Astronauts Safely Back inside US Space Station Segment after False Ammonia Leak Alarm

Astronauts Barry WiImore (foreground) and Terry Virts re-entered the U.S. segment wearing protective masks on Jan. 14, 2015. Credit: NASA TV

Nearly twelve hours after the threat of a leak of toxic ammonia forced the crew into a middle of the night evacuation from the US side of the International Space Station this morning (Jan. 14) and a hatch closure, top level managers from the partner space agencies gave the all clear and allowed the astronauts and cosmonauts to reopen access to the American portion of the orbiting outpost.

The six person crew hailing from the US, Italy and Russia were allowed to open the sealed hatch to the U.S. segment later this afternoon after it was determined that the ammonia leak was quite fortunately a false alarm.

No ammonia leak was actually detected. But the crew and mission control had to shut down some non essential station systems on the US segment in the interim.

All the Expedition 42 crew members were safe and in good health and never in danger, reported NASA.

The station crews and mission control teams must constantly be prepared and train for the unexpected and how to deal with potential emergencies, such as today’s threat of a serious chemical leak.

After a thorough review of the situation by the International Space Station mission management team, the crew were given the OK by flight controllers to head back.

They returned inside at 3:05 p.m. EST. Taking no chances, they wore protective masks and sampled the cabin atmosphere and reported no indications of any ammonia.

Fears that a leak had been detected resulted from the sounding of an alarm at around 4 a.m. EST.

The alarm forced Expedition 42 station commander Barry Wilmore and Flight Engineer Terry Virts of NASA and Flight Engineer Samantha Cristoforetti of the European Space Agency to don protective gas masks and move quickly into the Russian segment, sealing the hatch behind them to the US segment.

Inside the Russian segment, they joined the remainder of Expedition 42, namely cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia, also living and working aboard the ISS and rounding out the crew of four men and two women.

he International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA
The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. US segment on top in this view. Credit: NASA

“The alarm is part of the environmental systems software on the station designed to monitor the cabin’s atmosphere. At the same time, the station’s protection software shut down one of two redundant cooling loops (Thermal Control System Loop B),” NASA said in an update.

Ammonia is a toxic substance used as a coolant in the stations complex cooling system that is an essential requirement to continued operation of the station.

Ammonia is a gas at room temperature that is extremely dangerous to inhale or when it comes in contact with skin, eyes and internal organs.

Precautions must be taken if a leak is feared in a confined space such as the ISS. It has about the same habitable volume as a four bedroom house.

As a professional chemist, I’ve worked frequently with ammonia in research and development labs and manufacturing plants and know the dangers firsthand. It can cause severe burns and irritations and worse.

There have been prior ammonia leaks aboard the ISS facility that forced a partial evacuation similar to today’s incident.

The ISS has been continuously occupied by humans for 15 years.

In the case of a life threatening emergency, the crew can rapidly abandon the station aboard the two docked Russian Soyuz capsules. They hold three persons each and serve as lifeboats.

Fortunately, the perceived ammonia leak this morning was not real and apparently was caused by a false alarm.

“This morning’s alarm is suspected to have been caused by a transient error message in one of the station’s computer relay systems, called a multiplexer-demultiplexer. A subsequent action to turn that relay box off and back on cleared the error message and the relay box is reported by flight controllers to be in good operating condition,” according to a NASA statement.

“Meanwhile, flight controllers are continuing to analyze data in an effort to determine what triggered the alarm that set today’s actions in motion.”

“Work to reactivate cooling loop B on the station will continue throughout the night and into the day Thursday. The crew members are expected to resume a normal complement of research activities on Thursday as well.”

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
This view shows the US side of the ISS that was evacuated today, Jan. 14, 2015, by the crew due to possible ammonia leak. The SpaceX CRS-5 Dragon is attached to the Harmony module. Credit: NASA TV

The evacuation came just two days after a commercial SpaceX Dragon cargo freighter successfully rendezvoused and berthed at the station on Monday, Jan. 12.

