SpaceX set for Station Resupply Blastoff with Crew Docking Adapter and Bold Landing Attempt on June 28 – Watch Live

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 and Dragon are due to blastoff on June 28, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT on the CRS-7 mission to the International Space Station. Photo of last SpaceX launch to ISS in April 2015. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER, FL – With launch less than a day away for SpaceX’s seventh commercial resupply mission carrying a two ton payload of critical science and cargo for the future buildup of human spaceflight to the International Space Station (ISS) on Sunday, June 28, “everything is looking great” and all systems are GO, Hans Koenigsmann, SpaceX VP of mission assurance announced at a media briefing for reporters at the Kennedy Space Center.

The weather outlook along the Florida Space Coast is fantastic as U.S. Air Force 45th Weather Squadron forecasters are predicting a 90 percent chance of favorable conditions for lift off of the SpaceX Falcon 9 rocket and Dragon spacecraft, slated for 10:21 a.m. EDT, Sunday, June 28, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the CRS-7 mission.

If you are free this weekend and all continues to go well, this could well be your chance to be an eyewitness to a magnificent space launch in sunny Florida – and see a flight that signifies significant progress towards restoring America’s ability to once again launch our astronauts on American rockets from American soil.

NASA Television plans live launch coverage starting at 9 a.m EDT on June 28:

You can watch the launch live on NASA TV here: http://www.nasa.gov/nasatv

SpaceX also plans live launch coverage: www.spacex.com/webcast

Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com
Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays like on Monday due to weather or technical factors will force a scrub.

The mission is critical for NASA in more ways than one, in addition to the science cargo, the SpaceX Dragon spaceship is loaded with the first of two International Docking Adapters (IDA’s), pictured below, that will be connected to the space station to provide a place for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.

The approximately 30 inch thick and ring shaped IDA is loaded in the unpressurized truck section at the rear of the Dragon.

The pressurized section of the Dragon is packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These include critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko.

The science payloads will offer new insight to combustion in microgravity, perform the first space-based observations of meteors entering Earth’s atmosphere, continue solving potential crew health risks and make new strides toward being able to grow food in space, says NASA.

Some three dozen student science experiments are also flying aboard. The cargo also includes the METEOR camera.

Both IDA’s were built by Boeing. They will enable docking by the new space taxis being built by Boeing and Space X – the CST-100 and crew Dragon respectively, to carry our crews to the ISS and end our sole source reliance on the Russian Soyuz capsule.

IDA 1 will be attached to the forward port on the Harmony node, where the space shuttles used to dock.

Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com
Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com

If Dragon launches on Sunday as planned, it will reach the space station after a two day pursuit on Tuesday, June 30.

NASA’s Scott Kelly of NASA will use the station’s Canadarm2 robotic arm to reach out and capture Dragon at about 7 a.m. He will be assisted by Station commander Gennady Padalka of the Russian Federal Space Agency (Roscosmos) as they operate the 57 foot long arm from the station’s cupola.

NASA TV coverage of rendezvous and grapple of Dragon will begin at 5:30 a.m. on Tuesday. Coverage of Dragon’s installation to the Earth-facing port of the Harmony module will begin at 8:30 a.m.

The ship will remain berthed at the ISS for about five weeks.

Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Boeing, Space Taxis, Europa, Rosetta, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 27-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 and Dragon poised at Cape Canaveral Space Launch Complex 40 in Florida for planned April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon poised at Cape Canaveral Space Launch Complex 40 in Florida for planned April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com

Rosetta Orbiter Approved for Extended Mission and Bold Comet Landing

This single frame Rosetta navigation camera image of Comet 67P/Churyumov-Gerasimenko was taken on 15 June 2015 from a distance of 207 km from the comet centre. The image has a resolution of 17.7 m/pixel and measures 18.1 km across. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Rosetta will attempt comet landing
This single frame Rosetta navigation camera image of Comet 67P/Churyumov-Gerasimenko was taken on 15 June 2015 from a distance of 207 km from the comet centre. The image has a resolution of 17.7 m/pixel and measures 18.1 km across. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0 [/caption]

Europe’s history making Rosetta cometary spacecraft has been granted a nine month mission extension to plus up its bountiful science discoveries as well as been given the chance to accomplish one final and daring historic challenge, as engineers attempt to boldly go and land the probe on the undulating surface of the comet its currently orbiting.

Officials with the European Space Agency (ESA) gave the “GO” on June 23 saying “The adventure continues” for Rosetta to march forward with mission operations until the end of September 2016.

If all continues to go well “the spacecraft will most likely be landed on the surface of Comet 67P/Churyumov-Gerasimenko” said ESA to the unabashed glee of the scientists and engineers responsible for leading Rosetta and reaping the rewards of nearly a year of groundbreaking research since the probe arrived at comet 67P in August 2014.

“This is fantastic news for science,” says Matt Taylor, ESA’s Rosetta Project Scientist, in a statement.

It will take about 3 months for Rosetta to spiral down to the surface.

After a decade long chase of over 6.4 billion kilometers (4 Billion miles), ESA’s Rosetta spacecraft arrived at the pockmarked Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014 for history’s first ever attempt to orbit a comet for long term study.

Since then, Rosetta deployed the piggybacked Philae landing craft to accomplish history’s first ever touchdown on a comets nucleus on November 12, 2014. It has also orbited the comet for over 10 months of up close observation, coming at times to as close as 8 kilometers. It is equipped with a suite 11 instruments to analyze every facet of the comet’s nature and environment.

ESA Philae lander approaches comet 67P/Churyumov–Gerasimenko on 12 November 2014 as imaged from Rosetta orbiter after deployment and during seven hour long approach for 1st ever  touchdown on a comets surface.  Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA - Composition by Marco Di Lorenzo/Ken Kremer
ESA Philae lander approaches comet 67P/Churyumov–Gerasimenko on 12 November 2014 as imaged from Rosetta orbiter after deployment and during seven hour long approach for 1st ever touchdown on a comets surface. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA – Composition by Marco Di Lorenzo/Ken Kremer

Currently, Comet 67P is still becoming more and more active as it orbits closer and closer to the sun over the next two months. The mission extension will enable researchers to a far greater period of time to compare the comets activity, physical and chemical properties and evolution ‘before and after’ they arrive at perihelion some six weeks from today.

The pair reach perihelion on August 13, 2015 at a distance of 186 million km from the Sun, between the orbits of Earth and Mars.

