We’ve seen volcanoes or geysers erupting on the moons of Io and Enceladus. Volcanic remnants remain on Mars and the Moon. But it’s tough for rovers to get inside these challenging environments.
So NASA’s Jet Propulsion Laboratory is trying out a new robot here on Earth to one day, they hope, get inside volcanoes elsewhere in the Solar System.
The series is called VolcanoBot. The first prototype was tested last year inside the the active Kilauea volcano in Hawaii, and a second is set for further work later this year.
As you can see in the picture below, VolcanoBot has a set of small wheels and a host of electronics inside. The goal is to create 3-D maps of the environments in which they roam. And early results are showing some promise, NASA noted in a press release: VolcanoBot discovered the fissure it was exploring did not completely close up, which is something they did not expect.
“We don’t know exactly how volcanoes erupt. We have models but they are all very, very simplified. This project aims to help make those models more realistic,” stated Carolyn Parcheta, a NASA postdoctoral fellow at the Jet Propulsion Laboratory in California who is leading the research.
“In order to eventually understand how to predict eruptions and conduct hazard assessments, we need to understand how the magma is coming out of the ground,” she added. “This is the first time we have been able to measure it directly, from the inside, to centimeter-scale accuracy.”
The research will continue this year with VolcanoBot 2, which has less mass, less size and has an advanced “vison center” that can turn about.
Parcheta’s research recently attracted the attention of visitors to National Geographic’s website, who voted her #2 in a list of “great explorers” on the Expedition Granted campaign.
Remember that this is early-stage research, with no missions outside of Earth yet assigned. But this is a small step — or roll, in this case — to better understanding how volcanoes work generally, whether on our own planet or other locations.
Did you know it’s been nearly 50 years since the first spacewalk? On March 18, 1965, Russian Alexei Leonov ventured from the safety of his Russian spacecraft for the first attempt for a person to survive “outside” in a spacesuit. While Leonov had troubles returning to the spacecraft, his brave effort set off a new era of spaceflight. It showed us it was possible for people to work in small spacesuits in space.
Think about what spacewalks have helped us accomplish since then. We’ve walked on the Moon. Constructed the International Space Station. Retrieved satellites. Even flew away from the space shuttle in a jetpack, for a couple of flights in the 1980s.
Still looking for the perfect calendar for this year? Believe it or not, 2015 is now 1.6% over, so don’t spend another day without your new Year In Space Calendar! Published in cooperation with The Planetary Society, the large-format Wall Calendar and the spiral-bound Desk Calendar, both feature stunning images, fascinating facts, and plenty of room for your own notes and appointments.
See our original review to learn more. Universe Today readers can get calendars at a discount, with free shipping and discounted international shipping, but hurry before any more of the year slips by!
Student Space Flight teams at NASA Wallops – Will Refly on SpaceX CRS 5
Science experiments from these students representing 18 school communities across America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com[/caption]
When it comes to science and space exploration, you have to get accustomed to a mix of success and failure.
If you’re wise you learn from failure and turn adversity around into a future success.
Such is the case for the resilient student scientists who learned a hard lesson of life at a young age when the space science experiments they poured their hearts and souls into for the chance of a lifetime to launch research investigations aboard the Antares rocket bound for the International Space Station (ISS) on the Orb-3 mission, incomprehensibly exploded in flames before their eyes on Oct. 28, 2014.
Those student researchers from across America are being given a second chance and will have their reconstituted experiments re-flown on the impending SpaceXCRS-5 mission launch, thanks to the tireless efforts of NASA, NanoRacks, CASIS, SpaceX and the Student Spaceflight Experiments Program (SSEP) which runs the program.
The SpaceX CRS-5 launch to the ISS on the Falcon 9 rocket planned for this morning, Jan. 6, was scrubbed with a minute to go for technical reasons and has been reset to no earlier than Jan. 9.
The experiments are known collectively as the ‘Yankee Clipper’ mission.
Antares Orb-3 was destroyed shortly after the exhilarating blastoff from NASA’s Wallops Flight Facility on the Virginia shore.
Everything aboard the Orbital Sciences Antares rocket and ‘the SS Deke Slayton’ Cygnus cargo freighter was lost, including all the NASA supplies and research as well as the student investigations.
“The student program represents 18 experiments flying as the Yankee Clipper,” said Dr. Jeff Goldstein, in an interview with Universe Today at NASA Wallops prior to the Antares launch. Goldstein is director of the National Center for Earth and Space Science Education, which oversees SSEP in partnership with NanoRacks LLC.
