‘Walk on Mars’ with Moonwalker Buzz Aldrin at Limited Engagement ‘Destination Mars’ Holographic Exhibit at KSC Visitor Complex

A scene from ‘Destination Mars’ of Buzz Aldrin and NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Buzz Aldrin and  NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Buzz Aldrin and NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft

KENNEDY SPACE CENTER VISITOR COMPLEX, FL- Think a Holodeck adventure on Star Trek guided by real life Apollo 11 moonwalker Buzz Aldrin and you’ll get a really good idea of what’s in store for you as you explore the surface of Mars like never before in the immersive new ‘Destination Mars’ interactive holographic exhibit opening to the public today, Monday, Sept.19, at the Kennedy Space Center visitor complex in Florida.

The new Red Planet exhibit was formally opened for business during a very special ribbon cutting ceremony featuring Buzz Aldrin as the star attraction – deftly maneuvering the huge ceremonial scissors during an in depth media preview and briefing on Sunday, Sept. 18, 2016, including Universe Today.

The fabulous new ‘Destination Mars’ limited engagement exhibit magically transports you to the surface of the Red Planet via Microsoft HoloLens technology.

It literally allows you to ‘Walk on Mars’ using real imagery taken by NASA’s Mars Curiosity rover and explore the alien terrain, just like real life scientists on a geology research expedition.

A ceremonial ribbon is cut for the opening of new "Destination: Mars" experience at the Kennedy Space Center visitor complex in Florida during media preview on Sept. 18, 2016. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA's Jet Propulsion Laboratory in Pasadena, California. Credit: Ken Kremer/kenkremer.com
A ceremonial ribbon is cut for the opening of new “Destination: Mars” experience at the Kennedy Space Center visitor complex in Florida during media preview on Sept. 18, 2016. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California. Credit: Ken Kremer/kenkremer.com

“Technology like HoloLens leads us once again toward exploration,” Aldrin said during the Sept. 18 media preview. “It’s my hope that experiences like “Destination: Mars” will continue to inspire us to explore.”

Destination Mars was jointly developed by NASA’s Jet Propulsion Laboratory – which manages the Curiosity rover mission for NASA – and Microsoft HoloLens.

A ceremonial ribbon is cut for the opening of new "Destination: Mars" experience at the Kennedy Space Center visitor complex in Florida during media preview on Sept. 18, 2016. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA's Jet Propulsion Laboratory in Pasadena, California. Credit: Dawn Taylor Leek
A ceremonial ribbon is cut for the opening of new “Destination: Mars” experience at the Kennedy Space Center visitor complex in Florida during media preview on Sept. 18, 2016. From the left are Therrin Protze, chief operating officer of the visitor complex; center director Bob Cabana; Apollo 11 astronaut Buzz Aldrin; Kudo Tsunoda of Microsoft; and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California. Credit: Dawn Taylor Leek

Buzz was ably assisted at the grand ribbon cutting ceremony by Bob Cabana, former shuttle commander and current Kennedy Space Center Director, Therrin Protze, chief operating officer of the visitor complex, Kudo Tsunoda of Microsoft, and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California.

The experience is housed in a pop-up theater that only runs for the next three and a half months, until New Years Day, January 1, 2017.

Before entering the theater, you will be fitted with specially adjusted HoloLens headsets individually tailored to your eyes.

The entire ‘Destination Mars’ experience only lasts barely 8 minutes.
So, if you are lucky enough to get a ticket inside you’ll need to take advantage of every precious second to scan around from left and right and back, and top to bottom. Be sure to check out Mount Sharp and the rim of Gale Crater.

You’ll even be able to find a real drill hole that Curiosity bored into the Red Planet at Yellowknife Bay about six months after the nailbiting landing in August 2012.

During your experience you will be guided by Buzz and Curiosity rover driver Erisa Hines of JPL. They will lead you to areas of Mars where the science team has made many breakthrough discoveries such as that liquid water once flowed on the floor of Curiosity’s Gale Crater landing site.

Curiosity rover driver Erisa Hines and Jeff Norris of NASA's Jet Propulsion Laboratory at the grand opening for Destination Mars at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek
Curiosity rover driver Erisa Hines and Jeff Norris of NASA’s Jet Propulsion Laboratory at the grand opening for Destination Mars at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek

The scenes come to life based on imagery combining the Mastcam color cameras and the black and white navcam cameras, Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California, told Universe Today in an interview.

Among the surface features visited is Yellowknife Bay where Curiosity conducted the first interplanetary drilling and sampling on another planet in our Solar System. The sample were subsequently fed to and analyzed by the pair of miniaturized chemistry labs – SAM and CheMin – inside the rovers belly.

They also guide viewers to “a tantalizing glimpse of a future Martian colony.”

“The technology that accomplishes this is called “mixed reality,” where virtual elements are merged with the user’s actual environment, creating a world in which real and virtual objects can interact, “ according to a NASA description.

“The public experience developed out of a JPL-designed tool called OnSight. Using the HoloLens headset, scientists across the world can explore geographic features on Mars and even plan future routes for the Curiosity rover.”

Curiosity is currently exploring the spectacular looking buttes in the Murray Buttes region in lower Mount Sharp. Read my recent update here.

A scene from ‘Destination Mars’ of Erisa Hines and  NASA’s Curiosity Mars rover with Mount Sharp Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Erisa Hines and NASA’s Curiosity Mars rover with Mount Sharp Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft

Be sure to pay attention or your discovery walk on Mars will be over before you know it. Personally, as a Mars lover and Mars mosaic maker I was thrilled by the 3 D reality and I was ready for more.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo

This limited availability, timed experience is available on a first-come, first-served basis. Reservations must be made the day of your visite at the Destination: Mars reservation counter, says the KSC Visitor Complex (KSCVC).

You can get more information or book a visit to Kennedy Space Center Visitor Complex, by clicking on the website link:

https://www.kennedyspacecenter.com/things-to-do/destination-mars.aspx

Be sure to visit this spectacular holographic exhibit before it closes on New Year’s Day 2017 because it is only showing at KSCVC.

There are no plans to book it at other venues, Norris told me.

Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.
Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

As of today, Sol 1465, September 19, 2016, Curiosity has driven over 7.9 miles (12.7 kilometers) since its August 2012 landing inside Gale Crater, and taken over 354,000 amazing images.

Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit Julian Leek
Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Inside the Destination Mars exhibit area, Ken Kremer of Universe Today is fitted with the Microsoft HoloLens gear. Credit Julian Leek
Inside the Destination Mars exhibit area, Ken Kremer of Universe Today is fitted with the Microsoft HoloLens headset gear. Credit Julian Leek

Spectacular Panoramas from Curiosity Reveal Layered Martian Rock Formations Like America’s Desert Southwest

Dramatic hillside view showing sloping buttes and layered outcrops within of the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover. This photo mosaic is stitched and cropped from Mastcam camera raw images taken on Sol 1454, Sept. 8, 2016, with added artificial sky. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Spectacular wide angle mosaic view showing sloping buttes and layered outcrops within the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover. This photo mosaic is stitched from Mastcam camera raw images taken on Sol 1454, Sept. 9, 2016 with added artificial sky.  Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Spectacular wide angle mosaic view showing sloping buttes and layered outcrops within the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover. This photo mosaic is stitched from Mastcam camera raw images taken on Sol 1454, Sept. 8, 2016 with added artificial sky. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

The most stunning panoramic vistas likely ever snapped by NASA’s Curiosity rover reveal spectacularly layered Martian rock formations in such exquisite detail that they look and feel just like America’s desert Southwest landscapes. They were just captured a week ago and look like a scene straight out of the hugely popular science fiction movie ‘The Martian’ – only they are real !!