“We’ll be able to monitor the decline in the comet’s activity as we move away from the Sun again, and we’ll have the opportunity to fly closer to the comet to continue collecting more unique data. By comparing detailed ‘before and after’ data, we’ll have a much better understanding of how comets evolve during their lifetimes.”

Because the comet is nearly at its peak of outgassing and dust spewing activity, Rosetta must observe the comet from a stand off distance, while still remaining at a close proximity, to avoid damage to the probe and its instruments.

Furthermore, the Philae lander “awoke” earlier this month after entering a sven month hibernation period after successfully compleing some 60 hours of science observations from the surface.

Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com

As the comet again edges away from the sun and becomes less active, the team will attempt to land Rosetta on comet 67P before it runs out of fuel and the energy produced from the huge solar panels is insufficient to continue mission operations.

“This time, as we’re riding along next to the comet, the most logical way to end the mission is to set Rosetta down on the surface,” says Patrick Martin, Rosetta Mission Manager.

“But there is still a lot to do to confirm that this end-of-mission scenario is possible. We’ll first have to see what the status of the spacecraft is after perihelion and how well it is performing close to the comet, and later we will have to try and determine where on the surface we can have a touchdown.”

During the extended mission, the team will use the experience gained in operating Rosetta in the challenging cometary environment to carry out some new and potentially slightly riskier investigations, including flights across the night-side of the comet to observe the plasma, dust, and gas interactions in this region, and to collect dust samples ejected close to the nucleus, says ESA.

Rosetta’s lander Philae has returned the first panoramic image from the surface of a comet. The view as it has been captured by the CIVA-P imaging system, shows a 360º view around the point of final touchdown. The three feet of Philae’s landing gear can be seen in some of the frames.  Superimposed on top of the image is a sketch of the Philae lander in the configuration the lander team currently believe it is in.  The view has been processed to show further details.   Credit: ESA/Rosetta/Philae/CIVA. Post processing: Ken Kremer/Marco Di Lorenzo
Rosetta’s lander Philae has returned the first panoramic image from the surface of a comet. The view as it has been captured by the CIVA-P imaging system, shows a 360º view around the point of final touchdown. The three feet of Philae’s landing gear can be seen in some of the frames. Superimposed on top of the image is a sketch of the Philae lander in the configuration the lander team currently believe it is in. The view has been processed to show further details. Credit: ESA/Rosetta/Philae/CIVA. Post processing: Ken Kremer/Marco Di Lorenzo

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Rosetta, SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

This single frame Rosetta navigation camera image was taken from a distance of 77.8 km from the centre of Comet 67P/Churyumov-Gerasimenko on 22 March 2015. The image has a resolution of 6.6 m/pixel and measures 6 x 6 km. The image is cropped and processed to bring out the details of the comet’s activity. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
This single frame Rosetta navigation camera image was taken from a distance of 77.8 km from the centre of Comet 67P/Churyumov-Gerasimenko on 22 March 2015. The image has a resolution of 6.6 m/pixel and measures 6 x 6 km. The image is cropped and processed to bring out the details of the comet’s activity. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

A Brief History of Nukes in Space

Image credit:

In just a few short weeks, NASA’s New Horizons spacecraft will make its historic flyby of Pluto and its moons. Solar panels are unable to operate in the dim nether regions of the outer solar system, and instead, New Horizons employs something that every spacecraft that has thus far ventured beyond Jupiter has carried in its tool kit: a plutonium-powered Radioisotope Thermoelectric Generator, or RTG.

The use of nuclear power to explore space is one of the few happy chapters of the post atomic age, and nuclear power may one day give us access to the stars.

In the 1950s, atomic energy was seen as a panacea as well as a curse, a sort of Sword of Damocles that both hung over the human race, while also holding the promise of its salvation. This was before the disasters in Fukushima Daiichi, Chernobyl and Three Mile Island, which would serve to sour the public to all things nuclear.

Image credit:
EBR-1, The first commercial nuclear power plant to go online (EBR-1), located in Idaho. Image credit: David Dickinson

But early space pioneers also recognized the potential for nuclear energy in space exploration. One of the more bizarre proposals of the early Space Age was a plan named Project A119 which called for the United States to detonate a nuclear weapon on the Moon in full view of the Soviet Union as a show of power. Another interesting proposal dubbed Project Orion called for the construction of an interstellar spacecraft that would be propelled by atomic bombs detonated to its aft. And the very first human artifact shot into space may well have been a one ton steel plate that was accidentally propelled at high speed skyward during the Pascal B nuclear test in the Operation Plumbbob series on August 27th, 1957. And the United States did indeed detonate nuclear weapons in space before the advent of the Limited Test Ban Treaty of 1967 that later forbade such tests. One amazing (and, as a child of the Cold War, very eerie to watch) such test known as Starfish Prime was carried out over the South Pacific in 1962:

One of the first spacecraft that sported an RTG was the Transit-4A satellite launched on June 29th, 1961. Another similar satellite in the series, Transit-5BN-3, was lost shortly after launch along with its plutonium-fueled RTG, which reentered over the Indian Ocean. The Soviet satellite Kosmos 954 also reentered over the Canadian high Arctic in early 1978 along with its onboard nuclear reactor.

And when Apollo 13 returned to Earth, the crew jettisoned the Aquarius lunar landing module over the Pacific, where it reentered along with its plutonium RTG meant for the ALSEP experiments that the Apollo astronauts placed on the Moon during every mission.

Image credit:
Aquarius after separation. Image credit: Apollo 13/NASA

Every launch from Cape Canaveral of a nuclear RTG is sure to draw a scattering of protesters, though NASA estimated a catastrophic launch failure involving an RTG rupture during the New Horizons launch at 1-in-360. These fears reached a crescendo during the launch of Cassini in 1997, which also featured an Earth slingshot flyby on August 18th, 1999 en route to Saturn.

A nuclear RTG works by utilizing the waste heat generated by the radioactive decay of plutonium-238. This not only has a half-life of 87.7 years, but it also generates a very respectable 560 watt-seconds per kilogram per second. Unfortunately, the stuff we weaponize for nuclear bombs is a separate isotope known as Pu-239, and it can’t be repurposed for RTG use. The production of plutonium-239 for nuclear weapons during the Cold War did, however, also assure that the capability to also create Pu-238 for spaceflight was on hand until production was ended in the United States in 1989.

Image credit:
A glowing pellet of Pu-238. Image credit: NASA/DoE

A roll call of RTG-equipped spacecraft reads like a ‘Who’s Who’ of outer solar system space exploration and includes: Pioneer 10 and 11, Galileo, Cassini, the Mars Science Laboratory, Voyagers 1 and 2, Vikings 1 and 2, and the aforementioned New Horizons spacecraft bound for Pluto.

