James Webb Space Telescope Mirror Installation Reaches Halfway Point

This rare overhead shot of the James Webb Space Telescope shows the nine primary flight mirrors installed on the telescope structure in a clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA's Goddard Space Flight Center/Chris Gunn

As history closes in on 2015, assembly of NASA’s James Webb Space Telescope (JWST) reached a historic milestone as the installation of the primary mirrors onto the telescope structure reached the halfway point to completion and marks the final assembly phase of the colossal observatory.

Technicians have just installed the ninth of 18 primary flight mirrors onto the mirror holding backplane structure at the agency’s Goddard Space Flight Center in Greenbelt, Maryland. Continue reading “James Webb Space Telescope Mirror Installation Reaches Halfway Point”

‘A City on Mars’ is Elon Musk’s Ultimate Goal Enabled by Rocket Reuse Technology

Long exposure of launch, re-entry, and landing burns of SpaceX Falcon 9 on Dec. 21, 2015. Credit: SpaceX

Elon Musk’s dream and ultimate goal of establishing a permanent human presence on the Red Planet in the form of “A City on Mars” took a gigantic step forward with the game changing rocket landing and recovery technology vividly demonstrated by his firm’s Falcon 9 booster this past Monday, Dec. 21 – following a successful blastoff from the Florida space coast just minutes earlier on the first SpaceX launch since a catastrophic mid-air calamity six months ago.

“I think this was a critical step along the way towards being able to establish a city on Mars,” said SpaceX billionaire founder and CEO Elon Musk at a media telecon shortly after Monday night’s (Dec. 21) launch and upright landing of the Falcon 9 rockets first stage on Cape Canaveral Air Force Station, Fla. Continue reading “‘A City on Mars’ is Elon Musk’s Ultimate Goal Enabled by Rocket Reuse Technology”

First British Astronaut to Visit ISS Blasts Off on Soyuz with Russian/American Crewmates

The Soyuz TMA-19M rocket is launched with the Expedition 46 crew of Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos), Flight Engineer Tim Kopra of NASA, and Flight Engineer Tim Peake of ESA (European Space Agency), on Tuesday, Dec. 15, 2015 at the Baikonur Cosmodrome in Kazakhstan. Credit: NASA/Joel Kowsky
The Soyuz TMA-19M rocket is launched with the Expedition 46 crew of Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos), Flight Engineer Tim Kopra of NASA, and Flight Engineer Tim Peake of ESA (European Space Agency), on Tuesday, Dec. 15, 2015 at the Baikonur Cosmodrome in Kazakhstan.  Credit: NASA/Joel Kowsky
The Soyuz TMA-19M rocket is launched with the Expedition 46 crew of Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos), Flight Engineer Tim Kopra of NASA, and Flight Engineer Tim Peake of ESA (European Space Agency), on Tuesday, Dec. 15, 2015 at the Baikonur Cosmodrome in Kazakhstan. Credit: NASA/Joel Kowsky

The first British astronaut to blast off on a journey to the International Space Station (ISS) soared gloriously skyward early today, Dec 15, following the flawless launch of a Russian Soyuz capsule with his Russian/American crewmates from the Baikonur Cosmodrome in Kazakhstan.

The picture perfect liftoff of the Soyuz TMA-19M rocket into clear blue skies with Expedition 46 Soyuz Commander and six time space flyer Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos), Flight Engineer Tim Kopra of NASA, and Flight Engineer Tim Peake of ESA (European Space Agency), occurred at 6:03 a.m. EST (5:03 p.m. Baikonur time, 1103 GMT) on Tuesday, Dec. 15, 2015.

The Soyuz crew executed a series of Continue reading “First British Astronaut to Visit ISS Blasts Off on Soyuz with Russian/American Crewmates”

Cygnus Docks at Station for Christmas Delivery to Successfully Resume American Resupply Chain

@OrbitalATK’s #Cygnus spacecraft is moving toward its capture point at the International Space Station as astronaut maneuver the Canadian-built robotic arm to reach out for dramatic vehicle grappling on Dec. 9, 2015. Credit: NASA TV
@OrbitalATK’s #Cygnus spacecraft is moving toward its capture point at the International Space Station as astronaut maneuver the Canadian-built robotic arm to  reach out for dramatic vehicle grappling on Dec. 9, 2015. Credit: NASA TV
@OrbitalATK’s #Cygnus spacecraft is moving toward its capture point at the International Space Station as astronauts maneuver the Canadian-built robotic arm to reach out for dramatic vehicle grappling on Dec. 9, 2015. Credit: NASA TV
Story/photos updated

The commercial Cygnus cargo spaceship, loaded with over three tons of critically needed supplies and research experiments, successfully rendezvoused and docked with the International Space Station (ISS) this morning (Dec. 9) after blazing to orbit on Sunday, Dec. 6, and thereby successfully resumed the American resupply chain to orbit – just in time for Christmas in Space!