Indeed several magnificent panoramas were taken by Curiosity in just the past week and you can see our newly stitched mosaic versions of several – above and below.

The rock formations lie in the “Murray Buttes” region of lower Mount Sharp where Curiosity has been exploring for roughly the past month. She just finished a campaign of detailed science observations and is set to bore a new sampling hole into the Red Planet, as you read this.

While scouting around the “Murray Buttes,” the SUV sized rover captured thousands of color and black and white raw images to document the geology of this thus far most unrivaled spot on the Red Planet ever visited by an emissary from Earth.

So the image processing team of Ken Kremer and Marco Di Lorenzo has begun stitching together wide angle mosaic views starting with images gathered by the high resolution mast mounted Mastcam right color camera, or M-100, on Sept, 8, 2016, or Sol 1454 of the robots operations on Mars.

Dramatic closeup mosaic view of hilly outcrop with sandstone layers showing cross-bedding  in the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover. This photo mosaic is stitched from Mastcam camera raw images taken on Sol 1454, Sept. 8, 2016, with added artificial sky.  Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Dramatic closeup mosaic view of Martian butte with sandstone layers showing cross-bedding in the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover. This photo mosaic is stitched from Mastcam camera raw images taken on Sol 1454, Sept. 8, 2016, with added artificial sky. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

The mosaics give context and show us exactly what the incredible alien surroundings look like where the six wheeled rover is exploring today.

The imagery of the Murray Buttes and mesas show them to be eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed.

Wide angle mosaic shows lower region of Mount Sharp at center in between spectacular sloping hillsides  and layered rock outcrops of the Murray Buttes region in Gale Crater as imaged by the Mast Camera (Mastcam) on NASA's Curiosity Mars rover. This photo mosaic is stitched from Mastcam camera raw images taken on Sol 1451, Sept. 5, 2016 with added artificial sky.  Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Wide angle mosaic shows lower region of Mount Sharp at center in between spectacular sloping hillsides and layered rock outcrops of the Murray Buttes region in Gale Crater as imaged by the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover. This photo mosaic is stitched from Mastcam camera raw images taken on Sol 1451, Sept. 5, 2016 with added artificial sky. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Scanning around the Murray Buttes mosaics one sees finely layered rocks, sloping hillsides, the distant rim of Gale Crater barely visible through the dusty haze, dramatic hillside outcrops with sandstone layers exhibiting cross-bedding. The presence of “cross-bedding” indicates that the sandstone was deposited by wind as migrating sand dunes, says the team.

Wide angle mosaic view shows spectacular buttes and layered sandstone in the Murray Buttes region on lower Mount Sharp from the Mastcam cameras on NASA's Curiosity Mars rover. This photo mosaic is stitched from Mastcam camera raw images taken on Sol 1455, Sept. 9, 2016 with added artificial sky.  Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Wide angle mosaic view shows spectacular buttes and layered sandstone in the Murray Buttes region on lower Mount Sharp from the Mastcam cameras on NASA’s Curiosity Mars rover. This photo mosaic was assembled from Mastcam color camera raw images taken on Sol 1455, Sept. 9, 2016 and stitched by Marco Di Lorenzo and Ken Kremer, with added artificial sky. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

But there is no time to rest as she was commanded to head further south to the last of these Murray Buttes. And right now the team is implementing a plan for Curiosity to drill a new hole in Mars today – at a target named “Quela” at the base of the last of the buttes. The rover approached the butte from the south side a few days ago to get in place and plan for the drilling, take imagery to document stratigraphy and make compositional observations with the ChemCam laser instrument.

“It’s always an exciting day on Mars when you prepare to drill another sample – an engineering feat that we’ve become so accustomed to that I sometimes forget how impressive this really is!” wrote Lauren Edgar, in a mission update today. Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.

Curiosity will then continue further south to begin exploring higher and higher sedimentary layers up Mount Sharp. The “Murray Buttes” are the entry way along Curiosity’s planned route up lower Mount Sharp.

Dramatic closeup view of hillside outcrop with sandstone layers showing cross-bedding  in the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover. This photo mosaic is stitched and cropped from Mastcam camera raw images taken on Sol 1454, Sept. 8, 2016, with added artificial sky.  Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Dramatic closeup view of hillside outcrop with sandstone layers showing cross-bedding in the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover. This photo mosaic is stitched and cropped from Mastcam camera raw images taken on Sol 1454, Sept. 8, 2016, with added artificial sky. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Meanwhile Curiosity is still conducting science observations of the last drill sample gathered from the “Marimba” target in August focusing on MAHLI and APXS examination of the dump pile leftovers from the sieved sample. She just completed chemical analysis of the sieved sample using the miniaturized SAM and CheMin internal chemistry laboratories.

It’s interesting to note that although the buttes are striking, their height also presents communications issues by blocking radio signals with NASA’s orbiting relay satellites. NASA’s Opportunity rover faced the same issues earlier this year while exploring inside the high walled Marathon Valley along Ecdeavour Crater.

“While the buttes are beautiful, they pose a challenge to communications, because they are partially occluding communications between the rover and the satellites we use to relay data (MRO and ODY), so sometimes the data volume that we can relay is pretty low” wrote Edgar.

“But it’s a small price to pay for the great stratigraphic exposures and gorgeous view!”

Dramatic hillside view showing sloping buttes and layered outcrops within of the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover. This photo mosaic is stitched and cropped from Mastcam camera raw images taken on Sol 1454, Sept. 8, 2016, with added artificial sky.  Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Dramatic hillside view showing sloping buttes and layered outcrops within of the Murray Buttes region on lower Mount Sharp from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover. This photo mosaic is stitched and cropped from Mastcam camera raw images taken on Sol 1454, Sept. 8, 2016, with added artificial sky. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.

Three years ago, the team informally named the Murray Buttes site to honor Caltech planetary scientist Bruce Murray (1931-2013), a former director of NASA’s Jet Propulsion Laboratory, Pasadena, California. JPL manages the Curiosity mission for NASA.

As of today, Sol 1461, September 15, 2016, Curiosity has driven over 7.9 miles (12.7 kilometers) since its August 2012 landing inside Gale Crater, and taken over 353,000 amazing images.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater.  Note rover wheel tracks at left.  She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer.   Credit:   NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater. Note rover wheel tracks at left. She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com

SpaceX Hopes for Falcon 9 Return to Flight in November; Shotwell

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – Less than two weeks after a still mysterious launch pad explosion utterly destroyed a SpaceX Falcon 9 rocket during testing on Sept. 1, the bold and seemingly undaunted firm is already setting its sights on a ‘Return to Flight’ launch as early as November of this year, SpaceX President Gwynne Shotwell said Tuesday.

“We’re anticipating getting back to flight, being down for about three months, so getting back to flight in November, the November timeframe,” Shotwell announced on Sept. 13, during a panel discussion at the World Satellite Business Week Conference being held in Paris, France.

The catastrophic Sept. 1 launch pad explosion took place without warning at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Cape Canaveral Air Force Station, Fl during a routine fueling test.

Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during a routine and planned pre-launch fueling and engine ignition test at pad 40 on Sept. 1.

However, SpaceX is still seeking to determine the root cause of the catastrophe, which must be fully determined, corrected and rectified before any new Falcon 9 launches can actually occur.

Indeed nailing down the root cause has thus far confounded SpaceX investigators and was labeled as the “most difficult and complex failure” in its history said SpaceX CEO and Founder Elon Musk in a series of update tweets on Sept. 9. He also sought the public’s help in ascertaining the elusive cause via any audio/video recordings.