The crew had just opened the hatch to Dragon and begun unloading the goodies stored aboard.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

NASA Space Shots Inspire This Brilliant Video Of Universal Wonders

A still from Lucas Green's video "Space Suite", on Vimeo.

Moons pass by Saturn’s rings. An eclipse takes place on Jupiter. We see these shots every day in images from space agencies, but how would it be to actually float in a nearby spacecraft and watch these in action?

An incredible new Vimeo video called “Space Suite” shows off what it actually could be like. And here’s the neat thing — it is heavily based on those very same jaw-dropping shots space agencies regularly release.

“I created the video above as a visual proof-of-concept for a project I’m currently working on with Two Story Productions. The project relies heavily on space visuals, and I wanted to demonstrate that compelling footage could be created quickly and easily by mining the impressive image libraries of NASA (and others) for stunning photography, and then bringing them to life with simple 3d ‘tricks’,” wrote creator Lucas Green in a blog post last week.

Editor’s note: It has come to our attention that some of the visuals used in this video were taken from previously pre-processed files by Stephen van Vuuren, who used a painstaking proprietary method for creating the feature I-MAX Film, “In Saturn’s Rings.” The files were acquired and re-purposed by Lucas Green, without permission.

Green has now added notation on his webpage that ” In addition to the libraries of NASA and ESA, some of the more striking imagery was created by Stephen van Vuuren, who meticulously stitched together thousands of raw images to use in his film ‘In Saturn’s Rings’. Watch some clips on his website – his work makes ‘Space Suite’ look like a fuzzy picture on an old television screen.”

“In Saturn’s Rings” is still in production, scheduled for release this year, and Universe Today will provide updates on the film.

“The demo footage probably won’t make it into the final project, so I wanted to show it off here, and give a short breakdown of some of my favorite shots. All of the imagery in the video is sourced directly from actual photographs, with minimal retouching. Most of the shots make use of photogrammetry, or ‘projection-mapping’, in order to rapidly block out the source images as virtual scenes.”

His blog includes details of the shots he chose and how he converted them to the incredible 3-D effects you can see in the video above. Enjoy!

SpaceX Dragon Captured at Station Loaded with Critical Supplies and Science

The Canadarm2 has the SpaceX Dragon in its grips on Jan 12, 2015. Credit: NASA TV

The commercial SpaceX cargo Dragon, loaded with over 2.6 tons of critically needed supplies and science experiments, was captured by the crew aboard the International Space Station (ISS) this morning (Jan. 12) while soaring over the Mediterranean Sea.

The SpaceX Dragon CRS-5 cargo vessel arrived at the station following a flawless two day orbital pursuit and spectacular nighttime blastoff atop the SpaceX Falcon 9 on Jan. 10 at 4:47 a.m. EST from Cape Canaveral Air Force Station in Florida.

Note: This breaking news story is being updated. Check back frequently for updates.

Dragon was successfully berthed and bolted into place a few hours later at 8:54 a.m. EST.

Working at the robotics work station inside the seven windowed domed cupola, Expedition 42 Commander Barry “Butch” Wilmore of NASA, with the assistance of Flight Engineer Samantha Cristoforetti of the European Space Agency, successfully captured the Dragon spacecraft with the station’s Canadian-built robotic arm at 5:54 a.m. EST.

Wilmore grappled Dragon with the station’s 57-foot-long (17-meter-long) robotic arm at 5:54 a.m. EST, about 18 minutes ahead of schedule, in an operation shown live on NASA TV, back-dropped by breathtaking views of “our beautiful Earth” passing by some 260 miles (410 kilometers) below.

Among the goodies aboard are belated Christmas presents for the crew. The Falcon 9 and Dragon were originally scheduled to liftoff in December and arrive in time for the Christmas festivities.

The cargo freighter flew beneath the station to arrive at the capture point 32 feet (10 meters) away. Dragon’s thrusters were disabled at the time of grappling.