The Orbital ATK Cygnus CRS-4 resupply vessel arrived in the vicinity of the massive orbiting outpost around 530 a.m. EST today with pinpoint accuracy after precisely firing its maneuvering thrusters to home in on the complex during a two day orbital chase.

After moving close in to Continue reading “Cygnus Docks at Station for Christmas Delivery to Successfully Resume American Resupply Chain”

Spectacular Blastoff of Atlas Cygnus Ignites Restart of American Cargo Missions to ISS

Orbital ATK’s Cygnus Spacecraft carrying vital cargo to resupply the International Space Station lifts-off aboard a United Launch Alliance Atlas V rocket on Dec. 6, 2015. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s Cygnus Spacecraft carrying vital cargo to resupply the International Space Station lifts-off aboard a United Launch Alliance Atlas V rocket.  Credit: Ken Kremer/kenkremer.com
Orbital ATK’s Cygnus Spacecraft carrying vital cargo to resupply the International Space Station lifts-off aboard a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com
Story/photos updated

KENNEDY SPACE CENTER, FL – Today’s spectacular blastoff of a United Launch Alliance Atlas V rocket carrying an Orbital ATK Cygnus commercial resupply spacecraft ignited the restart of critically needed American cargo mission to the International Space Station (ISS) following a pair of launch failures over the past year.

The ULA Atlas V rocket roared off the launch pad at 4:44 p.m. EST at the opening of a 30 minute launch window from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Continue reading “Spectacular Blastoff of Atlas Cygnus Ignites Restart of American Cargo Missions to ISS”

Happy Marriage of ULA and Orbital ATK Set for Atlas V Blastoff of Cygnus Freighter to ISS on Dec. 6 – Watch NASA TV Live; Photos

Reflection view of Orbital ATK Cygnus CRS-4 spacecraft poised for blastoff to ISS on ULA Atlas V on Dec. 5, 2015 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com
Reflection view of Orbital ATK Cygnus CRS-4 spacecraft poised for blastoff  to ISS on  ULA Atlas V on Dec. 5, 2015 from Cape Canaveral Air Force Station, Florida.  Credit: Ken Kremer/kenkremer.com
Reflection view of Orbital ATK Cygnus CRS-4 spacecraft poised for blastoff to ISS on ULA Atlas V on Dec. 5, 2015 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The unplanned ‘Happy Marriage’ of United Launch Alliance (ULA) and Orbital ATK is set to give birth Sunday, Dec. 6, to a Cygnus cargo freighter bound for the International Space Station (ISS).

Following two scrubs and a three day due to intense and wide spread rain squalls and excessive blustery winds, the third time is hopefully the charm for the Orbital ATK Cygnus resupply ship set for blastoff atop the venerable ULA Atlas V booster.

The late afternoon liftoff is targeted for Continue reading “Happy Marriage of ULA and Orbital ATK Set for Atlas V Blastoff of Cygnus Freighter to ISS on Dec. 6 – Watch NASA TV Live; Photos”

Hayabusa 2 to Flyby the Earth Tomorrow

An artist's image of Hayabusa leaving Earth. Hayabusa was a Japanese sample return mission to the asteroid 25143 Itokawa. The mission was a partial success. A sample mission to Earth's sister planet is the holy-grail for the exploration of Venus. Image credit: JAXA

A space-faring friend pays our fair planet a visit this week on the morning of December 3rd, as the Japanese Space Agency’s Hayabusa 2 spacecraft passes the Earth.

The Flyby

Rick Baldridge on the SeeSat-L message board notes that Hayabusa-2 will pass 9,520 kilometers from the Earth’s center or 3,142 kilometers/1,885 miles from the Earth’s surface at 10:08 UT/5:08 AM EST on Thursday, December 3rd, passing from north-to-south above latitude 18.7 north, longitude 189.8 east just southwest of the Hawaiian Islands.