The rocket failure originated somewhere in the upper stage near the liquid oxygen (LOX) tank during fueling test operations at the launch pad, for what is known as a hot fire engine ignition test of all nine first stage Merlin 1D engines, said Musk.

Engineers were in the final stages of loading the liquid oxygen (LOX) and RP-1 kerosene propellants that power the Falcon 9 first stage for the static fire test which is a full launch dress rehearsal. The anomaly took place about 8 minutes before the planned engine hot fire ignition.

Shotwell also stated that the launch would occur from SpaceX’s other Florida Space Coast launch pad – namely the former Space Shuttle Launch Complex 39A on the Kennedy Space Center.

SpaceX also operates a third launch pad at Vandenberg Air Force Base in California.

“We would launch from the East Coast on Pad 39A in the November timeframe. And then Vandenberg would be available … for our other assorted customers,” Shotwell stated.

SpaceX has signed a long term lease with NASA to use Pad 39A.

Shotwell did not say which payload would be the first to launch.

Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

The incident took place less than two days before the scheduled Falcon 9 launch of AMOS-6 on Sept. 3 from pad 40.

The Sept. 1 calamity disaster also counts as the second time a Falcon 9 has exploded in 15 months and will call into question the rocket’s reliability. The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

While launching from pad 40, SpaceX has simultaneously been renovating and refurbishing NASA’s former shuttle launch at Complex 39A – from which the firm hopes to launch the new Falcon Heavy booster as well as human rated launches of the Falcon 9 with the Crew Dragon to the ISS.

And now according to Shotwell, SpaceX is expanding the scope of operations at pad 39A and intends to use it for commercial Falcon 9 launches as well – while they work to complete repairs to pad 40 which suffered significant damage, as I witnessed and just reported here.

Ongoing work at Pad 39A was clearly visible to this author and other media this past week during NASA’s OSIRIS-REx launch campaign.

SpaceX will have to finish the pad 39A upgrades soon in order to have any hopes of achieving a November return to flight launch date, and a lot of work remains to be done. For example the shuttle era Rotating Service Structure (RSS) is still standing. The timing for its demolishment has not been announced, according to a source.

Prior to launching from 39A, SpaceX would presumably roll out a Falcon 9 rocket to conduct fit checks and conduct a full launch dress rehearsal and first stage static hot fire engine test to confirm that all the newly installed equipment, gear and fueling lines, pumps, etc. are fully functional, operational and safe.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague at USLaunchReport – shown below.

Here is the full video from my space journalist friend and colleague Mike Wagner of USLaunchReport:

Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport

The 229-foot-tall (70-meter) SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the 6 ton AMOS-6 telecommunications satellite valued at some $200 million.

The AMOS-6 communications satellite was built by Israel Aerospace Industries for Space Communication Ltd. It was planned to provide communication services including direct satellite home internet for Africa, the Middle East and Europe.

The Falcon 9 rocket and AMOS-6 satellite were swiftly consumed in a huge fireball and thunderous blasts accompanied by a vast plume of smoke rising from the wreckage that was visible for many miles around the Florida Space Coast.

“Loss of Falcon vehicle today during propellant fill operation,” Musk tweeted several hours after the launch pad explosion.

“Originated around upper stage oxygen tank. Cause still unknown. More soon.”

The explosion also caused extensive damage to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my new photos of the pad taken a week after the explosion.

Dangling cables and gear such as pulley’s and more can clearly be seen to still be present as the strongback remains raised at pad 40. The strongback raises the rocket at the pad and also houses multiple umbilical line for electrical power, purge gases, computer communications and more.

One of the four lightning masts is also visibly burnt and blackened – much like what occurred after the catastrophic Orbital ATK Antares rocket exploded moments after liftoff from a NASA Wallops launch pad on Oct 28, 2014 and witnessed by this author.

Black soot also appears to cover some area of the pads ground support equipment in the new photos.

So it’s very likely that repairs to and re-certification of pad 40 will take at least several months.

Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

The last successful SpaceX Falcon 9 launch from pad 40 took place on Aug. 14 with the JCSAT 16 Japanese telecom satellite.

The first stage from the JCSAT 16 launch was concurrently recovered with an amazing propulsive soft landing on the OCISLY droneship platform at sea.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

And Shotwell pointed to the numerous successful SpaceX launches in her conference remarks.

“So now let’s look to the good. We did have an extraordinary launch year. We launched 9 times in just under 8 months, in the past year successfully,” Shotwell elaborated.

Shotwell was referring to the upgraded, full thrust version of the Falcon 9 first launched in Dec. 2015

“We rolled out a new vehicle, which we flew last December. And that vehicle was the vehicle that was designed to land.”

“And so we did recover the first stage six times. Twice back on land. And four times on the droneship. Which I think is an extraordinary move for the industry.”

“I don’t know that everyone appreciates it, but certainly that is a leap forward in launches for our customers.”

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Indeed, just 2 days before the launch pad explosion, SpaceX signed the first contract ever to utilize one of their recycled and ‘flight-proven rockets to launch the SES-10 telecom satellite for Luxembourg based SES.

SpaceX has a huge manifest of contracted missions and is backlogged with approximately 70 launches worth over $10 billion.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background - as seen from Exploration Tower on Aug. 19.  Credit: Ken Kremer/kenkremer.com
This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background – as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com

Bound for Bennu, OSIRIS-REx Begins Trailblazing Asteroid Sampling Sortie for Life’s Origins – Sunset Launch Gallery

United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter. Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018. Credit: Ken Kremer/kenkremer.com
United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter.  Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter. Note the newly installed crew access arm and white room for astronaut flights atop Atlas starting in early 2018. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Bound for Bennu, NASA’s OSIRIS-REx robotic explorer began a trailblazing 7 year round trip sampling sortie on Sept. 8 in search of the origin of life with a spectacular sky show – thrilling spectators ringing the Florida Space Coast.

Hordes of space enthusiasts from all across the globe descended on the Kennedy Space Center and Cape Canaveral region for the chance of a lifetime to witness a once in a lifetime liftoff to the carbon rich asteroid – which could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft departed Earth with an on time engine ignition of a United Launch Alliance Atlas V rocket under crystal clear skies on Thursday, September 8 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station.

Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach.  Credit: Jillian Laudick
Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach. Credit: Jillian Laudick

Everything went exactly according to plan for the daring mission bolding seeking to gather rocks and soil from Bennu – using an ingenious robotic arm named TAGSAM – and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

“We got everything just exactly perfect,” said Dante Lauretta, the principal investigator for OSIRIS-REx at the University of Arizona, at the post launch briefing at the Kennedy Space Center. “We hit all our milestone within seconds of predicts.

The space rock measures about the size of a small mountain at about a third of a mile in diameter.

And the picture perfect near sunset launch rewarded photographers from near and far with a spectacular series of richly hued photo and video recordings.

So I’ve gathered here a variety of launch imagery from multiple vantage points shot by friends, colleagues and myself – for the enjoyment of readers of Universe Today and Beyond!

Liftoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL.  Credit: Julian Leek
Liftoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL. Credit: Julian Leek

As you’ll see and hear the ULA Atlas V rocket integrated with OSIRIS-Rex on top thundered off the Cape’s pad 41 and shot skyward straight up along an equatorial path into Florida’s sun.

From every vantage point the rocket and its ever expanding vapor trail were visible for some 4 or 5 minutes or more. From my location on the roof of NASA’s Vehicle Assembly Building (VAB) the rocket finally arched over nearly straight above us and the sun produced a magnificent thin and nearly straight shadow of the vapor trail on the ground running out to the Atlantic Ocean towards Africa.

Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach.  Credit: John Kraus
Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach. Credit: John Kraus

It was truly an unforgettable sight to behold. And folks at Playalinda Beach, the best public viewing spot just a few miles north of pad 40 had an uninhibited view of the rocket to the base of the pad – while they waded and swam in the oceans waters with waves crashing on shore as the Atlas rocket blasted to space.

OSIRIS-REx separated as planned from the Atlas V rockets liquid oxygen and liquid hydrogen fueled second stage rocket to fly free at 8:04 p.m. on Sept. 8 – 55 minutes after launch.

The pair of solar arrays deployed as planned to provide the probes life giving power.

The spacecraft was built by prime contractor Lockheed.

“The spacecraft is healthy and functioning properly,” Richard Kuhns, Lockheed Martin OSIRIS-REx program manager, told me in an interview at the post-launch briefing.

Members of the OSIRIS-REx mission team celebrate the successful spacecraft launch on Sept. 8, 2016 atop ULA Atlas V at the post-launch briefing at the Kennedy Space Center, FL. Principal Investigator Dante Lauretta is 4th from right,  NASA Planetary Science Director Jim Green is center, 5th from left. Credit: Ken Kremer/kenkremer.com
Members of the OSIRIS-REx mission team celebrate the successful spacecraft launch on Sept. 8, 2016 atop ULA Atlas V at the post-launch briefing at the Kennedy Space Center, FL. Principal Investigator Dante Lauretta is 4th from right, NASA Planetary Science Director Jim Green is center, 5th from left. Richard Kuhns, Lockheed Martin OSIRIS-REx program manager, 2nd from right. Credit: Ken Kremer/kenkremer.com

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final preparations for shipment to the launch pad.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

After a two year flight through space, including an Earth swing by for a gravity assisted speed boost in 2017, OSIRIS-REx will reach Bennu in Fall 2018 to begin about 2 years of study in orbit to determine the physical and chemical properties of the asteroid in extremely high resolution.

While orbiting Bennu starting in 2018 it will move in close to explore the asteroid for about two years with its suite of science instruments, scanning in visible and infrared light. After a thorough site selection, it will move carefully towards the surface and extend the 11 foot long TAGSAM robotic arm and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish over just 3 to 5 seconds.

Once a good sample collection is confirmed, the dish will then be placed inside the Earth return canister and be brought back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.

Using the 11 foot long TAGSAM robotic arm that functions somewhat like a pogo stick, OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth on Sept 24, 2023. It has the capacity to scoop up to about 2 kg or more.

ULA Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL, in this remote camera view taken from inside the launch pad perimeter.  Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket lifts off on September 8, 2016 from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft, in this remote camera view taken from inside the launch pad perimeter. Credit: Ken Kremer/kenkremer.com

The two stage ULA Atlas V performed flawlessly and delivered OSIRIS-Rex into a hyperbolic trajectory away from Earth.

The 189 foot tall ULA Atlas V rocket launched in the rare 411 configuration for only the 3rd time on this mission – which is the 65th for the Atlas V.

The Atlas 411 vehicle includes a 4-meter diameter large Payload Fairing (PLF) and one solid rocket booster that augments the first stage. The Atlas booster for this mission is powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10A.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solid delivers approximately 348,500 pounds of thrust.

The Centaur delivers 22, 230 lbf of thrust and burns liquid oxygen and liquid hydrogen.

The solid was jettisoned at 139 seconds after liftoff.

Launch of NASA’s OSIRIS-REx on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from LC-39 Gantry.  Credit: Jen Saxby
Launch of NASA’s OSIRIS-REx on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from LC-39 Gantry. Credit: Jen Saxby

This is ULA’s eighth launch in 2016 and the 111th successful launch since the company was formed in December 2006.

NASA’s OSIRIS-REx blasts off to asteroid Bennu on ULA Atlas V rocket prior on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL, as seen from the VAB roof.  Credit: Lane Hermann/SpaceHeadNews
NASA’s OSIRIS-REx blasts off to asteroid Bennu on ULA Atlas V rocket prior on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL, as seen from the VAB roof. Credit: Lane Hermann/SpaceHeadNews

OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

Watch these pair of up close videos (from myself and Jeff Seibert) captured directly at the pad with the sights and sounds of the fury of launch:

Video Caption: ULA Atlas V rocket lifts off on September 8, 2016 from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft, in this remote camera view taken from inside the launch pad perimeter. Credit: Ken Kremer/kenkremer.com

Video Caption: Compilation of my launch videos from the ULA Atlas 5 launch in support of the NASA OSIRIS_REx asteroid sample return mission to the asteroid Bennu (#101955). It was launched on September 8th, 2016 from Pad 41 of CCAFS. It is scheduled to land in UTAH with asteroid samples on September 24, 2023. Credit: Jeff Seibert

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Launch of NASA’s OSIRIS-REx on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from VAB roof.  Credit:  J.Sekora/SEKORAPHOTO
Launch of NASA’s OSIRIS-REx on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from VAB roof. Credit: J.Sekora/SEKORAPHOTO

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s OSIRIS-Rex asteroid sampling spacecraft streaks to orbit on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach.  Credit: Jillian Laudick
NASA’s OSIRIS-Rex asteroid sampling spacecraft streaks to orbit on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach. Credit: Jillian Laudick
Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016. Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA's Kennedy Space Center.  Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 Failure Investigation ‘Most Difficult’ Ever: Musk

Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – More than a week after the catastrophic launch pad explosion that eviscerated a SpaceX Falcon 9 rocket during a fueling test, the bold and burgeoning aerospace firm is still confounded by the “most difficult and complex failure” in its history, and is asking the public for help in nailing down the elusive cause – says SpaceX CEO and Founder Elon Musk in a new series of tweets, that also seeks the public’s help in the complex investigation.

“Turning out to be the most difficult and complex failure we have ever had in 14 years,” Musk tweeted on Friday, Sept. 9 about the disaster that took place without warning on Space Launch Complex-40 at approximately 9:07 a.m. EDT on Cape Canaveral Air Force Station, Fl. on Sept. 1, 2016.

Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during a routine and planned pre-launch fueling and engine ignition test at pad 40 on Wednesday morning Sep. 1.

“Still working on the Falcon fireball investigation,” Musk stated.

Check out my new up close photos of launch pad 40 herein – showing dandling cables and pad damage – taken over the past few days during NASA’s OSIRIS-REx launch campaign which successfully soared to space on Sept 8. from the adjacent pad at Space Launch Complex-41.

The rocket failure originated somewhere in the upper stage during fueling test operations at the launch pad for what is known as a hot fire engine ignition test of all nine first stage Merlin 1D engines, said Musk.

However, the countdown dress rehearsal had not yet reached the point of ignition and the Merlin engines were still several minutes away from typically firing for a few seconds as the rocket was to be held down during the pre-planned hot fire test.

“Important to note that this happened during a routine filling operation. Engines were not on and there was no apparent heat source,” Musk elaborated.

Engineers were in the final stages of loading the liquid oxygen (LOX) and RP-1 kerosene propellants that power the Falcon 9 first stage for the static fire test which is a full launch dress rehearsal.

Mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

The explosion mystery and its root causes are apparently so deep that SpaceX is asking the public for help by sending in “any recordings of the event” which may exist, beyond what is already known.

“If you have audio, photos or videos of our anomaly last week, please send to [email protected]. Material may be useful for investigation,” Musk requested by twitter.

Indications of an initial “bang” moments before the calamity are also bewildering investigators.

“Particularly trying to understand the quieter bang sound a few seconds before the fireball goes off. May come from rocket or something else.”

The explosion is also being jointly investigated by multiple US Federal agency’s.