Fun Fact: the plutonium powering Curiosity as it explores Mars was actually bought by NASA from the Russians.

Image credit:
A close up of MSL’s MMRTG. Image credit: NASA/LBNL

As of this writing, the Mars Rover 2020 mission is the next spacecraft to break the surly bonds that will sport, like Curiosity, a plutonium-powered MMRTG.  A proposed Uranus Orbiter mission named HORUS (This stands for—deep breath— the Herschel Orbiter for Reconnaissance of the Uranus System, because ‘Uranus Probe’ just doesn’t sound right) would have also utilized and RTG. The Europa Clipper mission to Jupiter’s moon Europa set to launch around 2025 chose solar cells over a nuclear RTG, though it’ll have to thread through the perilous radiation environment surrounding Jupiter. In fact, the Juno spacecraft set to enter orbit around the planet Jupiter next year will be the first Jovian mission that won’t utilize nuclear power, though it requires three enormous solar panels to compensate.

Just how much plutonium NASA has on hand courtesy of the Department of Energy is classified for security reasons, but it’s thought to have enough for one large and one scout-class mission remaining. New Horizons incorporates 10.9 kilograms of plutonium, and it’s interesting to note that any alien civilization that finds a human spacecraft orbiting the plane of our Milky Way galaxy millions of years hence could date its manufacture from the radioactive decay of what very little Pu-238 versus decay isotopes remains in its RTG.

Image credit
A close-up of New Horizons encapsulated in its launch fairing shortly after its RTG was installed. Image credit: KSC/NASA

NASA has announced that the US Department of Energy will indeed resume the production of plutonium to the tune of about 1.5 to 2 kilograms a year starting in 2016. On the downside, NASA did, however, halt the development of its Advanced Stirling Radioisotope Generator (ASRG) in 2013. This is a somewhat contradictory decision, fueled more by politics than practicality given the current scarcity of plutonium. The ASRG design was to be four times more efficient than current MMRTGs (MM stands for Multi-Mission) and would have thus utilized less of the dwindling stockpile of existing Pu-238.

Sadly, the lingering shortage of plutonium may have a dire impact on the future of outer solar system space exploration. As Cassini, New Horizons and the Voyager spacecraft wrap up their respective missions, our ‘eyes on the outer solar system’ may go dark, as the current golden era of planetary exploration draws to a close for now, or at least, awaits a new generation of plutonium-powered spacecraft to take up the mantle.

Book Review: Human Migration to Space

Have you wondered just how likely some of those futuristic science fiction movies might be? Can you imagine armies of drones or a cyborg/human? What do they have to do with today’s space endeavours? Well, actually lots, according to Elizabeth Song Lockard as she writes in her thesis / book “Human Migration to Space – Alternative Technological Approaches for Long-Term Adaptation to Extraterrestrial Environments”. In it, the presumption is that traveling and living in space is possible, indeed necessary. But if we become successful, we may no longer be the same humans that we are today.

For those who’ve been involved with academic theses, there’s usually little expectation in offering it to the general public. Usually the subject matter is too definite and the prose too particular to be of much use to the ordinary reader. However, in this instance, while the prose can be challenging at times, it is definitely a worthwhile read. This book goes through the standard steps of developing background and objective. Then, it’s as if you step off a cliff and you take flight into possibilities. The main subject is the posthuman. This is what humans must become in order to successfully transition into occupants beyond Earth. With this, the book has much discussion on which type of occupation is best: domination, integration or other.

And, of course, there’s lots of discussion of technology. Yet, perhaps atypical to most space books, the discussion relates more to types of technology rather than details of any particular technology. You’ll read about empathetic artilects, symbiogenesis and astrosociology. That is, the book deals very heavily with the human element during space exploration rather than the technical element. Now you may wonder why this would be an issue now? Society hasn’t been an issue for the months long stays in the International Space Station. But perhaps this is because the Earth is just outside the window and friends and family are instantly available over audio or Internet channels. For the months and possibly years of travel to Mars, with no sign of Earth and potentially intermittent and delayed communications, then the social aspect will be of a much greater concern. This same challenge of separation will occur with any colonists on Mars, the Moon or deep space. Given this perspective, this fresh view makes the read of this book very worthwhile.

While social implications for space travelers are interesting, the book also covers the deeper issue about human existence itself. Effectively, it argues that humans are at the end of their genetic development. We have no expectation of a natural mutation to something better. Equally, we have no fundamental need to change our society and social interaction. That is, we are as good as we will get. Thus, according to the book, humans must travel into space and settle upon other worlds so as to restart our evolutionary advance. Otherwise, we will face the ignominy that other flat-lined species have experienced. So, from this perspective as well, this book is definitely a good read.

Yet, don’t forget that this book is an academic thesis. It has many references, which is wonderful. The references can be somewhat terse, so it helps if you’ve read fairly broadly already. It doesn’t have an index, which is frustrating. And probably most of all, it isn’t very clear on how best to use the information within it. It will be up to each reader to decide if cyborgs are essential and if our expansion into space should only be by integrating with animate and inanimate entities that we find along the way. And what about its newness? Well, yes, we’ve seen many of these ideas and theories sprout up in the science fiction movies that continually grace our screens. But in this book / thesis, the reader can treat the contents of the wide screen entertainment as a posited precursor to humanity and thus use it for their personal divination of what may come.

While no one knows the future, there is one thing that’s certain. As we push our species into functional space-farers, we will certainly change. We can’t predefine how we will change. But, according to Elizabeth Song Lockard in her book “Human Migration to Space – Alternative Technological Approaches for Long-Term Adaptation to Extraterrestrial Environments”, there are some reasonable choices from which we can pick or even fall in to. Some maybe nice, like “E.T.”. Some maybe not so nice, like “Battlestar Galactica.” Which do you want to work towards?

This book is available through Springer. You can find out more about the author at her website.

NASA Gives ‘GO’ for Mission to Alien Ocean World at Jupiter Moon Europa

Artist's concept of NASA mission streaking over Europa. Credit: NASA/JPL

Artist’s concept of NASA mission streaking over ocean world of Europa. Credit: NASA/JPL
Story updated[/caption]

At long last NASA is heading back to Jupiter’s mysterious moon Europa and doing so in a big way – because scientists believe it harbors an alien ocean of water beneath an icy crust and therefore is “one of the most promising places in the solar system to search for signs of present-day life” beyond Earth.