Robotics officers at Houston Mission Control then began remotely maneuvering the arm to berth Dragon at the Earth-facing port on the station’s Harmony module starting at 7:45 a.m. EST.

Dragon is being attached via the common berthing mechanism (CBM) using four gangs of four bolts apiece to accomplish a hard mate to Harmony. The overall grappling and berthing process requires a few hours.

Dragon was successfully berthed and bolted into place at 8:54 a.m. EST and its now part of the space station.

The crew will conduct leak pressure checks, remove the docking mechanism and open the hatch later today or tomorrow.

#Dragon is about 90 feet from #ISS, closing in on its capture point.  Credit: NASA TV
#Dragon is about 90 feet from #ISS, closing in on its capture point. Credit: NASA TV

CRS-5 marks the company’s fifth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

Overall this is the sixth Dragon to arrive at the ISS.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere that directly impact the global climate.

CATS is loaded aboard the unpressurized trunk of Dragon.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education, which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS which exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed, hopefully by late 2015, on an alternate rocket, the Atlas V.

SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, carrying the Dragon resupply spacecraft to the International Space Station.   Credit: John Studwell/AmericaSpace
SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL, carrying the Dragon resupply spacecraft to the International Space Station. Credit: John Studwell/AmericaSpace

Dragon will remain attached to the ISS for about four weeks until Feb. 10.

SpaceX also had a secondary objective of recovering the Falcon 9 booster’s first stage via an unprecedented precision guided landing on an ocean-going “drone.”

The history making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

In my opinion the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV

SpaceX Successfully Launches Cargo Ship to Station and Hard Lands Rocket on “Drone Ship”

The SpaceX Falcon 9 rocket is thundering away from Cape Canaveral Air Force Station on its way to a Monday-morning rendezvous with the International Space Station. The booster’s nine Merlin engines are generating 1.3 million pounds of thrust as the vehicle begins its climb to orbit. Credit: NASA

SpaceX successfully launched their commercial Falcon 9 rocket and Dragon cargo ship on a critical mission for NASA bound for the space station this morning, Jan. 10, while simultaneously accomplishing a hard landing of the boosters first stage on an ocean-floating “drone ship” platform in a very good first step towards the bold company goal of recovery and re-usability in the future.

The spectacular night time launch of the private SpaceX Falcon 9 rocket lit up the skies all around the Florida Space Coast and beyond following a flawless on time liftoff at 4:47 a.m. EST from Cape Canaveral Air Force Station.

The nine Merlin 1D engines of the 208 foot-tall Falcon 9 generated 1.3 million pounds of liftoff thrust as the rocket climbed to orbit on the first SpaceX launch of 2015.

The Dragon CRS-5 mission is on its way to a Monday-morning rendezvous with the International Space Station (ISS).

It is loaded with more than two tons of supplies and NASA science investigations for the six person crew aboard the massive orbiting outpost.

A secondary goal of SpaceX was to conduct a history-making attempt at recovering the 14 story tall Falcon 9 first stage via a precision landing on an ocean-going landing platform known as the “autonomous spaceport drone ship.”

SpaceX CEO Elon Musk quickly tweeted that good progress was made, and as expected, more work needs to be done.

This was an experiment involving re-lighting one of the first stage Merlin engines three times to act as a retro rocket to slow the stages descent and aim for the drone ship.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted soon after the launch and recovery attempt.

“Ship itself is fine. Some of the support equipment on the deck will need to be replaced…”

“Didn’t get good landing/impact video. Pitch dark and foggy. Will piece it together from telemetry and … actual pieces.”

Musk’s daring vision is to recover, refurbish and reuse the first stage and dramatically reduce the high cost of access to space, by introducing airline like operational concepts.

The ‘autonomous spaceport drone ship’ was positioned some 200 to 250 miles offshore of the launch site in the Atlantic Ocean along the rockets flight path, flying along the US Northeast coast to match that of the ISS.