“Support & advice from @NASA, @FAA, @AFPAA & others much appreciated. Please email any recordings of the event to [email protected].”

The incident took place less than two days before the scheduled Falcon 9 launch on Sept. 3.

It also caused extensive damage to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my new photos of the pad taken a week after the explosion.

Dangling cables and gear such as pulley’s and more can clearly be seen to still be present as the strongback remains raised at pad 40. The strongback raises the rocket at the pad and also houses multiple umbilical line for electrical power, purge gases, computer communications and more.

One of the four lightning masts is also visibly burnt and blackened – much like what occurred after the catastrophic Orbital ATK Antares rocket exploded moments after liftoff from a NASA Wallops launch pad on Oct 28, 2014 and witnessed by this author.

Black soot also appears to cover some area of the pads ground support equipment in the new photos.

US Air Force personnel immediately jumped into action to assess the situation, set up roadblocks and look for signs of blast debris and “detect, dispose and render safe any possible explosive threats.”

However SpaceX has not released a full description of the damage to the pad and GSE. It cost approximately $15 Million to repair the Antares pad and flights have not yet resumed – nearly 2 years after that disaster.

Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague at USLaunchReport – shown below.

Here is the full video from my space journalist friend and colleague Mike Wagner of USLaunchReport:

Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport

The 229-foot-tall (70-meter) SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the 6 ton AMOS-6 telecommunications satellite valued at some $200 million.

Mangled SpaceX Falcon 9 strongback after prelaunch explosion destroyed the rocket and AMOS-6 payload. Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback after prelaunch explosion destroyed the rocket and AMOS-6 payload. Credit: Ken Kremer/kenkremer.com

The Falcon rocket and AMOS-6 satellite were swiftly consumed in a huge fireball and thunderous blasts accompanied by a vast plume of smoke rising from the wreckage that was visible for many miles around the Florida Space Coast.

“Loss of Falcon vehicle today during propellant fill operation,” Musk tweeted several hours after the launch pad explosion.

“Originated around upper stage oxygen tank. Cause still unknown. More soon.”

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Thankfully there were no injuries to anyone – because the pad is always cleared of all personnel during these types of extremely hazardous launch complex operations.

“The anomaly originated around the upper stage oxygen tank and occurred during propellant loading of the vehicle. Per standard operating procedure, all personnel were clear of the pad and there were no injuries,” SpaceX reported in a statement.

“We are continuing to review the data to identify the root cause. Additional updates will be provided as they become available.”

This also marks the second time a Falcon 9 has exploded in 15 months and will call into question the rocket’s reliability. The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

All SpaceX launches are on hold until a thorough investigation is conducted, the root cause is determined, and effective fixes and remedies are identified and instituted.

After the last failure, it took nearly six months before Falcon 9 launches were resumed.

Any announcement of a ‘Return to Flight’ following this latest launch failure is likely to be some time off given the thus far inscrutable nature of the anomaly.

The planned engine test was being conducted as part of routine preparations for the scheduled liftoff of the Falcon 9 on Saturday, September 3, with an Israeli telecommunications satellite that would have also been used by Facebook.

The AMOS-6 communications satellite was built by Israel Aerospace Industries for Space Communication Ltd. It was planned to provide communication services including direct satellite home internet for Africa, the Middle East and Europe.

SpaceX is simultaneously renovating and refurbishing NASA’s former shuttle launch pad at the Kennedy Space Center at Pad 39A – from which the firm hopes to launch the new Falcon Heavy booster as well as human rated launches of the Falcon 9.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

Ongoing work at Pad 39A was clearly visible to this author and other media this past week during NASA’s OSIRIS-REx launch campaign.

SpaceX has indicated they hope to have the pad upgrades complete by November, but a lot of work remains to be done. For example the shuttle era Rotating Service Structure (RSS) is still standing. The timing for its demolishment has not been announced.

Damage at  SpaceX Launch Complex-40 following Sept. 1, 2016 launch pad explosion.  Credit: Lane Hermann
Damage at SpaceX Launch Complex-40 following Sept. 1, 2016 launch pad explosion. Credit: Lane Hermann

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Up close view of mangled SpaceX Falcon 9 strongback with dangling cables as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

OSIRIS-REx Blasts off on 7 Year Sampling Trek to Asteroid Bennu and Back

A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016. Credit: Ken Kremer/kenkremer.com
Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – NASA’s OSIRIS-REx hi tech robotic explorer blasted off this evening in spectacular fashion from the Florida Space Coast on a ground breaking 7 year sampling trek to Asteroid Bennu and back to gather grains of 4.5 billion year old alien sand that could potentially reveal significant answers to the origins of life on Earth.

The Earth departure for NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft began with an on time engine ignition from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket shortly before a crystal clear sunset this evening, Thursday, September 8 at 7:05 p.m. EDT.

The Atlas V rocket with OSIRIS-Rex bolted on top roared off launch pad 41 and shot straight up into the sun drenched skies of the sunshine state.

The launch wowed hordes of excited spectators who gathered from near and far to witness America’s first mission to gather pristine samples of soil and rock from Bennu’s coal black and carbon rich surface – and eventually return them to Earth for analysis using the most powerful science instruments humankind has invented.

A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016. Credit: Ken Kremer/kenkremer.com

“This represents the hopes and dreams and blood, sweat and tears of thousands of people who have been working on this for years,” said Dante Lauretta, the principal investigator for OSIRIS-REx at the University of Arizona.

“I can’t tell you how thrilled I was this evening, thinking of the people who played a part in this.”

OSIRIS-Rex is on a totally unique 4.5 billion mile roundtrip mission to unlock the mysteries of the formation of our Solar System 4.5 Billion years ago and ourselves as Earth evolved over time.

“Today, we celebrate a huge milestone for this remarkable mission, and for this mission team,” said NASA Administrator Charles Bolden, in a statement.

“We’re very excited about what this mission can tell us about the origin of our solar system, and we celebrate the bigger picture of science that is helping us make discoveries and accomplish milestones that might have been science fiction yesterday, but are science facts today.”

Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

101955 Bennu is a near Earth asteroid discovered in 1999. It was selected specifically as the sampling because it is a carbon-rich asteroid.

It will take about 2 years for OSIRIS-Rex to reach Bennu in 2018 following a flyby of Earth in 2017.

While orbiting Bennu starting in 2018 it will move in close explore Bennu for about two years with its suite of science instruments. After a thorough site selection, it will move carefully towards the surface and extend the 11 foot long TAGSAM robotic arm and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish. The dish will then be placed inside the Earth return canister and be brought back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

Using the 11 foot long TAGSAM robotic arm that functions somewhat like a pogo stick, OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 2 kg or more.

Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL.  Credit: Julian Leek
Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL. Credit: Julian Leek

The two stage ULA Atlas V performed flawlessly and delivered OSIRIS-Rex into a hyperbolic trajectory away from Earth.

The 189 foot tall ULA Atlas V rocket launched in the rare 411 configuration for only the 3rd time on this mission – which is the 65th for the Atlas V.

The Atlas 411 vehicle includes a 4-meter diameter large Payload Fairing (PLF) and one solid rocket booster that augments the first stage. The Atlas booster for this mission is powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10A.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solid delivers approximately 348,500 pounds of thrust.

The Centaur delivers 22,230 lbf of thrust and burns liquid oxygen and liquid hydrogen.

The solid was jettisoned at 139 seconds after liftoff.

This is ULA’s eighth launch in 2016 and the 111th successful launch since the company was formed in December 2006.

Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL.  Credit: Dawn Leek Taylor
Liftoff of NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL. Credit: Dawn Leek Taylor

OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach.  Credit: Jillian Laudick
Blastoff of NASA’s OSIRIS-Rex asteroid sampling spacecraft on September 8, 2016 from Cape Canaveral Air Force Station, FL as seen from Playalinda Beach. Credit: Jillian Laudick

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s OSIRIS-REx asteroid sampling spacecraft atop a ULA Atlas V rocket prior to launch on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Lane Hermann/SpaceHeadNews
NASA’s OSIRIS-REx asteroid sampling spacecraft atop a ULA Atlas V rocket prior to launch on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Lane Hermann/SpaceHeadNews
NASA’s OSIRIS-REx asteroid sampling spacecraft is poised for liftoff on a 7 year Journey to asteroid  Bennu and Back atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is poised for liftoff on a 7 year Journey to asteroid Bennu and Back atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin
Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin

Journey to Bennu – Today Sept. 8: Watch the Trailer, Watch the Earth Departure Launch Live

NASA’s OSIRIS-REx asteroid sampling spacecraft is poised for liftoff on a 7 year Journey to asteroid Bennu and Back atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is poised for liftoff on a 7 year Journey to astreroid  Bennu and Back atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is poised for liftoff on a 7 year Journey to asteroid Bennu and Back atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Today is ‘Earth Departure Day’ for OSIRIS-REx, NASA’s first mission to snatch “pristine materials” from the surface of a near Earth asteroid named Bennu and deliver them back to Earth in seven years on a mission to unlock mysteries on the formation of our Solar System and ourselves 4.5 Billion years ago.

The 4.5 Billion mile roundtrip ‘Journey to Bennu and Back’ begins today. All systems are GO for a spectacular dinner-time blastoff of NASAs OSIRIS-REx spacecraft from the Florida Space Coast.

Earth departure for NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket is slated for shortly before sunset this evening, Thursday, September 8 at 7:05 p.m. EDT.

Excited spectators are filling local area hotels for this once in a lifetime mission to ‘Bennu and Back.’

Bennu is a small, carbon-rich asteroid – meaning it contains significant amounts of organic molecules, the stuff of which life is made.

Bennu is only about a third of mile in diameter, measuring 500 meters or 1,614 feet across and it crosses Earth’s orbit around the sun every six years.

You can watch the sure to be a spectacular launch live in person here in sunny Florida or live via a choice of webcasts.

NASA’s OSIRIS-REx launch coverage will be broadcast on NASA TV beginning at 4:30 p.m. EDT Sept. 8, as well as on a ULA webcast.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at ULA at – www.ulalaunch.com

Today’s weather forecast remains very promising and is currently 80% GO for favorable conditions. The only concern is for cumulus clouds.

There are 3 opportunities in a row to launch OSIRIS-Rex.

In case of a delay 24 or 48 hour delay, the forecast drops only slightly to 70% GO.

Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin
Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin

The United Launch Alliance Atlas V rocket and OSIRIS-REx spacecraft were rolled out some 1800 feet from the Vertical Integration Facility (VIF) – where the rocket is assembled- to launch pad 41 starting at about 9 a.m. yesterday morning September 7, 2018.

Watch this OSIRIS-Rex trailer from NASA Goddard illustrating the probes Earth departure launch phase:

NASAs OSIRIS-REx spacecraft is on a mission to explore asteroid Bennu and return a sample to Earth. The OSIRIS-REx launch window opens on September 8, 2016, when the spacecraft begins its two-year journey to Bennu aboard an Atlas V rocket at Cape Canaveral, Florida. After arriving at Bennu in 2018, OSIRIS-REx will spend over a year exploring the asteroid before approaching its surface to grab a sample. This pristine material, formed at the dawn of the solar system, will be returned to Earth in 2023, providing clues to Bennus origins and our own. Credit: NASA’s Goddard Space Flight Center/David Ladd

OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 2 kg or more.

The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.
Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA's Kennedy Space Center.  Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

It was chosen as the target because it is little altered over time and thus ‘pristine’ in nature.

Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.

NASA’s OSIRIS-REx asteroid sampling spacecraft is housed inside the payload fairing atop the  United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is housed inside the payload fairing atop the United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The 189 foot tall ULA Atlas V rocket is launching in the rare 411 configuration for only the 3rd time on this mission – which is the 65th for the Atlas V.

The Atlas 411 vehicle includes a 4-meter diameter payload fairing and one solid rocket booster that augments the first stage. The Atlas booster for this mission is powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solids deliver approximately 500,000 pounds of thrust.

The solids will be jettisoned about 2 minutes after liftoff.

OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 8-9: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft atop a ULA Atlas V rocket prior to planned launch on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Julian Leek
NASA’s OSIRIS-REx asteroid sampling spacecraft atop a ULA Atlas V rocket prior to planned launch on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Julian Leek

OSIRIS-Rex Asteroid Mission Seeks to Search for Origin of Life Chemistry

NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 41 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 41 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – OSIRIS-Rex, NASA’s first mission to retrieve and return samples of “pristine materials” from the surface of an asteroid and return them to Earth for high powered analysis by the world’s most advanced science instruments is encapsulated in the nose cone that’s bolted atop its Atlas rocket that has just been rolled out to its Earth departure launch pad.

It’s a groundbreaking mission that could inform us about astrobiology and yield significant clues to help determine the ‘Origin of Life’ on Earth.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft will launch from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket on September 8 at 7:05 p.m. EDT.

The United Launch Alliance Atlas V rocket and OSIRIS-REx spacecraft were moved about 1800 feet from the Vertical Integration Facility (VIF) – where the rocket is assembled- to launch pad 41 starting at about 9 a.m. this morning September 7, 2018.

Watch this Atlas V rocket roll video:

The ULA, NASA and science team conducted a launch readiness review yesterday and gave the GO for launch with all systems passing the stringent rocket and safety review. The even search for signs of any debris from last week’s SpaceX Falcon 9 explosion at the adjacent pad 40 located about a mile south. No signs of any debris or damage were found at pad 40 or the rocket and spacecraft.

NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The weather forecast is currently 80% GO for favorable conditions. The only concern is for cumulus clouds.

There are 3 opportunities in a row to launch OSIRIS-Rex.

In case of a delay 24 or 48 hour delay, the forecast drops only slightly to 70% GO.

NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center  is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

OSIRIS-REx goal is to fly on a roundtrip seven-year journey of some 4.5 billion miles to the near-Earth asteroid target named Bennu and back.

Watch this mission video:

Video Caption: This video describes the seven-year journey of NASA’s OSIRIS-Rex mission from launch and cruising through space to asteroid Bennu and back. The probe will study Bennu, grab a 2 ounce or more sample from the surface and bring it back to Earth for lab study by researchers. Credit: Lockheed Martin/NASA

101955 Bennu is a near Earth asteroid discovered in 1999. It was selected specifically because it is a carbon-rich asteroid.

While orbiting Bennu starting in 2018 it will move in close and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish, and bring them back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in the PHSF, as the probe was undergoing final preparation for shipment to the launch pad.

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin
Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin

OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 1 kg or more.

The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.
I asked Lauretta to explain in more detail why was Bennu selected as the target to answer fundamental questions related to the origin of life ?

“We selected asteroid Bennu as the target for this mission because we feel it has the best chance of containing those pristine organic compounds from the early stage of solar system formation,” Lauretta told me.

And that information is based on our ground based spectral characterization using telescopes here on Earth. Also, space based assets like the Hubble Space Telescope and the Spitzer Space Telescope.
What is known about the presence of nitrogen containing compounds like amino acids and other elements on Bennu that are the building blocks of life?

“When we look at the compounds that make up these organic materials in these primitive asteroidal materials, we see a lot of carbon,” Lauretta explained.