Top NASA officials have now formally and officially green lighted the Europa ocean world robotic mission and given it the “GO” to move from early conceptual studies into development of the interplanetary spacecraft and mission hardware, to search for the chemical constituents of life.

“Today we’re taking an exciting step from concept to mission, in our quest to find signs of life beyond Earth,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, in a NASA statement.

The goal is to investigate the habitability of Europa’s subsurface ocean, determine if it possesses the ingredients for life and advance our understanding of “Are we Alone?”

“Observations of Europa have provided us with tantalizing clues over the last two decades, and the time has come to seek answers to one of humanity’s most profound questions,” said Grunsfeld.

Water is a prerequisite for life as we know it.

“We know that on Earth everywhere there is water we find life,” says Robert Pappalardo, Europa mission project scientist.

“Therefore Europa is the most likely place to find life in our solar system today because we think there is a liquid water ocean beneath its surface.”

Video caption: Alien Ocean: NASA’s Mission to Europa. Could a liquid water ocean beneath the surface of Jupiter’s moon Europa have the ingredients to support life? Here’s how NASA’s mission to Europa would find out. Credit: NASA

After a thorough review of the mission concept, managers agreed that it “successfully completed its first major review by the agency and now is entering the development phase known as formulation

“It’s a great day for science,” said Joan Salute, Europa program executive at NASA Headquarters in Washington.

“We are thrilled to pass the first major milestone in the lifecycle of a mission that will ultimately inform us on the habitability of Europa.”

In a major milestone leading up to this mission development approval, NASA managers recently announced the selection of the nine science instruments that will fly on the agency’s long awaited planetary science mission to this intriguing world that many scientists suspect could support life, as I reported here last month.

“We are trying to answer big questions. Are we alone,” said Grunsfeld at the May 26 media briefing.

“The young surface seems to be in contact with an undersea ocean.”

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

Planetary scientists have long desired a speedy to return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the moon’s surface in recent times.

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection – whose candidates include the heavy lift Space Launch System (SLS) now under development to launch astronauts on deep space expedition to the Moon, Asteroids and Mars.

The solar powered Europa probe will go into orbit around Jupiter for a three year mission in order to minimize exposure to the intense radiation region that could harm the spacecraft.

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, spectrometers and radar, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

There will many opportunities for close flybys of Europa during the three year primary mission to conduct unprecedented studies of the composition and structure of the surface, icy shell and oceanic interior.

“During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Curt Niebur, Europa program scientist at NASA Headquarters in Washington, told Universe Today.

“These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

Europa rising. The icy moon hangs above Jupiter cloud tops in a @NASANewHorizons image from 2007.  Credit: NASA
Europa rising. The icy moon hangs above Jupiter cloud tops in a @NASANewHorizons image from 2007. Credit: NASA

The mission currently has a budget of about $10 million for 2015 and $30 Million in 2016. Over the next three years the mission concept will be further defined.

The mission will be managed by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California and is expected to cost in the range of at least $2 Billion or more.

The nine science instruments are described in my earlier story- here. They will be developed and built by Johns Hopkins University Applied Physics Laboratory (APL); JPL; Arizona State University, Tempe; the University of Texas at Austin; Southwest Research Institute, San Antonio and the University of Colorado, Boulder.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech
This artist’s rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean. Credits: NASA/JPL-Caltech

Right now there is another NASA probe bound for Jupiter, the solar powered Juno orbiter that will investigate the origin of the gas giant. But Juno will not be conducting any observations or flyby’s of Europa.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-27: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

First Interplanetary CubeSats to Launch on NASA’s 2016 InSight Mars Lander

NASA's two small MarCO CubeSats will be flying past Mars in 2016 just as NASA's next Mars lander, InSight, is descending to land on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. Credits: NASA/JPL-Caltech

NASA’s two small MarCO CubeSats will be flying past Mars in 2016 just as NASA’s next Mars lander, InSight, is descending to land on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. Credits: NASA/JPL-Caltech
See fly by and cubesat spacecraft graphics and photos below[/caption]

CubeSats are taking the next great leap for science – departing Earth and heading soon for the fourth rock from the Sun.

For the first time, two tiny CubeSat probes will launch into deep space in early 2016 on their first interplanetary expedition – aiming for the Red Planet as part of an experimental technology relay demonstration project aiding NASA’s next Mission to Mars; the InSight lander.

NASA announced the pair of briefcase-sized CubeSats, called Mars Cube One or MarCO, as a late and new addition to the InSight mission, that could substantially enhance communications options on future Mars missions. They were designed and built by NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California.

InSight, which stands for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is a stationary lander. It will join NASA’s surface science exploration fleet currently comprising of the Curiosity and Opportunity missions which by contrast are mobile rovers.

InSight is the first mission to understand the interior structure of the Red Planet. Its purpose is to elucidate the nature of the Martian core, measure heat flow and sense for “Marsquakes.”

The full-scale mock-up of NASA's MarCO CubeSat held by Farah Alibay, a systems engineer for the technology demonstration, is dwarfed by the one-half-scale model of NASA's Mars Reconnaissance Orbiter behind her.  Credits: NASA/JPL-Caltech
The full-scale mock-up of NASA’s MarCO CubeSat held by Farah Alibay, a systems engineer for the technology demonstration, is dwarfed by the one-half-scale model of NASA’s Mars Reconnaissance Orbiter behind her. Credits: NASA/JPL-Caltech

Because of their small size – roughly 4 inches (10 centimeters) square) – and simplicity using off-the-shelf components, they are a favored platform for university students and others seeking low cost access to space – such as the Planetary Society’s recently successful Light Sail solar sailing cubesat demonstration launched in May. Six units are combined together to create MarCO.

Over the past few years many hundreds of cubesats have already been deployed in Earth orbit – including many dozens from the International Space Station (ISS) – but these will be the first going far beyond our Home Planet.

Data relayed by MarCO at 8 kbps in real time could reveal InSight’s fate on the Martian surface within minutes to mission controllers back on Earth, rather than waiting for a potentially prolonged period of agonizing nail-biting lasting an hour or more.

The two probes, known as MarCO-A and MarCO-B, will operate during InSight’s highly complex entry, descent and landing (EDL) operations as it descends through the thin Martian atmosphere. Their function is merely to quickly relay landing data. But the cubesats will have no impact on the ultimate success of the mission. They will intentionally sail by but not land on Mars.

“MarCO is an experimental capability that has been added to the InSight mission, but is not needed for mission success,” said Jim Green, director of NASA’s planetary science division at the agency’s headquarters in Washington, in a statement.