The autonomous spaceport drone ship measure only 300 by 100 feet, with wings that extend its width to 170 feet. That’s tiny compared to the Atlantic Ocean.

Therefore the SpaceX team was successful in accomplishing a rocket assisted descent and pinpoint landing in the middle of a vast ocean, albeit not as slow as hoped.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing.

SpaceX rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station carrying the Dragon resupply spacecraft to the International Space Station.   Credit: NASA/Jim Grossmann
SpaceX rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station carrying the Dragon resupply spacecraft to the International Space Station. Credit: NASA/Jim Grossmann

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

“We are delighted to kick off 2015 with our first commercial cargo launch of the year,” said NASA Administrator Charles Bolden in a statement.

“Thanks to our private sector partners, we’ve returned space station resupply launches to U.S. soil and are poised to do the same with the transport of our astronauts in the very near future.”

“Today’s launch not only resupplies the station, but also delivers important science experiments and increases the station’s unique capabilities as a platform for Earth science with delivery of the Cloud-Aerosol Transport System, or CATS instrument. I congratulate the SpaceX and NASA teams who have made today’s success possible. We look forward to extending our efforts in commercial space to include commercial crew by 2017 and to more significant milestones this year on our journey to Mars.”

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX’s Rocket Explained So Simply A Kid Could Understand

"Bird 9", a SpaceX parody of a famous xkcd cartoon called "Up Goer Nine." SpaceX used it to demonstrate its Falcon 9 rocket. Click for full image. Credit: SpaceX/Twitter/Imgur

Rocket science is difficult stuff, but we don’t always necessarily have to explain it that way. It’s important at times to break science down as simply as we can, for purposes ranging from simple understanding to making it accessible to children.

A couple of days ago, SpaceX posted a brilliant parody of a famous xkcd cartoon to describe the organization’s Falcon 9 rocket. Called “Bird 9”, it describes the components of the rocket using only the words that are used most often in speech.

The result is brilliant, with the top of the rocket called “stuff going into space” and the rocket stage aiming for a drone landing soon nicknamed “part that folds out when the first part is just above the big boat”. We won’t spoil any more for you; click on the infographic below so you can see it in its full glory. We’ve also included the original xkcd cartoon for reference.

Full SpaceX infographic of Falcon 9 called "Bird 9", a parody of the xkcd cartoon "Up Goer Five." Click for full image. Credit: SpaceX/Twitter/Imgur
Full SpaceX infographic of Falcon 9 called “Bird 9”, a parody of the xkcd cartoon “Up Goer Five.” Click for full image. Credit: SpaceX/Twitter/Imgur
xkcd’s “Up Goer Five.” Credit: xkcd

Mars One Readies For Robotic Red Planet Mission In 2018

Artist's conception of Mars One human settlement. Credit: Mars One/Brian Versteeg

While the world’s attention last year was focused on Mars One’s audacious plan to send people on a one-way trip to the Red Planet — not everyone thinks they’ll make it — the private organization has a much closer goal in its sights: landing a robotic mission there in 2018.

The goal is also audacious. Only NASA landers have worked for more than a few moments on the Red Planet, and even the agency it has experienced many failures along the way. Mars One is hoping to succeed using the design for the Phoenix northern mission, which is being duplicated somewhat in the upcoming 2016 Insight drill mission.

“We’re very lucky to have Lockheed Martin on the contract,” said founder Bas Lansdorp in a phone interview with Universe Today. He noted the company built the Phoenix lander, and that Mars One trusts Lockheed so much that the firm is being allowed to pick its own subcontractors for the mission.

Also on that mission will likely be the winner of a Mars One university competition to send an experiment to Mars. Called Seed, the proposal would see the first seed grown on Mars. The plant (called Arabidopsis thaliana, a common feature of space studies) would grow inside an external container that would protect it from the surrounding environment. The team is composed of students from the University of Porto, MIT Portugal and the University of Madrid.

