ways to make up for any mis-targeting using the propulsion system,” said Manning. “Right now, we don’t have that ability and we’re a long way from making it happen.”

Supersonic Decelerators

The best hope on the horizon for making the human enterprise on Mars possible is a new type of supersonic decelerator that’s only on the drawing board. A few companies are developing a new inflatable supersonic decelerator called a Hypercone.

Imagine a huge donut with a skin across its surface that girdles the vehicle and inflates very quickly with gas rockets (like air bags) to create a conical shape. This would inflate about 10 kilometers above the ground while the vehicle is traveling at Mach 4 or 5, after peak heating. The Hypercone would act as an aerodynamic anchor to slow the vehicle to Mach 1.

Glen Brown, Chief Engineer at Vertigo, Inc. in Lake Elsinore, California was also a participant in the Mars Road Mapping session. Brown says Vertigo has been doing extensive analysis of the Hypercone, including sizing and mass estimates for landers from four to sixty metric tons. “A high pressure inflatable structure in the form a of a torus is a logical way to support a membrane in a conical shape, which is stable and has high drag at high Mach numbers,” Brown said, adding that the structure would likely be made of a coated fabric such as silicon-Vectran matrix materials. Vertigo is currently competing for funding from NASA for further research, as the next step, deployment in a supersonic wind tunnel, is quite expensive.

The structure would need to be about thirty to forty meters in diameter. The problem here is that large, flexible structures are notoriously difficult to control. At this point in time there are also several other unknowns of developing and using a Hypercone.

One train of thought is that if the Hypercone can get the vehicle under Mach 1, then subsonic parachutes could be used, much like the ones employed by Apollo, or that the CEV is projected to use to land on Earth. However, it takes time for the parachutes to inflate, and subsequently there would only be a matter of seconds of use, allowing time to shed the parachutes before converting to a propulsive system.

“You’d also need to use thrusters,” said Manning. “You’re falling 10 times faster because the density of Mars’ atmosphere is 100 times less than Earth’s. That means that you can’t just land with parachutes and touch the ground. You’d break people’s bones, if not the hardware. So you need to transition from a parachute system to an Apollo-like lunar legged lander sometime before you get to the ground.”

Manning believes that those who are immersed in these matters, like himself, see the various problems fighting each other. “It’s hard to get your brain around all these problems because all the pieces connect in complex ways,” he said. “It’s very hard to see the right answer in your mind’s eye.”

The additional issues of creating new lightweight but strong shapes and structures, with the ability to come apart and transform from one stage to another at just the right time means developing a rapid-fire Rube Goldberg-like contraption.

“The honest truth of the matter,” said Manning, “is that we don’t have a standard canonical form, a standard configuration of systems that allows us to get to the ground, with the right size that balances the forces, the loads, the people, and allows us to do all the transformation that needs to be done in the very small amount of time that we have to land.”

Other Options and Issues

Another alternative discussed at the 2004 Mars Road Mapping session was the space elevator.

“Mars is really begging for a space elevator,” said Manning. “I think it has great potential. That would solve a lot of problems, and Mars would be an excellent platform to try it.” But Manning admitted that the technology needed to suspend a space elevator has not yet been invented. The issues with space elevator technology may be vast, even compared with the challenges of landing.

Despite these known obstacles, there are few at NASA currently spending any quality time working on any of the issues of landing humans on Mars.

Manning explained, “NASA does not yet have the resources to solve this problem and also develop the CEV, complete the International Space Station and do the lunar landing systems development at the same time. But NASA knows that this is on its plate of things to do in the future and is just beginning to get a handle on the needed technology developments. I try to go out of my way to tell this story because I’m encouraging young aeronautical engineering students, particularly graduate students, to start working on this problem on their own. There is no doubt in my mind that with their help, we can figure out how to make reliable human-scale landing systems work on Mars.”

While there is much interest throughout NASA and the space sector to try to tackle these issues in the ensuing years, technology also needs a few more years to catch up to our dreams of landing humans on Mars.

And this story, like all good engineering stories, will inevitably read like a good detective novel with technical twist and turns, scientific intrigue, and high adventure on another world.