The MarCO Cubesats will serve as a test bed for a revolutionary communications mode that seeks to quickly relay data back to Earth about the status of InSight – in real time – as it plummets down to the Red Planet for the “Seven Minutes of Terror” that hopefully climaxes with a soft landing.

The MarCO duo will fly by past Mars at a planned distance and altitude of about 3,500 kilometers as InSight descends towards the surface during EDL operations. They will rapidly retransmit signals coming from the lander in real time, directly back to NASA’s huge Deep Space Network (DSN) receiving dish antennas back on Earth.

 MarCO cubesats fly by trajectory for rapid communications relay as NASA’s InSight spacecraft lands on Mars in September 2016. Credit: NASA/JPL-Caltech

MarCO cubesats fly by trajectory for rapid communications relay as NASA’s InSight spacecraft lands on Mars in September 2016. Credit: NASA/JPL-Caltech

For this flight, six cubesats will be joined together to provide the additional capability required for the journey to Mars and to accomplish their communications task.

The six-unit MarCO CubeSat has a stowed size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters) and weighs 14 kilograms.

The solar powered probes will be outfitted with UHF and X-band communications gear as well as propulsion, guidance and more.

The overall cost to design, build, launch and operate MarCO-A and MarCO-B is approximately $13 million, a NASA spokesperson told Universe Today.

InSight and MarCO are slated to blastoff together on March 4, 2016 atop a United Launch Alliance Atlas V rocket from Vandenberg Air Force Base, California.

After launch, both MarCO CubeSats will separate from the Atlas V booster and travel along their own trajectories to the Red Planet.

“MarCO will fly independently to Mars,” says Green.

They will be navigated independently from InSight. They will all reach Mars at approximately the same time for InSight’s landing slated for Sept. 28, 2016.

MarCO’s two solar panels and two radio antennas will unfurl after being released from the Atlas booster. The high-gain, X-band antenna is a flat panel engineered to direct radio waves the way a parabolic dish antenna does,” according to a NASA description.

The softball-size radio “provides both UHF (receive only) and X-band (receive and transmit) functions capable of immediately relaying information received over UHF.”

MarCO cubesat graphic annotated to show dimensions, instruments, physical characteristics and capabilities.  Credit: NASA/JPL-Caltech
MarCO cubesat graphic annotated to show dimensions, instruments, physical characteristics and capabilities. Credit: NASA/JPL-Caltech

During EDL, InSight will transmit landing data via UHF radio to the MarCO cubesats sailing past Mars as well as to NASA’s Mars Reconnaissance Orbiter (MRO) soaring overhead.

MarCO will assist InSight by receiving the lander information transmitted in the UHF radio band and then immediately forward EDL information to Earth using the X-band radio. By contrast, MRO cannot simultaneously receive information over one band while transmitting on another, thus delaying confirmation of a successful landing possibly by an hour or more.

Engineers for NASA's MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch.  Credit: NASA/JPL-Caltech
Engineers for NASA’s MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA’s next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA’s Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch. Credit: NASA/JPL-Caltech

“Ultimately, if the MarCO demonstration mission succeeds, it could allow for a “bring-your-own” communications relay option for use by future Mars missions in the critical few minutes between Martian atmospheric entry and touchdown,” say NASA officials.

It’s also very beneficial and critical to the success of future missions to have a stream of data following the progress of past missions so that lessons can be learned and applied, whatever the outcome.

“By verifying CubeSats are a viable technology for interplanetary missions, and feasible on a short development timeline, this technology demonstration could lead to many other applications to explore and study our solar system,” says NASA.

InSight will smash into the Martian atmosphere at high speeds of approximately 13,000 mph in September 2016 and then decelerate within a few minutes for landing via a heat shield, retro rocket and parachute assisted touchdown on the plains at flat-lying terrain at “Elysium Planitia,” some four degrees north of Mars’ equator, and a bit north of the Curiosity rover.

As I reported in recently here, InSight has now been assembled into its flight configuration and begun a comprehensive series of rigorous environmental stress tests that will pave the path to launch in 2016 on a mission to unlock the riddles of the Martian core.

The countdown clock is ticking relentlessly towards liftoff in less than nine months time in March 2016.

NASA's InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.  Credits: NASA/JPL-Caltech/Lockheed Martin
NASA’s InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars. Credits: NASA/JPL-Caltech/Lockheed Martin

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Book Review:”Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets”

While many visionaries now focus upon Mars as the next destination for humankind to visit, some have an even longer view. In the book, “Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets,” you can take a ride with the author Erik Seedhouse to possibly the next most habitable body in our solar system. You can visit Callisto in the Jovian system. However, on reading this book you will quickly discover that it won’t be a simple journey there and back again.

Imagine yourself wanting to get involved with that first trip to Callisto. What would you do? Where would you begin? Well, this book could be a really good high level overview for the requirements for your endeavour. 

First, it reminds you on why Callisto is the best target. Here it draws upon earlier NASA efforts, including RASC-Revolutionary Aerospace Systems Concepts and HOPE-Human Outer Planet Exploration. It also continually references recent movies like Avatar and Pandorum as supporting work.  With the references aside, the book settles down and focuses you upon its prime directive, a one-off exploration endeavor, even smaller than the multiple missions of Apollo to the Moon. Therefore, much of the book’s information serves to satisfy this one-off.

As you read, you will discover more and more requirements and pre-conditions. For example, according to this book, you will be departing from a spaceport parked in CIS-Lunar orbit. You will travel on the optimal path to arrive at Callisto without hitting Jupiter or being affected by its radiation fields. You will use electrical onboard power from a nuclear generation system. Your craft will be powered by a variable specific impulse magnetoplasma rocket. Your body will be suspended cryogenically on the flight. Your body will be filled with nano-biomechanical devices so that you are in functional shape when you arrive. An onboard computer (not named HAL) will sustain both your sleeping body and the spacecraft on its multiyear journey. And so the book’s list of pre-conditions continues on. Thus, as you can well imagine, the book takes you along a path that perhaps is more akin to science fiction than science fact even though it argues that the technologies are all nearly-here! Topping this list is the submersible that launches you into the ice-covered oceans of Callisto. In any case, humankind will have to do a huge amount of prior development before you ever get to this Jovian moon; at least according to this book.