The Mars Phoenix Lander thundered off of Cape Canaveral Air Force Station's Space Launch Complex 17 in the summer of 2007. About nine months later - it landed on the surface of Mars. Image Credit: NASA/JPL
The Mars Phoenix Lander thundered off of Cape Canaveral Air Force Station’s Space Launch Complex 17 in the summer of 2007. About nine months later – it landed on the surface of Mars. Image Credit: NASA/JPL

“The Seed experiment group, they have really put a lot of effort into creating public awareness of what they are doing, and they collected a lot of votes,” Lansdorp said. While the project also had to meet stringent technical requirements, it was the efforts at public support that were an “important reason” as to why they won, he added.

But even now, their flight is not a guarantee. Seed will need to fund the development and construction of its experiment. (Flight costs are taken care of by Mars One.) Also, the group will need to pass technical milestones between now and 2018. If for some reason Seed does not make it, Mars One would instead go to one of two backup projects. These would be selected from the second- and third-place winners, which are respectively, Cyano Knights and Lettuce on Mars.

As for Mars One’s funding, the organization eventually hopes to receive money from broadcast rights and sponsorships in association with its crewed landing, which it says would take place in the 2020s. But the money required to fund a robotic mission isn’t available from that revenue source yet. Hence, the organization is seeking an upfront investment in its work to get the money ready for development.

Composite image showing the size difference between Earth and Mars. Credit: NASA/Mars Exploration
Composite image showing the size difference between Earth and Mars. Credit: NASA/Mars Exploration

Lansdorp said Mars One already underwent an angel investment round, and the organization is now in touch with an institutional group connected to an “institutional fund”, which would also attract money from other investors. Negotiations are ongoing, so the name is not disclosed publicly yet.

The goal is to have this investment group fund the robotic mission and the crewed one. The investor’s financial return would come from the eventual broadcasting and sponsorship revenues.

Aims of the robotic mission include testing some of the technologies that the crew would later take advantage of, such as extracting water from the planet’s underground and testing solar panels on the Martian surface.

Crew selection is ongoing. Mars One did a major culling last year of thousands of candidates, and plans a further selection round that will be announced in February.

Memory-Addled Mars Rover Climbs High Above The Red Planet’s Plain

Panorama of the Opportunity rover's view near the summit of Cape Tribulation on Mars in January 2015. Credit: NASA/JPL-Caltech/Stu Atkinson

As the Opportunity rover struggles with ongoing problems to its Flash memory, the plucky Martian machine — almost at its 11th anniversary of operations on the Red Planet — has reached the summit of a crater rim, providing spectacular views of the area below.

The Jet Propulsion Laboratory is readying a fix to the rover’s memory, which is required to store images overnight while the rover sleeps. Controllers are still getting the data by making daily downloads before the sleep period, but it is having an effect on operations.

“The fix for the flash memory requires a change to the rover’s flight software, so we are conducting extensive testing to be sure it will not lead to any unintended consequences for rover operations,” stated John Callas, project manager for Opportunity at the Jet Propulsion Laboratory.

The Opportunity rover views the peak of "Cape Tribulation" on Mars in January 2015. Credit: NASA/JPL-Caltech/Stu Atkinson
The Opportunity rover views the peak of “Cape Tribulation” on Mars in January 2015. Credit: NASA/JPL-Caltech/Stu Atkinson

Opportunity’s latest amnesia problems first came to a head in the late summer, when the rover experienced frequent resets and was unable to do much science as a result. In September, JPL performed a long-distance memory reset that at first appeared to work perfectly.

But as 2014 wrapped up, the Flash problems became so frequent that NASA stopped using that kind of memory altogether, relying instead on another kind of memory called RAM. It should be noted that the rover still has been active during this period, including passing a milestone of 41 kilometers of driving on the Red Planet.