“But we also see nitrogen, oxygen, hydrogen, sulfur and phosphorous. We call those the CHONPS. Those are the six elements we really focus on when we look at astrobiology and prebiotic chemistry and how those got into the origin of life.”

The OSIRIS-REx spacecraft was built for NASA by prime contractor Lockheed Martin at their facility near Denver, Colorado and flown to the Kennedy Space Center on May 20.

It will map the chemistry and mineralogy of the primitive carbonaceous asteroid. The team will initially select about 10 target areas for further scrutiny as the sampling target. This will be whittled down to two, a primary and backup, Enos told me.

After analyzing the data returned, the science team then will select a site where the spacecraft’s robotic sampling arm will grab a sample of regolith and rocks. The regolith may record the earliest history of our solar system.

Engineers will command the spacecraft to gradually move on closer to the chosen sample site, and then extend the arm to snatch the pristine samples with the TAGSAM sample return arm.

PI Lauretta will make the final decision on when and which site to grab the sample from.

“As the Principal Investigator for the mission I have responsibility for all of the key decisions during our operations,” Lauretta replied. “So we will be deciding on where we want to target our high resolution investigations for sample site evaluation. And ultimately what is the one location we want to send the spacecraft down to the surface of the asteroid to and collect that sample.”

“And then we have to decide like if we collected enough sample and are we ready to stow it in the sample return capsule. Or are we going to use one of our 2 contingency bottles of gas to go for a second attempt.”

“The primary objective is one successful sampling event. So when we collect 60 grams or 2 ounces of sample then we are done!”

“In the event that we decide to collect more, it will be intermixed with anything we collected on the first attempt.”

The priceless sample will then be stowed in the on board sample return capsule for the long journey back to Earth.

Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

After a 7 year journey to asteroid Bennu and back, NASA’s OSIRIS-Rex sample return capsule  will land by parachute in the Utah desert on Sept. 24, 2023. Credits: NASA/Lockheed Martin
After a 7 year journey to asteroid Bennu and back, NASA’s OSIRIS-Rex sample return capsule will land by parachute in the Utah desert on Sept. 24, 2023. Credits: NASA/Lockheed Martin

Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.
OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

The OSIRIS-REx spacecraft, enclosed in a payload fairing, is lifted Aug. 29, 2016 at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The United Launch Alliance Atlas V rocket that is to lift OSIRIS-REx into space was stacked at SLC-41 so the spacecraft and fairing could be hoisted up and bolted to the rocket. Photo credit: NASA/Dimitri Gerondidakis
The OSIRIS-REx spacecraft, enclosed in a payload fairing, is lifted Aug. 29, 2016 at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The United Launch Alliance Atlas V rocket that is to lift OSIRIS-REx into space was stacked at SLC-41 so the spacecraft and fairing could be hoisted up and bolted to the rocket. Photo credit: NASA/Dimitri Gerondidakis

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 7-9: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016.  Credit: Ken Kremer/kenkremer.com
Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com

NASA’s InSight Lander Approved for 2018 Mars Launch

This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018. Credits: NASA/JPL-Caltech
This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018.  Credits: NASA/JPL-Caltech
This artist’s concept depicts the InSight lander on Mars after the lander’s robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018. Credits: NASA/JPL-Caltech

Top NASA managers have formally approved the launch of the agency’s InSight Lander to the Red Planet in the spring of 2018 following a postponement from this spring due to the discovery of a vacuum leak in a prime science instrument supplied by France.

The InSight missions goal is to accomplish an unprecedented study of the deep interior of the most Earth-like planet in our solar system.

NASA is now targeting a new launch window that begins May 5, 2018, for the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight). mission aimed at studying the deep interior of Mars. The Mars landing is now scheduled for Nov. 26, 2018.

InSight had originally been slated for blastoff on March 4, 2016 atop a United Launch Alliance (ULA) Atlas V rocket from Vandenberg Air Force Base, California.

But the finding of a vacuum leak in its prime science instrument, the French-built Seismic Experiment for Interior Structure (SEIS), in December 2015 forced an unavoidable two year launch postponement. Because of the immutable laws of orbital mechanics, launch opportunities to the Red Planet only occur approximately every 26 months.

InSight’s purpose is to help us understand how rocky planets – including Earth – formed and evolved. The science goal is totally unique – to “listen to the heart of Mars to find the beat of rocky planet formation.”

The revised launch date was approved by the agency’s Science Mission Directorate.

“Our robotic scientific explorers such as InSight are paving the way toward an ambitious journey to send humans to the Red Planet,” said Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate, in Washington, in a statement.

“It’s gratifying that we are moving forward with this important mission to help us better understand the origins of Mars and all the rocky planets, including Earth.”

NASA's InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.
NASA’s InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.

Since InSight would not have been able to carry out and fulfill its intended research objectives because of the vacuum leak in its defective SEIS seismometer instrument, NASA managers had no choice but to scrub this year’s launch. For a time its outlook for a future revival seemed potentially uncertain in light of today’s constrained budget environment.

The leak, if left uncorrected, would have rendered the flawed probe useless to carry out the unprecedented scientific research foreseen to measure the planets seismic activity and sense for “Marsquakes” to determine the nature of the Red Planet’s deep interior.

“The SEIS instrument — designed to measure ground movements as small as half the radius of a hydrogen atom — requires a perfect vacuum seal around its three main sensors in order to withstand harsh conditions on the Red Planet,” according to NASA.

The SEIS seismometer instrument was provided by the Centre National d’Études Spatiales (CNES) – the French national space agency equivalent to NASA. SEIS is one of the two primary science instruments aboard InSight. The other instrument measuring heat flow from the Martian interior is provided by the German Aerospace Center (DLR) and is named Heat Flow and Physical Properties Package (HP3). The HP3 instrument checked out perfectly.

NASA Jet Propulsion Laboratory (JPL) was assigned lead responsibility for the “replanned” mission and insuring that the SEIS instrument operates properly with no leaks.

JPL is “redesigning, developing and qualifying the instrument’s evacuated container and the electrical feedthroughs that failed previously. France’s space agency, the Centre National d’Études Spatiales (CNES), will focus on developing and delivering the key sensors for SEIS, integration of the sensors into the container, and the final integration of the instrument onto the spacecraft.”

“We’ve concluded that a replanned InSight mission for launch in 2018 is the best approach to fulfill these long-sought, high-priority science objectives,” said Jim Green, director of NASA’s Planetary Science Division.

The cost of the two-year delay and instrument redesign amounts to $153.8 million, on top of the original budget for InSight of $675 million.

NASA says this cost will not force a delay or cancellation to any current missions. However, “there may be fewer opportunities for new missions in future years, from fiscal years 2017-2020.”

Back shell of NASA's InSight spacecraft is being lowered onto the mission's lander, which is folded into its stowed configuration.  The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars.  Launch now rescheduled to May 2018 to fix French-built seismometer.  Credit: NASA/JPL-Caltech/Lockheed Martin
Back shell of NASA’s InSight spacecraft is being lowered onto the mission’s lander, which is folded into its stowed configuration. The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars. Launch now rescheduled to May 2018 to fix French-built seismometer. Credit: NASA/JPL-Caltech/Lockheed Martin

Lockheed Martin is the prime contractor for InSight and placed the spacecraft in storage while SEIS is fixed.

InSight is funded by NASA’s Discovery Program of low cost, focused science missions along with the science instrument funding contributions from France and Germany.