The book’s reliance upon un-proven or even non-existent technology is what will likely either make or break it for you. In effect, the book reads as if the author accumulated a large number of scientific research papers and turned them into a comprehensive, very entertaining prose for the general audience. If you want to be entertained, then this book is for you. If you want to get into a bit more of the nitty gritty, well then you may be less entertained. For example, the book has an expectation that explorers on Callisto will utilize GPS receivers to help them navigate. But, there is no mention of a GPS satellite constellation orbiting Callisto. And what about cryogenics? While the book does mentions some ongoing research today, we certainly don’t consider it mainstream. You may learn of new words like ‘respirocytes’. This knowledge could serve you well at cocktail parties but may not get you much headway at the next meeting of the local astronomical society. So, this reliance upon un-proven or non-existent technology should be kept in mind before you read this book.

However, at one time, some people were imaginative enough, or brave enough, to envision humankind doing more than staying upon planet Earth. Sure the Moon is close and Mars is apparently only slightly further. But there’s a whole universe out there just waiting for us. Are you sure what might be the best path for our species? Take a read of Erik Seedhouse’s book “Interplanetary Outpost – The Human and Technological Challenges of Exploring the Outer Planets”. It might change your perspective as it takes you on a ride the likes of which will never have been seen on Earth before.

This book is available from Springer.

Learn more about the author Erik Seedhouse at Astronauts4Hire.org

Philae Wakes Up, Makes Contact!

Philae may have woken up even earlier, but yesterday afternoon the lander contacted Earth for the first time since November. Credit: ESA

Fantastic news! Philae’s alive and kicking. The lander “spoke” with its team on ground via Rosetta for 85 seconds — its first contact since going into hibernation in November.

Signals were received at ESA’s European Space Operations Center in Darmstadt at 4:28 p.m. EDT yesterday June 13. The lander sent more than 300 data packets reporting on its condition as well as information about the comet. 

“Philae is doing very well. It has an operating temperature of -35ºC (-31°F) and has 24 watts available,” said DLR Philae Project Manager Dr. Stephan Ulamec. “The lander is ready for operations.”

Philae spent two hours drifting above Comet 67P/C-G after its harpoons failed to anchor it to the surface. Credit: ESA
Philae spent two hours drifting above Comet 67P/C-G after its harpoons failed to anchor it to the surface. Credit: ESA

If coming out of hibernation isn’t surprising enough, it appears Philae has been awake for a while because it included historical data along with its current status in those packets. There are still more than 8000 data packets in Philae’s mass memory which will give the mission scientists information on what happened to the lander in the past few days on Comet 67P/C-G.

Philae went into hibernation on November 15, 2014 after running out of battery power. Credit: ESA
Philae went into hibernation on November 15, 2014 after running out of battery power. Credit: ESA

Philae shut down on November 15 after about 60 hours of operation on the comet after landing at the base of a steep cliff in a shaded area that prevented the solar panels from charging its batteries. Since March 12, the Rosetta lander has been “listening” for a signal from the lost lander.

First image taken by Philae after landing on the comet on November 12, 2015. It shows a steep cliff and one of the  lander's legs. Credit: ESA/ROSETTA/PHILAE/CIVA
First image taken by Philae after landing on Comet 67P/Churyumov-Gerasimenko on November 12, 2014 showing a steep cliff and one of the lander’s legs. Credit: ESA/ROSETTA/PHILAE/CIVA

Throughout, mission scientists remained hopeful that the comet’s changing orientation and increase in the intensity of sunlight as it approached perihelion would eventually power up the little lander. Incredible that it really happened.

Yesterday, we looked at the many attempts to find Philae. A day later it’s found us!

Both amateurs and professional astronomers across the world are in constant contact sharing observations of Comet 67P/C-G and news from the Rosetta mission. Klim Churyumov, co-discoverer of the comet, had this to say upon hearing the news of Philae’s awakening:

“Hurrah! Hurrah! Hurrah! Landing probe Philae awake! Everybody, please accept my sincere congratulations! It happened on 13 June 2015 in the day of birthday of my mother – Antonina Mikhailovna (108 years have passed since the day of her birth). And I’m starting from 13 November 2014 to this day, every morning pronounced a short prayer: “Lord, please wake Philae and support Rosetta”. God and the Professional Navigators woke Philae! It is fantastic! All the best! – Klim Churyumov.

How poignant Philae awoke on Klim’s mother’s birthday!

Padma A. Yanamandra-Fisher, Rosetta Coordinator of Amateur Observations for 67P/C-G (and Senior Research Scientist at the Space Science InstituteKlim Churyumov, at the ACM meeting in Helsinki
Padma Yanamandra-Fisher (left), Senior Research Scientist at the Space Science Institute, who runs the PACA site, and comet co-discoverer Klim Churyumov. Courtesy Padma Yanamandra-Fisher

Churyumov made his statement on the Pro-Am Collaborative Astronomy (PACA) site devoted to pro-amateur collaboration during comet observing campaigns. I encourage you to check out the group and participate by submitting your own observations of Comet 67P as it brightens this summer and early fall.

* UPDATE: In the coming days, the mission teams will reestablish contact with Philae and increase the amount of time it can “talk” with the lander. Once regular contact is established, science observations can begin again. Slowly. One instrument at a time.

The first instruments activated, those measuring temperature, magnetic fields and electrical conductivity on the comet, make small demands on Philae’s power. Slightly more power-hungry operations like picture taking and radio ranging will follow. Using the images and new data, scientists should be able to pinpoint the lander’s location.

After these steps, mission engineers will attempt to recharge the probe’s drained batteries to fire up its ovens (used to heat samples to determine their composition) and run the drill to collect fresh material.

Here’s a cool link to see LIVE telemetry from Philae.

Station Astronaut Snaps Super Sharp View of the Great Pyramids from Space

The Great Egyptian Pyramids of Giza from space and the International Space Station on 10 June 2015. “It took me until my last day in space to get a good picture of these! Credit: NASA/Terry Virts/@AstroTerry

The Great Egyptian Pyramids of Giza from space and the International Space Station on 10 June 2015. “It took me until my last day in space to get a good picture of these!
Credit: NASA/Terry Virts/@AstroTerry
See Pyramid map below[/caption]

On his last full day in space aboard the International Space Station (ISS), NASA astronaut Terry Virts at last captured a truly iconic shot of one of the “Seven Wonders of the World” – the Great Pyramids of Giza in Egypt.

Virts snapped the exquisitely sharp view of the Egyptian pyramids at Giza on June 10 looking out from the stations windows, just hours before entering the Soyuz return spaceship and closing the hatches behind him for his planned plummet back to Earth.

He proudly posted the spectacular photo on his twitter social media account from space while serving as station commander of Expedition 43.