Unfortunately, the sighting opportunities for Hayabusa-2 aren’t stellar: even at its closest, the 1.5 meter-sized spacecraft is about nine times more distant than the International Space Station and satellites in low Earth orbit. To compound the challenge, Hayabusa-2 passes into the Earth’s shadow from 9:58 UT to 10:19 UT.

Image credit: JAXA
The path of Hayabusa-2 past the Earth. Image credit: JAXA

Still, skilled observers with large telescopes and sophisticated tracking rigs based along the Pacific Rim of North America might just catch sight of Hayabusa-2 as it speeds by. The JPL Horizons ephemeris generator is a great resource to create a customized positional chart in right ascension and declination for spacecraft for your given location, including Hayabusa-2.

Image credit: JAXA
The Earth-Moon pair snapped by Hayabusa-2 on November 26th from about three million kilometers distant. Image credit: JAXA

Hayabusa-2 won’t crack 20 degrees elevation for observers along the U.S. West Coast, putting it down in the atmospheric murk of additional air mass low to the horizon. This also tends to knock the brightness of objects down a magnitude or so… estimates place Hayabusa-2 at around magnitude +13 shortly before entering the Earth’s shadow. That’s pretty faint, but still, there are some dedicated observers with amazing rigs out there, and it’s quite possible someone could nab it. Hawaii-based observers should have the best shot at it, though again, it’ll be in the Earth’s shadow at its very closest…

Amateur radio satellite trackers are also on the hunt for the carrier-wave signal of the inbound Hayabusa-2 mission. You can also virtually fly along with the spacecraft until December 5th: (H/T @ImAstroNix):

A simulation of tomorrow's flyby. Image Credit: JAXA
A simulation of tomorrow’s flyby. Image Credit: JAXA

Probably the best eye-candy images will come from the spacecraft itself: already, Hayabusa-2 has already snapped some great images of the Earth-Moon pair using its ONC-T optical navigation camera during its inbound leg.

Image credit: JAXA
A close-up of Hayabusa-2’s view of the Earth and Moon. Image credit: JAXA

Other notable missions used Earth flybys en route to their final destinations, including Cassini in 1999, and Juno in 2013. Cassini’s return caused a bit of a stir as it has a plutonium-powered RTG aboard, though Earth and its inhabitants were never in danger. A nuclear RTG actually reentered during the return of Apollo 13, with no release of radioactive material. Meant for the ALSEP science package on the surface of the Moon, it was deposited on the reentry of the Lunar Module over the Marinas Trench in the South Pacific. And no, Hayabusa-2 carries no radioactive material, and in any event, it’s missing the Earth by about a quarter of its girth.

The successor to the Hayabusa (‘Peregrine Falcon’ in Japanese) mission which carried out a historic asteroid sample return from 25143 Itokawa in 2010, Hayabusa-2 launched atop an H-IIA rocket from Tanegashima, Japan exactly a year ago tomorrow on a six year mission to asteroid 162173 Ryugu. This week’s Earth flyby will boost the spacecraft an additional 1.6 kilometers per second to an outbound velocity towards its target of 31.9 kilometers per second post-flyby.

Image credit: JAXA
Launch of an H-IIA rocket with Hayabusa-2. Image credit: JAXA

Like its predecessor, Hayabusa-2 is a sample return mission. Unlike the original Hayabusa, however, Hayabusa-2 is more ambitious, also carrying the MASCOT (Mobile Asteroid Surface Scout) lander and an explosive seven kilogram impactor. Hayabusa-2 will deploy a secondary camera in orbit to watch the detonation and will briefly touch down at the impact site to collect material.

If all goes as planned, Hayabusa-2 will return to Earth in late 2020.

NASA has its own future asteroid sample return mission planned, named OSIRIS-REx. This mission will launch in September of next year to rendezvous with asteroid 101955 Bennu in September 2019 and return to Earth in September 2023.

An artist's conception on Hayabusa 2 at asteroid . Image credit: JAXA
An artist’s conception on Hayabusa 2 at asteroid 162173 Ryugu. Image credit: JAXA

We’re entering the golden age of asteroid exploration, for sure. And this all comes about as the U.S. authorized asteroid mining just last week (or at least, as stated, ‘asteroid utilization’) under the controversial U.S. Commercial Space Launch Competitiveness Act. But the original Hayabusa mission brought back mere micro-meter-sized dust grains, highlighting just how difficult asteroid mining is using present technology…

Perhaps, for now, its more cost effective to simply wait for the asteroids to come to us as meteorites and just scoop ’em up. We’ll be keeping an eye out over the next few days for images of Hayabusa-2 as it speeds by, and more postcards of the Earth-Moon system from the spacecraft as it heads towards its 2018 rendezvous with destiny.