Mars has the same basic internal structure as the Earth and other terrestrial (rocky) planets. It is large enough to have pressures equivalent to those throughout the Earth's upper mantle, and it has a core with a similar fraction of it's mass. In contrast, the pressure even near the center of the Moon barely reach that just below the Earth's crust and it has a tiny, almost negligible core. The size of Mars indicates that it must have undergone many of the same separation and crystallization processes that formed the Earth's crust and core during early planetary formation.  Credit: JPL/NASA
Mars has the same basic internal structure as the Earth and other terrestrial (rocky) planets. It is large enough to have pressures equivalent to those throughout the Earth’s upper mantle, and it has a core with a similar fraction of it’s mass. In contrast, the pressure even near the center of the Moon barely reach that just below the Earth’s crust and it has a tiny, almost negligible core. The size of Mars indicates that it must have undergone many of the same separation and crystallization processes that formed the Earth’s crust and core during early planetary formation. Credit: JPL/NASA

Meanwhile, NASA is preparing to launch its big planetary mission of 2018 on Thursday of this week ! – the OSIRIS-REx asteroid sample return probe blasts off on an Atlas V on Sept 8.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 6-8: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Spectacular Video Captures Catastrophic SpaceX Falcon 9 Rocket Explosion During Prelaunch Test

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. See the full video below. Credit: USLaunchReport

The SpaceX Falcon 9 rocket that suffered a catastrophic explosion this morning, Thursday, Sept. 1, at Cape Canaveral Air Force Station in Florida was captured in stunning detail in a spectacular video recorded by my space journalist colleague at USLaunchReport.

As seen in the still image above and the full video below, the rocket failure originated somewhere in the upper stage during fueling test operations at the launch pad, less than two days prior to its planned launch on Sept. 3. The rocket was swiftly consumed in a massive fireball and thunderous blasts accompanied by a vast plume of smoke rising from the wreckage visible for many miles.

Both the SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in the incident. Thankfully there were no injuries to anyone, because the pad is cleared during these types of operations.

This also marks the second time a Falcon 9 has exploded and will call into question the rocket’s reliability. The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during a cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

It took place during this morning’s prelaunch preparations for a static hot fire test of the nine Merlin 1 D engines powering the Falcon 9 first stage when engineers were loading the liquid oxygen (LOX) and RP-1 kerosene propellants for the test, according to SpaceX CEO Elon Musk.

“Loss of Falcon vehicle today during propellant fill operation,” tweeted SpaceX CEO and founder Elon Musk this afternoon a few hours after the launch pad explosion.

“Originated around upper stage oxygen tank. Cause still unknown. More soon.”

The Falcon 9 explosion occurred at approximately 9:07 a.m. EDT this morning at the SpaceX launch facilities at Space Launch Complex 40 on Cape Canaveral Air Force Station, according to statements from SpaceX and the USAF 45th Space Wing Public Affairs office.

All SpaceX launches will be placed on hold until a thorough investigation is conducted, the root cause is determined, and effective fixes and remedies are identified and instituted.

The planned engine test was being conducted as part of routine preparations for the scheduled liftoff of the Falcon 9 on Saturday, September 3, with an Israeli telecommunications satellite that would have also been used by Facebook.

During the static fire test, which is a full launch dress rehearsal, the rocket is loaded with propellants and is held down at pad 40 while the engines are typically fired for a few seconds.

Here is the full video from my space journalist friend and colleague Mike Wagner of USLaunchReport:

Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport

The 229-foot-tall (70-meter) SpaceX Falcon 9 had been slated for an overnight blastoff on Saturday, September 3 at 3 a.m. from pad 40 with the 6 ton AMOS-6 telecommunications satellite valued at some $200 million.

In the video you can clearly see the intensely bright explosion flash near the top of the upper stage that quickly envelopes the entire rocket in a fireball, followed later by multiple loud bangs from the disaster echoing across and beyond the pad.

Seconds later the nose cone and payload break away violently, falling away and crashing into the ground and generating a new round of loud explosions and fires and a vast plume of smoke rising up.

At the end the rocket is quite visibly no longer standing. Only the strongback erector is still standing at pad 40. And both the strongback and the pad structure seems to have suffered significant damage.

This would have been the 9th Falcon 9 launch of 2016.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

SpaceX media relations issued this updated statement:

“At approximately 9:07 am ET, during a standard pre-launch static fire test for the AMOS-6 mission, there was an anomaly at SpaceX’s Cape Canaveral Space Launch Complex 40 resulting in loss of the vehicle.”

“The anomaly originated around the upper stage oxygen tank and occurred during propellant loading of the vehicle. Per standard operating procedure, all personnel were clear of the pad and there were no injuries.”

“We are continuing to review the data to identify the root cause. Additional updates will be provided as they become available.”

Listen to my BBC Radio 5 Live interview conducted late this afternoon:

Today’s explosion and the total loss of vehicle and payload will certainly have far reaching consequences for not just SpaceX and the commercial satellite provider and end users, but also NASA, the International Space Station, the US military, and every other customer under a launch contact with the fast growing aerospace firm.

The ISS is impacted because SpaceX is one of two NASA contracted firms launching cargo resupply missions to the ISS – along with Orbital ATK.

Continued operations of the ISS depends on a reliable and robust lifeline of periodic supply trains from SpaceX and Orbital ATK.

In fact the most recent SpaceX Drago cargo freighter launched on the CRS-9 mission to the ISS on July 18 as I witnessed and reported here. And just successfully returned to Earth with 3000 pounds of NASA science cargo and research samples last week on Aug. 26.

The SpaceX Dragon launches to the ISS will be put on hold as the investigation moves forward.

Furthermore SpaceX is manufacturing a Crew Dragon designed to launch astronauts to the ISS atop this same Falcon 9 rocket. So that will also have to be evaluated.

SpaceX is also trying to recover and recycle the Falcon 9 first stage.

To date SpaceX has recovered 6 first stage Falcon 9 boosters by land and by sea.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing  rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Indeed as I reported just 2 days ago, SpaceX announced a contract with SES to fly the SES-10 communications satellite on a recycled Falcon 9, before the end of the year and perhaps as soon as October.

But this explosion will set back that effort and force a halt to all SpaceX launches until the root cause of the disaster is determined.

Here’s one of my photos showing the prior SpaceX rocket failure in June 2015 during the CRS-7 cargo delivery mission to the ISS:

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Here’s the prior SpaceX Falcon 9 on pad 40 before the successful liftoff with the JCSAT-16 Japanese telecom satellite on Aug. 14, 2016:

SpaceX Falcon 9 set to deliver JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 set to deliver JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The AMOS-6 communications satellite was built by Israel Aerospace Industries for Space Communication Ltd. It was planned to provide communication services including direct satellite home internet for Africa, the Middle East and Europe.

Cape Canaveral Air Force Station Emergency Management quickly provided initial on-scene response and set up roadblocks, said the Air Force in a statement.

“Days like today are difficult for many reasons,” said Brig. Gen. Wayne Monteith, 45th Space Wing commander.

“There was the potential for things to be a lot worse; however, due to our processes and procedures no one was injured as a result of this incident. I am proud of our team and how we managed today’s response and our goal moving forward will be to assist and provide support wherever needed. Space is inherently dangerous and because of that, the Air Force is always ready.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket is destroyed during explosion at the pad. Only the strongback remains. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016 of Amos-6 comsat. Credit: NASA
A SpaceX Falcon 9 rocket is destroyed during explosion at the pad on Sept. 1, 2016. Only the strongback remains. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016 of Amos-6 comsat. Credit: NASA
This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background - as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com
This recovered 156-foot-tall (47-meter) SpaceX Falcon 9 first stage has arrived back into Port Canaveral, FL after successfully launching JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. NASA’s VAB in the background – as seen from Exploration Tower on Aug. 19. Credit: Ken Kremer/kenkremer.com

Save