“Altogether 8 communities sent delegations. 41 student researchers were at NASA Wallops for the launch and SSEP media briefing.”
“The 18 experiments flying as the SSEP Yankee Clipper payload reflect the 18 communities participating in Mission 6 to ISS.”
“The communities represent grade 5 to 16 schools from all across America including Washington, DC; Kalamazoo, MI; Berkeley Heights and Ocean City, NJ; Colleton County and North Charleston, SC, and Knox County and Somerville, TN.”
Goldstein explains that within days of the launch failure, efforts were in progress to re-fly the experiments.
“Failure happens in science and what we do in the face of that failure defines who we are,” said Goldstein, “NASA and NanoRacks moved mountains to get us on the next launch, SpaceX CRS-5. We faced an insanely tight turnaround, but all the student teams stepped up to the plate.”
Even the NASA Administrator Charles Bolden lauded the students efforts and perseverance!
“I try to teach students, when I speak to them, not to be afraid of failure. An elementary school student once told me, when I asked for a definition of success, that ‘success is taking failure and turning it inside out.’ It is important that we rebound, learn from these events and try again — and that’s a great lesson for students,” said NASA Administrator Bolden.
“I am delighted that most of the students will get to see their investigations re-flown on the SpaceX mission. Perseverance is a critical skill in science and the space business.”
Virtually all of the experiments have been reconstituted to fly on the CRS-5 mission, also known as SpaceX-5.
“17 of the 18 student experiments lost on Orb-3 on October 28 are re-flying on SpaceX-5. These experiments comprise the reconstituted Student Spaceflight Experiments Program (SSEP) Yankee Clipper II payload for SSEP Mission 6 to ISS,” noted Goldstein.
“This shows the resilience of the federal-private partnership in commercial space, and of the commitment by our next generation of scientists and engineers.”
The wide range of experiments include microgravity investigations on how fluids act and form into crystals in the absence of gravity crystal growth, mosquito larvae development, milk expiration, baby bloodsuckers, development of Chrysanthemum and soybean seeds and Chia plants, effect of yeast cell division and implications for human cancer cells, and an examination of hydroponics.
That dark day in October witnessed by the students, Goldstein, myself as a fellow scientist, and others is something we will never forget. We all chose to learn from the failure and move forward to greater accomplishments.
Don’t surrender to failure. And don’t give in to the ‘Do Nothing – Can’t Do’ crowd so prevalent today.
Remember what President Kennedy said during his address at Rice University on September 12, 1962:
“We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
With robotic spacecraft, we have explored, discovered and expanded our understanding of the Solar System and the Universe at large. Our five senses have long since reached their limits and cannot reveal the presence of new objects or properties without the assistance of extraordinary sensors and optics. Data is returned and is transformed into a format that humans can interpret.
Humans remain confined to low-Earth orbit and forty-three years have passed since humans last escaped the bonds of Earth’s gravity. NASA’s budget is divided between human endeavors and robotic and each year there is a struggle to find balance between development of software and hardware to launch humans or carry robotic surrogates. Year after year, humans continue to advance robotic capabilities and artificial intelligence (A.I.), and with each passing year, it becomes less clear how we will fit ourselves into the future exploration of the Solar System and beyond.
Is it a race in which we are unwittingly partaking that places us against our inventions? And like the aftermath of the Kasparov versus Deep Blue chess match, are we destined to accept a segregation as necessary? Allow robotics, with or without A.I., to do what they do best – explore space and other worlds?
Should we continue to find new ways and better ways to plug ourselves into our surrogates and appreciate with greater detail what they sense and touch? Consider how naturally our children engross themselves in games and virtual reality and how difficult it is to separate them from the technology. Or is this just a prelude and are we all antecedents of future Captain Kirks and Jean Luc Picards?
Approximately 55% of the NASA budget is in the realm of human spaceflight (HSF). This includes specific funds for Orion and SLS and half measures of supporting segments of the NASA agency, such as Cross-Agency Support, Construction and Maintenance. In contrast, appropriations for robotic missions – project development, operations, R&D – represent 39% of the budget.
The appropriation of funds has always favored human spaceflight, primarily because HSF requires costlier, heavier and more complex systems to maintain humans in the hostile environment of space. And while NASA budgets are not nearly weighted 2-to-1 in favor of human spaceflight, few would contest that the return on investment (ROI) is over 2-to-1 in favor of robotic driven exploration of space. And many would scoff at this ratio and counter that 3-to-1 or 4-to-1 is closer to the advantage robots have over humans.