Building an Engine that Can Throttle Down

throttling.thumbnail.jpg

Here on Earth, we’ve gotten used to the concept of a car’s accelerator pedal. Put it down a little, and the car accelerates slowly. Put the “pedal to the metal” and you’ll go faster. Imagine trying to park your car when you only have two choices: off and full speed. Developing a similar concept for a rocket is very difficult. Most rockets are designed to go at full blast, or nothing at all.

A variable acceleration rocket would tremendously useful for landing on the Moon. Instead of firing the landing rockets in short bursts, astronauts could throttle down for a nice smooth landing. But building an engine like this is harder than it sounds.

NASA researchers think they’ve got a prototype engine that should give the variable rate of acceleration astronauts are looking for. The newly developed Common Extensible Cryogenic Engine (CECE) is a variant on the RL10 engine that boosted the Surveyor robot landers to the Moon back in 1966-68. The RL10 is designed to only go full throttle, so adding the variable thrust was difficult.

The main problem is that changing the throttle affects how the whole engine functions. At low power, liquid hydrogen can slow and vapourize in the coolant lines. This might cause the engine to stall. During one test, the experimenters discovered that the engine “chugged”, vibrating 100 times a second. It turned out oxygen vapours were forming on the injector plate, inhibiting normal flow, causing the vibrations.

It’s not ready for space yet, but CECE might eventually become part of the design of a future lunar lander. The astronauts returning to the Moon will be very appreciative.

Original Source:Science@NASA

Sleek Spacesuit Designed

2007-0716biosuit.thumbnail.jpg

Current spacesuit designs are bulky and cumbersome to wear. That’s because they put an entire atmosphere around the astronaut, keeping them safe from the vacuum and temperature extremes of space. Instead of encasing an astronaut in a complete atmosphere, an alternative design using mechanical counter-pressure could give astronauts greater flexibility working in the vacuum of space.

Dava Newman, a professor of aeronautics and astronautics and engineering systems at MIT has designed a new spacesuit prototype that looks more like a superhero costume than a bulky NASA spacesuit. It works through the process of mechanical counter-pressure. Instead of an atmosphere to put pressure on the outside of a human body, it uses tight layers of fabric to give skin the pressure it needs.

Dava Newmon wearing the biosuit. Image credit: Donna CoveneyCurrent spacesuit designs can weigh up to 136 kg (300 pounds), and are so restrictive to movement, that astronauts will spend the majority of their energy just working against the suit to bend it. A fabric-based design would be much more flexible and give astronauts a freedom of movement. Another advantage is safety. Even the slightest tear on a spacesuit will compromise its atmosphere, while a fabric suit can be easily patched up. To deal with the temperature extremes, astronauts could just put on and take off specially designed clothing.

The challenge in building a fabric-based spacesuit is to come up with a design that can exert close to one-third the pressure exerted by Earth’s atmosphere. This is 30 KPa (kilopascals). The current prototype suit only provides 20 KPa consistently, but new models have gotten up to 25 to 30 Kpa. The best solution might end up being a hybrid, with the head and torso covered with a traditional spacesuit, and the arms and legs covered only in fabric.

Original Source: MIT News Release

New Rocket Could Launch Really Big Telescopes

Think.thumbnail.jpg

If you’ve got a really big rocket, what should you use it for? If you’re an astronomer, you’ll want it used to launch really big telescopes; observatories that would dwarf the Hubble Space Telescope.

NASA’s new Ares V launcher, is being developed as part of the Vision for Space Exploration. Once completed, this mighty launcher will deliver cargo all the way to the Moon. In fact, it’ll be capable of launching 8% more weight than the Saturn V rockets that put humans on the Moon during the Apollo missions.

Philip Stahl, an engineer at NASA’s Marchall Space Flight Center thinks it should also be used to launch gigantic telescopes. How big? According to Stahl, Ares could loft a telescope with a primary mirror 8+ metres across. This would provide a telescope that could see objects 3 times sharper than Hubble, but more important, it could see objects 11 times fainter.

The main telescope could be launched by Ares V, and follow on missions by smaller rockets could send up new scientific instruments that attach to the end of the mirror. In this way, the observatory could be used for 50 years, just like an Earth-based telescope.

Original Source: NASA