Computer World has a few details on the upcoming memory format. What’s worrying controllers is not so much the immense distance to the Red Planet — they are used to those sorts of procedures in this long mission — but more the danger of introducing a software update that could make the rover stop talking to Earth. So there are frequent simulations going on as NASA prepares a fix, which is reported to be taking place within a week if possible.

A rough panorama of the Opportunity rover's surroundings on Mars based on three images taken on Sol 3,861 in December 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. Panorama: Elizabeth Howell
A rough panorama of the Opportunity rover’s surroundings on Mars based on three images taken on Sol 3,861 in December 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. Panorama: Elizabeth Howell

But Opportunity’s treks on Mars continue. The rover is now atop the Endeavour Crater’s rim at a spot nicknamed “Cape Tribulation”, named after one of the locations the explorer James Cook visited with HMS Endeavour during his New Zealand and Australia mission between 1769 and 1771.

This location is the highest point Opportunity reached during its 40-month exploration of Endeavour Crater. It’s sitting on a height roughly 440 feet (135 meters) above the plains and, after two lengthy drives Monday and Tuesday (Jan. 5 and Jan. 6) its odometer is currently at 25.8 miles (41.6 kilometers).

Opportunity’s next destination is called “Marathon Valley”, a spot that could have minerals soaked with water in the past (at least, according to pictures obtained from orbit). By the time the rover gets there, it should have passed a marathon’s worth of driving on the Red Planet.

How NASA Is Saving Fuel On Its Outer Solar System Missions

Saturn. Image Credit: NASA/JPL/SSI
Saturn. Image Credit: NASA/JPL/SSI

While Saturn is far away from us, scientists have just found a way to make the journey there easier. A new technique pinpointed the position of the ringed gas giant to within just two miles (four kilometers).

It’s an impressive technological feat that will improve spacecraft navigation and also help us better understand the orbits of the outer planets, the Jet Propulsion Laboratory (JPL) said.

It’s remarkable how much there is to learn about Saturn’s position given that the ancients discovered it, and it’s easily visible with the naked eye. That said, the new measurements with the Cassini  spacecraft and the Very Long Baseline Array radio telescope array are 50 times more precise than previous measurements with telescopes on the ground.

“This work is a great step toward tying together our understanding of the orbits of the outer planets of our solar system and those of the inner planets,” stated study leader Dayton Jones of JPL.

Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute/Gordan Ugarkovic

What’s even more interesting is scientists have been using the better information as it comes in. Cassini began using the improved method in 2013 to improve its precision when it fires its engines.

This, in the long term, leads to fuel savings — allowing the spacecraft a better chance of surviving through the end of its latest mission extension, which currently is 2017. (It’s been orbiting Saturn since 2004.)

The technique is so successful that NASA plans to use the same method for the Juno spacecraft, which is en route to Jupiter for a 2016 arrival.

Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)
Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)

Scientists are excited about Cassini’s mission right now because it is allowing them to observe the planet and its moons as it reaches the summer solstice of its 29-year orbit.

This could, for example, provide information on how the climate of the moon Titan changes — particularly with regard to its atmosphere and ethane/methane-riddled seas, both believed to be huge influencers for the moon’s temperature.

Beyond the practical applications, the improved measurements of Saturn and Cassini’s position are also giving scientists more insight into Albert Einstein’s theory of general relatively, JPL stated. They are taking the same techniques and applying them to observing quasars — black-hole powered galaxies — when Saturn passes in front of them from the viewpoint of Earth.

Source: Jet Propulsion Laboratory

SpaceX Launch and Historic Landing Attempt Reset to Jan. 10

Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

The oft delayed launch of the SpaceX Falcon 9 rocket on the CRS-5 cargo resupply mission for NASA to the International Space Station (ISS) has been reset to Saturday, Jan. 10.

Liftoff is currently targeted for 4:47 a.m. EST Saturday, Jan. 10, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida following a postponement from Friday, Jan. 9.