Politics play a significantly bigger role in the choice of appropriations to HSF compared to robotic missions. The latter is distributed among smaller budget projects and operations and HSF has always involved large expensive programs lasting decades. The big programs attract the interest of public officials wanting to bring capital and jobs to their districts or states.
NASA appropriations are complicated further by a rift between the White House and Capitol Hill along party lines. The Democrat-controlled White House has favored robotics and the use of private enterprise to advance NASA while Republicans on the Hill have supported the big human spaceflight projects; further complications are due to political divisions over the issue of Climate Change. How the two parties treat NASA is the opposite to, at least, how the public perceives the party platforms – smaller government or more social programs, less spending and supporting private enterprise. This tug of war is clearly seen in the NASA budget pie chart.
The House reduced the White House request for NASA Space Technology by 15% while increasing the funds for Orion and SLS by 16%. Space Technology represents funds that NASA would use to develop the Asteroid Redirect Mission (ARM), which the Obama administration favors as a foundation for the first use of SLS as part of a human mission to an asteroid. In contrast, the House appropriated $100 million to the Europa mission concept. Due to the delays of Orion and SLS development and anemic funding of ARM, the first use of SLS could be to send a probe to Europa.
While HSF appropriations for Space Ops & Exploration (effectively HSF) increased ~6% – $300 million, NASA Science gained ~2% – $100 million over the 2014 appropriations; ultimately set by Capitol Hill legislators. The Planetary Society, which is the Science Mission Directorate’s (SMD) staunchest supporter, has expressed satisfaction that the Planetary Science budget has nearly reached their recommended $1.5 billion. However, the increase is delivered with the requirement that $100 million shall be used for Europa concept development and is also in contrast to cutbacks in other segments of the SMD budget.
Note also that NASA Education and Public Outreach (EPO) received a significant boost from Republican controlled Capital Hill. In addition to the specific funding – a 2% increase over 2014 and 34% over the White House request, there is $42 million given specifically to the Science Mission Directorate (SMD) for EPO. The Obama Adminstration has attempted to reduce NASA EPO in favor of a consolidated government approach to improve effectiveness and reduce government.
The drive to explore beyond Earth’s orbit and set foot on new worlds is not just a question of finances. In retrospect, it was not finances at all and our remaining shackles to Earth was a choice of vision. Today, politicians and administrators cannot proclaim ‘Let’s do it again! Let’s make a better Shuttle or a better Space Station.’ There is no choice but to go beyond Earth orbit, but where?
While the International Space Station program, led by NASA, now maintains a continued human presence in outer space, more people ask the question, ‘why aren’t we there yet?’ Why haven’t we stepped upon Mars or the Moon again, or anything other than Earth or floating in the void of low-Earth orbit. The answer now resides in museums and in the habitat orbiting the Earth every 90 minutes.
The retired Space Shuttle program and the International Space Station represent the funds expended on human spaceflight over the last 40 years, which is equivalent to the funds and the time necessary to send humans to Mars. Some would argue that the funds and time expended could have meant multiple human missions to Mars and maybe even a permanent presence. But the American human spaceflight program chose a less costly path, one more achievable – staying close to home.
Ultimately, the goal is Mars. Administrators at NASA and others have become comfortable with this proclamation. However, some would say that it is treated more as a resignation. Presidents have been defining the objectives of human spaceflight and then redefining them. The Moon, Lagrangian Points or asteroids as waypoints to eventually land humans on Mars. Partial plans and roadmaps have been constructed by NASA and now politicians have mandated a roadmap. And politicians forced continuation of development of a big rocket; one which needs a clear path to justify its cost to taxpayers. One does need a big rocket to get anywhere beyond low-Earth orbit. However, a cancellation of the Constellation program – to build the replacement for the Shuttle and a new human-rated spacecraft – has meant delays and even more cost overruns.
During the ten years that have transpired to replace the Space Shuttle, with at least five more years remaining, events beyond the control of NASA and the federal government have taken place. Private enterprise is developing several new approaches to lofting payloads to Earth orbit and beyond. More countries have taken on the challenge. Spearheading this activity, independent of NASA or Washington plans, has been Space Exploration Technologies Corporation (SpaceX).