The three pyramids of Giza dominate the fantastically beautiful photo. They are located about 9 km (5 mi) from the town of Giza on the Nile, and some 25 km (15 mi) southwest of the Egyptian capital city of Cairo.

The Great Sphinx is also located nearby the massive complex of the Great Pyramids and visible in the stunning photo. See map below.

Map of Giza pyramid complex - "Pyramid of Khufu" refers to the Great Pyramid.
Map of Giza pyramid complex – “Pyramid of Khufu” refers to the Great Pyramid.

Virts and his international crewmates from Russia and Italy just returned home safely to a sun drenched and toasty touchdown on the remotes steppes of Kazakhstan on June 11, after departing from the massive orbiting complex aboard their Russian Soyuz TMA-15M ferry craft.

Apparently the Pyramid photo proved to be quite elusive – as it took Virts the entire length of his six months duration flight to finally take the stunning close up photo he longed for and achieved, with no time left to spare.

“It took me until my last day in space to get a good picture of these!” tweeted Virts from the ISS on June 11.

NASA Astronaut Terry Virts inside the Cupola, commanded just completed Expedition 43 during over 199 days aboard the ISS.  Credit: NASA
NASA Astronaut Terry Virts inside the Cupola, commanded just completed Expedition 43 during over 199 days aboard the ISS. Credit: NASA

The multinational Expedition 43 trio comprised Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency).

They undocked from the orbiting outposts Russian Rassvet module as scheduled in the Soyuz TMA-15M spaceship at 6:20 a.m. EDT, June 11, while soaring some 250 miles (400 kilometers) above Mongolia.

Earlier in the mission, Cristoforetti captured a wider angle view of the Great Pyramids of Giza, shown for comparison below. Modern civilization juts up very near to the ancient pyramids.

The Egyptian Pyramids of Giza from space and the ISS.  ESA/Samantha Cristoforetti
The Egyptian Pyramids of Giza from space and the ISS. Credit: ESA/Samantha Cristoforetti

The largest pyramid, known as the Great Pyramid or Pyramid of Khufu was built over around 10 to 20 years and completed around 2560 BC. It measured about 146.5 meters (481) feet in height when it was originally built. At the base it has a width of 230.4 meters (765 feet).

Altogether, the Expedition 43 crew served nearly 200 days on board the ISS.

During his just concluded stay aboard the ISS during Expedition 43, Virts did three spacewalks totaling 19 hours and 2 minutes. Including the nearly 200 day mission, he raised has total cumulative time in space to 212 days.

Virts was a prolific photographer during his duty time in orbit. A few more of his shots are gathered included herein, including one of many nighttime photos, a shot of the Soyuz return vehicle and his very last shot, a magnificent view out the stations windows.

“The last picture I took on this mission.”  Credit:  NASA: Terry Virts/@AstroTerry
“The last picture I took on this mission.” Credit: NASA/Terry Virts/@AstroTerry

The Expedition 43 flight was extended at the last minute due to the surprise launch failure of a Russian rocket carrying a station bound Progress resupply ship in late April.

The Progress 59 cargo vessel, also known as Progress M-27M, spun wildly out of control as it separated from the Soyuz-2.1A carrier rocket. The freighter and all its 2.5 tons of contents for the crew were destroyed during an uncontrolled plummet as its crashed back to Earth on May 8.

As a direct result of the mission extension, Cristoforetti now holds the single mission space record for a female astronaut, of nearly 200 days.

On June 6, Cristoforetti surpassed the female astronaut record of 194 days, 18 hours and 2 minutes established by NASA astronaut Sunita Williams on a prior station flight back in 2007.

Expedition 43 marked Cristoforetti first foray into space and she is also the first female Italian astronaut.

With the departure of the Virts crew, three people remain on board to start Expedition 44. They comprise NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko, the two members of the first “ISS 1 Year Mission” as well as cosmonaut Gennady Padalka.

The next three person crew is due to blastoff in a Soyuz around July 23 to 25 to restote the station to a full complement of six.

The next cargo ferry flight involves NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 is now slated for liftoff on June 26. Watch for my onsite reports from KSC.

The Dragon will be carrying critical US equipment, known as the International Docking Adapter (IDA), enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters – due for first crewed launches in 2017.

The most recent unmanned Dragon cargo CRS-6 mission concluded with a Pacific Ocean splashdown on May 21.

“My ride back to Earth today.” Soyuz ferry craft touched down safe on 11 June 2015.  Credit:  NASA: Terry Virts/@AstroTerry
“My ride back to Earth today.” Soyuz ferry craft touched down safe on 11 June 2015. Credit: NASA/Terry Virts/@AstroTerry

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Soyuz departs on 11 June 2015. “Fair winds and following seas to my good friends @AstroTerry,   @AstroSamantha, and @AntonAstrey.”  Credit: NASA/Scott Kelly
Soyuz departs on 11 June 2015. “Fair winds and following seas to my good friends @AstroTerry, @AstroSamantha, and @AntonAstrey.” Credit: NASA/Scott Kelly

Record Setting Italian Female Astronaut and ISS Crewmates Land in Sunny Kazakhstan

The Soyuz TMA-15M spacecraft is seen as it lands with Expedition 43 commander Terry Virts of NASA, cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), and Italian astronaut Samantha Cristoforetti from European Space Agency (ESA) near the town of Zhezkazgan, Kazakhstan on Thursday, June 11, 2015. Virtz, Shkaplerov, and Cristoforetti are returning after more than six months onboard the International Space Station where they served as members of the Expedition 42 and 43 crews. Photo Credit: (NASA/Bill Ingalls)

An international crew comprising a Russian cosmonaut, a US astronaut and an Italian astronaut who accomplished a record setting flight for time in space by a female, departed the International Space Station (ISS) earlier today, June 11, and safely landed in sunny and warm Kazakhstan tucked inside their Russia Soyuz ferry ship after a successful and extended 199-day mission devoted to science and station upgrades.

The multinational trio comprising Expedition 43 Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency) undocked from the orbiting outposts Russian Rassvet module as scheduled in the Soyuz TMA-15M spaceship at 6:20 a.m. EDT while soaring some 250 miles (400 kilometers) above Mongolia.

A four-minute 40-second deorbit burn at 8:51 a.m EDT slowed the craft for the fiery reentry into the Earth’s atmosphere.

The crew touched down just a few hours after undocking at 9:44 a.m. EDT (7:44 p.m., Kazakh time), southeast of the remote town of Dzhezkazgan on the steppes of Kazakhstan, about an hour and a half before sundown in delightfully summer weather. Temperatures today were in the 80s, but they are ‘bone chilling’ in the winter months.