Orion Gets Beefed Up, Silver-Metallic Thermal Protection Coating for Next Flight on EM-1

According to a new study, EDLS hardware that has been jettisoned on Mars could create problems for future missions to the same landing sites. Credit: NASA
On future missions, a silver, metallic-based thermal control coating will be bonded to the Orion crew module’s back shell tiles.  Credit: NASA
On future missions, a silver, metallic-based thermal control coating will be bonded to the Orion crew module’s back shell tiles. Credit: NASA

In the wake of NASA’s supremely successful inaugural test flight of the Orion deep space capsule on the EFT-1 mission in Dec. 2014, NASA is beefing up the critical thermal protection system (TPS) that will protect astronauts from the searing heats experienced during reentry as the human rated vehicle plunges through the Earth’s atmosphere after returning from ambitious expeditions to the Moon and beyond.

Based in part on lessons learned from EFT-1, engineers are refining Orion’s heat shield to enhance the design, ease manufacturing procedures and significantly strengthen is heat resistant capabilities for the far more challenging space environments and missions that lie ahead later this decade and planned further out in the future as part of NASA’s agency-wide ‘Journey to Mars’ initiative to send humans to the Red Planet in the 2030s.

On all future flights starting with Exploration Mission 1 (EM-1), the Orion crew module must Continue reading “Orion Gets Beefed Up, Silver-Metallic Thermal Protection Coating for Next Flight on EM-1”

First Mirror Installed on NASA’s Webb Telescope, Final Assembly Phase Starts

The James Webb Space Telescope team successfully installed the first flight mirror onto the telescope structure at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA/Chris Gunn
The James Webb Space Telescope team successfully installed the first flight mirror onto the telescope structure at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credits: NASA/Chris Gunn
The James Webb Space Telescope team successfully installed the first flight mirror onto the telescope structure at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credits: NASA/Chris Gunn
Story/photos updated

After years of construction, the first of 18 primary flight mirrors has been installed onto NASA’s James Webb Space Telescope (JWST) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, signifying the start of the final assembly phase for the mammoth observatory that will eventually become the most powerful telescope ever sent to space.

The milestone first mirror installation was achieved this week just ahead of the Thanksgiving holiday as the engineering team, working inside the massive clean room at NASA Goddard, used a robotic arm to precisely lift and lower the gold coated mirror into place on the observatory’s critical mirror holding backplane assembly.

Each of the 18 hexagonal-shaped primary mirror segments Continue reading “First Mirror Installed on NASA’s Webb Telescope, Final Assembly Phase Starts”

NASA Awards Contract to Aerojet Rocketdyne to Restart RS-25 Engine Production for SLS Mars Rocket

The first RS-25 flight engine, No. 2059, is placed on the A-1 Test Stand at Stennis Space Center, Miss. The engines were built by Aerojet Rocketdyne and are being tested in 2015 and 2016 to certify them to fly on NASA’s new Space Launch System (SLS) rocket. SLS-1 will launch on its first uncrewed mission in 2018. Credit: NASA

NASA took another big step on the path to propel our astronauts back to deep space and ultimately on to Mars with the long awaited decision to formally restart production of the venerable RS-25 engine that will power the first stage of the agency’s mammoth Space Launch System (SLS) heavy lift rocket, currently under development.

Aerojet Rocketdyne was awarded a NASA contract to reopen the production lines for the RS-25 powerplant and develop and manufacture a certified engine for use in NASA’s SLS rocket. The contract spans from November 2015 through Sept. 30, 2024.

The SLS is the most powerful rocket the world has ever seen and will loft astronauts in the Orion capsule on missions back to the Moon by around 2021, to an asteroid around 2025 and then beyond on a ‘Journey to Mars’ in the 2030s – NASA’s overriding and agency wide goal. The first unmanned SLS test flight is slated for late 2018.

The core stage (first stage) of the SLS will initially be powered by four existing RS-25 engines, recycled and upgraded from the shuttle era, and a pair of five-segment solid rocket boosters that will generate a combined 8.4 million pounds of liftoff thrust, making it the world’s most powerful rocket ever.