The launch was unexpectedly scrubbed with one minute, 21 seconds left on the countdown clock for technical reasons earlier this week just prior to the targeted blastoff time of 6:20 a.m. EST on Tuesday, Jan. 6.

A thrust vector control actuator for the Falcon 9’s second stage failed to perform as expected, resulting in a launch abort, said NASA.

NASA and SpaceX decided to take another day to fully evaluate the issue and ensure a launch success.

The launch will be the first Falcon 9 liftoff for 2015.

The overnight launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Tuesday, Jan. 13.

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing.  Credit: Elon Musk/SpaceX
SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Overall, CRS-5 is the company’s fifth commercial resupply services mission to the International Space Station.

In additional to being a critical cargo mission required to keep the space station stocked with provisions for the crew and research experiments, the mission features a history making attempt to recover the first stage of the Falcon 9 rocket.

The rocket recovery and landing attempt is a key step towards carrying out SpaceX CEO Elon Musk’s bold vision of rocket reusability.

Towards that end, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the precision landing of his firm’s Falcon 9 rocket after it concludes its launch phase to the ISS.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, Jan. 3, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

However, the absolute overriding goal of the mission is to safely deliver NASA’s contracted cargo to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing on Jan. 5 at the Kennedy Space Center.

Landing on the off-shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5.   Science experiments from these students representing 18 school communities across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5.  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops – Experiments Will Refly on SpaceX CRS 5. Science experiments from these students, representing 18 school communities across America, were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares’ launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

They had been selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS, but were all lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The experiments have been reconstituted to fly on the CRS-5 mission.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The weather forecast stands at 80% GO for favorable conditions at launch time.

NASA Television live launch coverage begins at 3:30 a.m. EST on Jan. 10 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

NASA Exoplanet “Travel Posters” Aim To Help With Space Trip Planning

A NASA "travel poster" touting the benefits of exoplanet Kepler-16b, which has two Suns. Credit: NASA/JPL-Caltech

What beauty, and what awesome travel slogans! NASA’s Jet Propulsion Laboratory has created a set of “Exoplanet Travel Posters” to bring you — at least in your imagination — to actual exoplanets.

Whether you have a fancy for skydiving, or doing astronomy with two Suns, it appears there is a spot to whet your imagination. We have another example of the fantastic artwork below.

You can download all three posters so far in glorious high-definition here. These are NASA’s descriptions for each of the worlds described so far:

Kepler-186f is the first Earth-size planet discovered in the potentially ‘habitable zone’ around another star, where liquid water could exist on the planet’s surface. Its star is much cooler and redder than our Sun. If plant life does exist on a planet like Kepler-186f, its photosynthesis could have been influenced by the star’s red-wavelength photons, making for a color palette that’s very different than the greens on Earth.

Twice as big in volume as the Earth, HD 40307g straddles the line between “Super-Earth” and “mini-Neptune” and scientists aren’t sure if it has a rocky surface or one that’s buried beneath thick layers of gas and ice. One thing is certain though: at eight time the Earth’s mass, its gravitational pull is much, much stronger.

A NASA "travel poster" showing off how fun skydiving would be on HD 40307g, a planet that is somewhere in size between a "super-Earth" or "mini-Neptune." Credit: NASA/JPL-Caltech
A NASA “travel poster” showing off how fun skydiving would be on HD 40307g, a planet that is somewhere in size between a “super-Earth” or “mini-Neptune.” Credit: NASA/JPL-Caltech

Like Luke Skywalker’s planet “Tatooine” in Star Wars, Kepler-16b orbits a pair of stars. Depicted here as a terrestrial planet, Kepler-16b might also be a gas giant like Saturn. Prospects for life on this unusual world aren’t good, as it has a temperature similar to that of dry ice. But the discovery indicates that the movie’s iconic double-sunset is anything but science fiction.

The posters are not only clever, but appear to be homages to the Work Projects Administration’s “See America” posters of the 1930s and 1940s, which you can browse through on the Library of Congress’ website.