SpaceX’s Falcon 9 and soon to be Falcon Heavy represent alternatives to what was originally envisioned in the Constellation program with Ares I and Ares V. Falcon Heavy will not have the capability of an Ares V but at roughly $100 million per flight versus $600 million per flight for what Ares V has become – the Space Launch System (SLS) – there are those that would argue that ‘time is up.’ NASA has taken too long and the cost of SLS is not justifiable now that private enterprise has developed something cheaper and done so faster. Is Falcon Nine and Heavy “better”, as in NASA administrator Dan Golden’s proclamation – ‘Faster, Better, Cheaper’? Is it better than SLS technology? Is it better simply because its cheaper for lifting each pound of payload? Is it better because it is arriving ready-to-use sooner than SLS?
Humans will always depend on robotic launch vehicles, capsules and habitats laden with technological wonders to make our spaceflight possible. However, once we step out beyond Earth orbit and onto other worlds, what shall we do? From Carl Sagan to Steve Squyres, NASA scientists have stated that a trained astronaut could do in just weeks what the Mars rovers have required years to accomplish. How long will this hold up and is it really true?
Since Chess Champion Garry Kasparov was defeated by IBM’s Deep Blue, there have been 8 two-year periods representing the doubling of transistors in integrated circuits. This is a factor of 256. Arguably, computers have grown 100 times more powerful in the 17 years. However, robotics is not just electronics. It is the confluence of several technologies that have steadily developed over the 40 years that Shuttle technology stood still and at least 20 years that Space Station designs were locked into technological choices. Advances in material science, nano-technology, electro-optics, and software development are equally important.
While human decision making has been capable of spinning its wheels and then making poor choices and logistical errors, the development of robotics altogether is a juggernaut. While appropriations for human spaceflight have always surpassed robotics, advances in robotics have been driven by government investments across numerous agencies and by private enterprise. The noted futurist and inventor Ray Kurzweil who predicts the arrival of the Singularity by around 2045 (his arrival date is not exact) has emphasized that the surpassing of human intellect by machines is inevitable due to the “The Law of Accelerating Returns”. Technological development is a juggernaut.
In the same year that NASA was founded, 1958, the term Singularity was first used by mathematician John von Neumann to describe the arrival of artificial intelligence that surpasses humans.
Unknowingly, this is the foot race that NASA has been in since its creation. The mechanisms and electronics that facilitated landing men on the surface of the Moon never stopped advancing. And in that time span, human decisions and plans for NASA never stopped vacillating or stop locking existing technology into designs; suffering delays and cost overruns before launching humans to space.
So are we destined to arrive on Mars and roam its surface like retired geologists and biologists wandering in the desert with a poking stick or rock hammer? Have we wasted too much time and has the window passed in which human exploration can make discoveries that robotics cannot accomplish faster, better and cheaper? Will Mars just become an art colony where humans can experience new sunrises and setting moons? Or will we segregate ourselves from our robotic surrogates and appreciate our limited skills and go forth into the Universe? Or will we mind meld with robotics and master our own biology just moments after taking our first feeble steps beyond the Earth?
Aiming to one day radically change the future of the rocket business, SpaceX CEO Elon Musk has a bold vision unlike any other in a historic attempt to recover and reuse rockets set for Jan. 6 with the goal of dramatically reducing the enormous costs of launching anything into space.
Towards the bold vision of rocket reusability, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the first stage of his firm’s Falcon 9 rocket after it concludes its launch phase to the International Space Station (ISS).
“Drone spaceport ship heads to its hold position in the Atlantic to prepare for a rocket landing,” tweeted Musk today (Jan. 5) along with a photo of the drone ship underway (see above).
The history making and daring experimental landing is planned to take place in connection with the Tuesday, Jan. 6, liftoff of the Falcon 9 booster and Dragon cargo freighter bound for the ISS on a critical resupply mission for NASA.
No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.
The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.
The SpaceX Dragon CRS-5 mission is slated to blast off at 6:20 am EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
The absolute overriding goal of the mission is to safely deliver NASA’s contracted payload to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today (Jan. 5) at the Kennedy Space Center. Landing on the off shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.
The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.
Koenigsmann estimated the odds of success at the landing attempt at about 50% at best according to an estimate from Musk himself.
“It’s an experiment. There’s a certain likelihood that this will not work out right, that something will go wrong.”
The two stage Falcon 9 and Dragon stands 207.8 feet (63.3 meters) tall and is 12 feet in diameter. The first stage is powered by nine Merlin 1D engines that generate 1.3 million pounds of thrust at sea level and rises to 1.5 million pounds of thrust as the Falcon 9 climbs out of the atmosphere, according to a SpaceX fact sheet.