The newly awarded RS-25 engine contract to Sacramento, California based Aerojet Rocketdyne is valued at 1.16 Billion and aims to “modernize the space shuttle heritage engine to make it more affordable and expendable for SLS,” NASA announced on Nov. 23. NASA can also procure up to six new flight worthy engines for later launches.

“SLS is America’s next generation heavy lift system,” said Julie Van Kleeck, vice president of Advanced Space & Launch Programs at Aerojet Rocketdyne, in a statement.

“This is the rocket that will enable humans to leave low Earth orbit and travel deeper into the solar system, eventually taking humans to Mars.”

The lead time is approximately 5 or 6 years to build and certify the first new RS-25 engine, Van Kleek told Universe Today in an interview. Therefore NASA needed to award the contract to Aerojet Rocketdyne now so that its ready when needed.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

The RS-25 is actually an upgraded version of former space shuttle main engines (SSMEs) originally built by Aerojet Rocketdyne.

The reusable engines were used with a 100% success rate during NASA’s three decade-long Space Shuttle program to propel the now retired shuttle orbiters to low Earth orbit.

Atlantis rolls over  from the Orbiter Processing Facility (OPF-1, at right)  processing hanger to the Vehicle Assembly Building (VAB, at left) at KSC for the STS-135 mission.  Credit: Ken Kremer
Space Shuttles were powered by a trio of Space Shuttle Main Engines (SSMEs) now recycled and upgraded as RS-25 engines for SLS. Atlantis rolls over from the Orbiter Processing Facility (OPF-1, at right) processing hanger to the Vehicle Assembly Building (VAB, at left) at KSC for the STS-135 mission. Credit: Ken Kremer

Those same engines are now being modified for use by the SLS on missions to deep space starting in 2018.

But NASA only has an inventory of 16 of the RS-25 engines, which is sufficient for a maximum of the first four SLS launches only. Although they were reused numerous times during the shuttle era, they will be discarded after each SLS launch.

During a 535-second test on August 13, 2015, operators ran the Space Launch System (SLS) RS-25 rocket engine through a series of tests at different power levels to collect engine performance data on the A-1 test stand at NASA's Stennis Space Center near Bay St. Louis, Mississippi.  Credit: NASA
During a 535-second test on August 13, 2015, operators ran the Space Launch System (SLS) RS-25 rocket engine through a series of tests at different power levels to collect engine performance data on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Credit: NASA

And since the engines cannot be recovered and reused as during the shuttle era, a brand new set of RS-25s will have to be manufactured from scratch.

Therefore, the engine manufacturing process can and will be modernized and significantly streamlined – using fewer part and welds – to cut costs and improve performance.

“The RS-25 engines designed under this new contract will be expendable with significant affordability improvements over previous versions,” added Jim Paulsen, vice president, Program Execution, Advanced Space & Launch Programs at Aerojet Rocketdyne. “This is due to the incorporation of new technologies, such as the introduction of simplified designs; 3-D printing technology called additive manufacturing; and streamlined manufacturing in a modern, state-of-the-art fabrication facility.”

“The new engines will incorporate simplified, yet highly reliable, designs to reduce manufacturing time and cost. For example, the overall engine is expected to simplify key components with dramatically reduced part count and number of welds. At the same time, the engine is being certified to a higher operational thrust level,” says Aerojet Rocketdyne.

The existing stock of 16 RS-25s are being upgraded for use in SLS and also being run through a grueling series of full duration hot fire test firings to certify them for flight, as I reported previously here at Universe Today.

Among the RS-25 upgrades is a new engine controller specific to SLS. The engine controller functions as the “brain” of the engine, which checks engine status, maintains communication between the vehicle and the engine and relays commands back and forth.

RS-25 test firing in progress on the A-1 test stand at NASA's Stennis Space Center near Bay St. Louis, Mississippi, on Aug. 13, 2015.  Credit: NASA
RS-25 test firing in progress on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, on Aug. 13, 2015. Credit: NASA

Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen and liquid oxygen. For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.

They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.

The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.

NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.

The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.

Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SLS, Orion, SpaceX, Orbital ATK Cygnus, ISS, ULA Atlas rocket, Boeing, Space Taxis, Mars rovers, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 1 to 3: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Dec 8: “America’s Human Path Back to Space and Mars with Orion, Starliner and Dragon.” Amateur Astronomers Assoc of Princeton, AAAP, Princeton University, Ivy Lane, Astrophysics Dept, Princeton, NJ; 7:30 PM.