Expedition 43 Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency) touched down at 9:44 a.m. EDT (7:44 p.m., Kazakh time), southeast of the remote town of Dzhezkazgan in Kazakhstan.  Credits: NASA TV
Expedition 43 Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency) touched down at 9:44 a.m. EDT (7:44 p.m., Kazakh time), southeast of the remote town of Dzhezkazgan in Kazakhstan. Credits: NASA TV

The Expedition 43 flight was extended at the last minute due to the surprise launch failure of a Russian rocket carrying a station bound Progress resupply ship in late April.

The Progress 59 cargo vessel, also known as Progress M-27M, spun wildly out of control as it separated from the Soyuz-2.1A carrier rocket. The freighter and all its 2.5 tons of contents fpr the crew were destroyed during an uncontrolled plummet as its crashed back to Earth on May 8.

The Soyuz/Progress 59 failure had far reaching consequences and resulted in a postponement of virtually all Russian crew and cargo flights to the ISS for the remainder of 2015, as announced this week by Roscosmos, the Russian Federal Space Agency.

One result is that Cristoforetti now holds the single mission record for a female astronaut, of nearly 200 days.

Expedition 43 was extended by about a month in the wake of the launch failure of the Progress 59 cargo vessel, which quickly cascaded into an extended mission from its originally planned length of about 170 days to 199+ days.

The Soyuz is only certified to stay on orbit for 200 days. So the return home delayed as much as possible to minimize the time when the ISS reverts to only a three person crew – and consequently reduced time for research.

This past weekend on June 6, Cristoforetti surpassed the female astronaut record of 194 days, 18 hours and 2 minutes established by NASA astronaut Sunita Williams on a prior station flight back in 2007.

Cristoforetti, of the European Space Agency (ESA), is on her first ever space flight also counts as she also counts as Italy’s first female astronaut.

The station departure and parachute assisted soft landing was shown during a live webcast on NASA TV.

“The landing was on time and on target after over 199 days in space,” said NASA commentator Rob Navius.

“Everything went by the book for an on target touchdown. The crew is safely back on Earth!”

Flight Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as SpaceX Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
Flight Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as SpaceX Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

In the final stages of the return to Earth, the Soyuz descent module glided down safely using a single mammoth orange and white parachute, aided by braking rockets in the final moments just a few feet above ground.

The Soyuz landed upright, which eased the extraction of the crew. Russian recovery team members hoisted all three up and out from the cramped capsule.

Soyuz commander Anton Shkaplerov was hauled up first, followed by Samantha Cristoforetti and finally Terry Virts.

All three crewmembers were healthy and happy, each signaling their elation with a joyous ‘thumbs up.’

After preliminary medical checks, the crew were flown by helicopter to a staging base at Karaganda. From there they split up. Shkaplerov heads back to Moscow and Star City. Cristoforetti and Virts fly to Mission Control in Houston.

During their time aloft, the crew completed several critical spacewalks, technology demonstrations, and hundreds of scientific experiments spanning multiple disciplines, including human and plant biology,” according to NASA.

Among the research experiments conducted were “participation in the demonstration of new, cutting-edge technologies such as the Synthetic Muscle experiment, a test of a new polymer that contracts and expands similar to real muscle. This technology has the potential for future use on robots, enabling them to perform tasks that require considerable dexterity but are too dangerous to be performed by humans in space.”

“The crew engaged in a number of biological studies, including one investigation to better understand the risks of in-flight infections and another studying the effects microgravity has on bone health during long-duration spaceflight. The Micro-5 study used a small roundworm and a microbe that causes food poisoning in humans to study the risk of infectious diseases in space, which is critical for ensuring crew health, safety and performance during long-duration missions. The Osteo-4 study investigated bone loss in space, which has applications not only for astronauts on long-duration missions, but also for people on Earth affected by osteoporosis and other bone disorders.”

Three cargo flights also arrived at the ISS carrying many tons of essential supplies, research equipment, science experiments, gear, spare parts, food, water, clothing.

The resupply freighters included the Russian Progress in February 2015 as well as two SpaceX Dragon cargo ships on the CRS-5 and CRS-6 flights in January and April.

Expedition 43 commander Terry Virts of NASA, left, cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), center, and Italian astronaut Samantha Cristoforetti from European Space Agency (ESA) sit in chairs outside the Soyuz TMA-15M spacecraft just minutes after they landed in a remote area near the town of Zhezkazgan, Kazakhstan on Thursday, June 11, 2015. Virtz, Shkaplerov, and Cristoforetti are returning after more than six months onboard the International Space Station where they served as members of the Expedition 42 and 43 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 43 commander Terry Virts of NASA, left, cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), center, and Italian astronaut Samantha Cristoforetti from European Space Agency (ESA) sit in chairs outside the Soyuz TMA-15M spacecraft just minutes after they landed in a remote area near the town of Zhezkazgan, Kazakhstan on Thursday, June 11, 2015. Virts, Shkaplerov, and Cristoforetti are returning after more than six months onboard the International Space Station where they served as members of the Expedition 42 and 43 crews. Photo Credit: (NASA/Bill Ingalls)

With the return of Virts crew, the new Expedition 44 begins and comprises NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko, the two members of the first “ISS 1 Year Mission” as well as cosmonaut Gennady Padalka.

Padalka now assumes command of the station for a record setting fourth time. And he’ll soon be setting another record. In late June, he will break the all time record for cumulative time in space currently held by cosmonaut Sergei Krikalev of 803 days on six space flights.

When Padalka returns to Earth around September 10 in the Soyuz TMA-16M ship, that brought the 1 Year crew to the ISS, he will have been in space for a grand total of over 877 days over five flights.

The next cargo ferry flight involves NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight.

Dragon CRS-7 is now slated for liftoff on June 26. Watch for my onsite reports from KSC.

The Dragon will be carrying critical US equipment, known as the International Docking Adapter (IDA), enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters – due for first crewed launches in 2017.

The most recent unmanned Dragon cargo CRS-6 mission concluded with a Pacific Ocean splashdown on May 21.

The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA
The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Expedition 43 crews rests post landing  on Thursday, June 11, 2015, Terry Virts of NASA, comprising cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), and record setting Italian astronaut Samantha Cristoforetti from European Space Agency (ESA).  Credit: NASA
Expedition 43 crews rests post landing on Thursday, June 11, 2015, Terry Virts of NASA, comprising cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), and record setting Italian astronaut Samantha Cristoforetti from European Space Agency (ESA). Credit: NASA