The first stage Merlins will fire for three minutes until the planned engine shutdown and main engine cutoff known as MECO, said Koenigsmann.
The rocket will be in space at an altitude of over 100 miles zooming upwards at 1300 m/s (nearly 1 mi/s).
Then, a single Merlin 1D will be commanded to re-fire for three separate times to stabilize and lower the rocket during the barge landing attempt.
Four hypersonic grid fins had been added to the first stage and placed in an X-wing configuration. They will be deployed only during the reentry attempt and will be used to roll, pitch, and yaw the rocket in concert with gamboling of the engines.
It will take about nine minutes from launch until the first stage reaches the barge, said Koenigsmann. That’s about the same time it takes for Dragon to reach orbit.
He added that, depending on the internet connectivity, SpaceX may or may not know the outcome in real time.
Here’s a description from SpaceX:
“To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn—the boostback burn—adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle’s speed from 1300 m/s to about 250 m/s. The final burn is the landing burn, during which the legs deploy and the vehicle’s speed is further.”
“To complicate matters further, the landing site is limited in size and not entirely stationary. The autonomous spaceport drone ship is 300 by 100 feet, with wings that extend its width to 170 feet. While that may sound huge at first, to a Falcon 9 first stage coming from space, it seems very small. The legspan of the Falcon 9 first stage is about 70 feet and while the ship is equipped with powerful thrusters to help it stay in place, it is not actually anchored, so finding the bullseye becomes particularly tricky. During previous attempts, we could only expect a landing accuracy of within 10km. For this attempt, we’re targeting a landing accuracy of within 10 meters.”
CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.
The cargo delivery is the entire point of the CRS-5 mission.
The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.
SpaceX is on track to rollout their Falcon 9 rocket carrying the Dragon cargo freighter this evening, Monday, Jan, 5, 2015 to launch pad 40 on a mission bound for the International Space Station (ISS) to deliver critical supplies.
The Dragon CRS-5 mission is slated to blast off at 6:20 a.m. EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
The predawn launch should put on a spectacular sky show for spectators along the Florida space coast.
There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Friday, Jan. 9.
The launch has already been postponed several times, most recently from Dec. 19, 2014 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.
A second static fire test of the SpaceX Falcon 9 successfully went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.
The delay allowed the teams to recoup and recover and enjoy the festive holiday season.
“It was a good decision to postpone the launch until after the holidays,” said Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today at the Kennedy Space Center (KSC).
CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract
The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.
A frontal boundary has settled in over Central Florida. This front and its associated cloudiness will be very slow to move south of the Space Coast. With the clouds only slowly eroding overhead, the primary weather concern remains thick clouds, according to Sweat.
The unmanned cargo freighter is loaded with more than 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.
The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.
Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.
Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the ISS astronauts maneuvering the 57 foot-long (17 meter-long) Canadian built robotic arm.
The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.
With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.
Orbital Sciences has now contracted United Launch Alliance (ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.
A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.
NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Amazing images of falling rocket debris from a spent Chinese booster were captured in the final moments of its plummet back to Earth outside a remote village located in southwest China.
The images were taken by a photo journalist during the final seconds of the descent of the first stage of the Long March 3A rocket carrier as it was crashing to the ground by the village of Gaopingsi in southwest China’s Guizhou province on December 31, 2014.
Local villagers soon gathered around the rocket crash debris.
The rocket incident and images were featured online by the state-run China New Service (CNS) website. Checkout the photo gallery herein.
“A journalist captured the moment the debris was falling across the sky,” according to CNS.
No injuries or damage to the local village was reported.
“The landing did not influence the local villagers or bring any damages.”
The Long March 3A rocket debris stems from the successful launch of a Chinese meteorological satellite, some minutes earlier at 9:02 am local time on Wednesday, December 31, 2014.
The photographer and local villagers made their way to the crash site and captured spectacular up close photos of the first stage rocket, engine and related debris that had fallen in a heavily forested area.
Chinese security officials eventually arrived, evacuated the villagers and cordoned off the area.
The rocket and Fengyun-II 08 satellite lifted off from the Xichang Satellite Launch Center in southwest China’s Sichuan province.
Fengyun-II 08 successfully achieved orbit. It will collect meteorological, maritime and hydrological data and transmit information that will be used for weather forecasting and environmental monitoring according to a CCTV report.
Since the Long March rockets blast off from China’s interior in Sichuan province, they flies over long swathes of land area and near some populated areas and occasional fall nearby and can occasionally cause damage.
The situation is similar with Russian rockets launching from Baikonur in Kazahzstan.
By contrast, US and European rockets take off from coastal areas towards oceans. They avoid most populated areas, but not all. The flight termination system is required to protect nearby coastal towns in case of wayward rockets like the Oct. 28 failure of the Orbital Sciences Antares rocket which exploded seconds after blastoff.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Update, 4 p.m. EST: Sierra Nevada’s statement, which was posted after the story was first published, is now mentioned below.
Sierra Nevada’s protest concerning NASA’s commercial crew program was turned down today (Jan. 5), according to a statement from the U.S. Government Accountability Office.
The company is developing a spacecraft called the Dream Chaser, which was in competition for NASA funding along with Boeing’s CST-100 and SpaceX’s Dragon to bring crews to the International Space Station. A few months ago, NASA awarded further development money to Boeing and SpaceX, prompting a protest from Sierra Nevada.
At the time, Sierra Nevada both protested the decision and requested a stop-work order on all commercial crew work. The stop-work order was lifted fairly quickly, but the protest remained under review. From today, this was the crux of the GAO statement, which you can read in full here:
In making its selection decision, NASA concluded that the proposals submitted by Boeing and SpaceX represented the best value to the government. Specifically, NASA recognized Boeing’s higher price, but also considered Boeing’s proposal to be the strongest of all three proposals in terms of technical approach, management approach, and past performance, and to offer the crew transportation system with most utility and highest value to the government. NASA also recognized several favorable features in the Sierra Nevada and SpaceX proposals, but ultimately concluded that SpaceX’s lower price made it a better value than the proposal submitted by Sierra Nevada.
In making its selection decision, NASA concluded that the proposals submitted by Boeing and SpaceX represented the best value to the government. Specifically, NASA recognized Boeing’s higher price, but also considered Boeing’s proposal to be the strongest of all three proposals in terms of technical approach, management approach, and past performance, and to offer the crew transportation system with most utility and highest value to the government. NASA also recognized several favorable features in the Sierra Nevada and SpaceX proposals, but ultimately concluded that SpaceX’s lower price made it a better value than the proposal submitted by Sierra Nevada.
Other key points:
The prices for each proposal were as follows: Sierra Nevada was $2.55 billion, Boeing’s was $3.01 billion and SpaceX’s $1.75 billion.
NASA, the GAO said, had “no undue emphasis” on any proposal’s schedule or the chances of a particular system making it to orbit by 2017. Also, the agency did say in its request for proposals that the 2017 certification goal would be a part of the process — a different point than what Sierra Nevada argued, who said the agency had added that stipulation while the process was underway.
NASA’s review of SpaceX’s price and “financial resources” was adequate, along with its evaluation of the competing proposals in terms of mission suitability and past performance. This was in contrast to Sierra Nevada’s argument.
This is part of what Sierra Nevada had to say about the decision. The company also said it plans to maintain ties with NASA. The full statement is here.
While the outcome was not what SNC expected, we maintain our belief that the Dream Chaser spacecraft is technically very capable, reliable and was qualified to win based on NASA’s high ratings of the space system. We appreciate the time and effort contributed to this process by the GAO and NASA to fully evaluate such a critical decision for the United States …
SNC also plans to further the development and testing of the Dream Chaser and is making significant progress in its vehicle design and test program. In addition, SNC is continuing to expand its existing, while developing new, partnerships domestically and abroad in order to expand the multi-mission flexibility of the system, reduce overall long-term costs of the vehicle and ensure long-term affordability and sustainability for the Dream Chaser.
A public record of the decision is expected in a few weeks. Right now, due to the proprietary nature of the information, only NASA personnel and a few “outside counsel” are able to view it, the GAO added.
We’re all a little scared (in the impressed-with-technology sense!) of Robonaut, that robot on the International Space Station that is expected to start using legs to move around in the next few months. Eventually, it could even do repairs on the outside — saving astronauts time and keeping them safer.
This fun timelapse video shows Expedition 42 astronaut Terry Virts taking the robot out from what looks like a suitcase on the wall. After he set up Robonaut, however, the machine ran into a few problems.
“The ground teams deployed software and received telemetry from Robonaut. However, [they] were unable to obtain the commanded leg movement that was planned for the day. Ground teams are assessing a forward plan,” NASA wrote in the last ISS update concerning the robot, in mid-December.
While the astronauts patiently wait, they have been posting a few fun tweets about the robot in recent days. Check out what they’ve been saying below.