Could Lizard Hands Help Us Clean Up Space Junk?

Image of a gecko foot, whose ability to stick on to surfaces inspired NASA's Jet Propulsion Laboratory to develop a possible space debris snagging system. Credit: Wikimedia Commons

We’ve written extensively about the orbital debris problem here on Universe Today. In a nutshell, just about every time we launch something from Earth there are bits and pieces that are left behind. Screws. Paint flecks. Sometimes bigger pieces from rocket stages, or at worst, dysfunctional satellites.

Added to the list of lasers, magnets, robot hands and other ideas to get space junk out of orbit is a new one from NASA — gecko grippers. Yes, lizard hands. The idea is by using techniques from these animal appendages, we might be able to efficiently snag dead satellites or other debris at low cost.

Space debris is all whizzing above us and puts us at risk for devastating crashes that can create a sort of prison of debris for any spacecraft hoping to fly above the atmosphere. We’ve already had to move the shuttle and International Space Station due to threats, and the fear is as more satellites reach space, the problem will get worse.

Here’s what NASA has to say about the idea, which is led by Aaron Parness, a robotics researcher at the Jet Propulsion Laboratory:

The gripping system … was inspired by geckos, lizards that cling to walls with ease. Geckos’ feet have branching arrays of tiny hairs, the smallest of which are hundreds of times thinner than a human hair. This system of hairs can conform to a rough surface without a lot of force. Although researchers cannot make a perfect replica of the gecko foot, they have put “hair” structures on the adhesive pads of the grippers.

The grippers were put through their paces in a simulated microgravity test in August (recently highlighted on NASA’s website). On a plane that flew parabolas with brief “weightless” periods, the grippers managed to grab on to a 20-pound cube and a 250-pound researcher-plus-spacecraft-material-panels combination.

NASA-funded researchers test "gecko grippers" on a simulated-microgravity flight to see how effective they could be for snagging satellites. Here, a researcher has strapped spacecraft-like panels to his body to perform the test. Credit: NASA/YouTube (screenshot)
NASA-funded researchers test “gecko grippers” on a simulated-microgravity flight to see how effective they could be for snagging satellites. Here, a researcher has strapped spacecraft-like panels to his body to perform the test. Credit: NASA/YouTube (screenshot)

The key limitation was researchers actually held on to their invention themselves, but eventually they hope to use a robotic leg or arm to achieve the same purpose. Meanwhile, on the ground, the grippers have been used on dozens of spacecraft surfaces in a vacuum and in temperatures simulating what you’d find in orbit.

There’s no guarantee that the system itself will make it to space, as it’s still in the early stages of testing. But in a statement, Parness said he thinks it’s possible that “our system might one day contribute to a solution.” NASA also said these could be used for small satellites to attach to the space station, but development would need to move quickly in that case. The station is only guaranteed to be in use until 2020, with possible extension to 2024.

Source: Jet Propulsion Laboratory

Mercury Spacecraft’s 2015 Death Watch Could Go One More Month

Artist's impression of the MESSENGER spacecraft, with Mercury in the background. Credit: JHUAPL

If all goes well — and there’s no guarantee of this — NASA’s venerable Mercury sentinel may have an extra month of life left in it before it goes on a death plunge to the planet’s surface. Managers think they have found a way to stretch its fuel to allow the spacecraft to fly until April, measuring the planet’s magnetic field before falling forever.

Success will partially depend on a maneuver that will take place on Jan. 21, when MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) will raise its minimum altitude. But moreover, pushing the impact back to April will be the first extended test of using helium as a propellant in hydrazine thrusters, components that were not actually designed to get this done. But the team says it is possible, albeit less efficiently.

“Typically, when … liquid propellant is completely exhausted, a spacecraft can no longer make adjustments to its trajectory,” stated Dan O’Shaughnessy, a mission systems engineer with the Johns Hopkins University Applied Physics Laboratory.

“However, gaseous helium was used to pressurize MESSENGER’s propellant tanks, and this gas can be exploited to continue to make small adjustments to the trajectory.”

A crater on Mercury at the edge of the larger Oskison crater located in the plains north of Caloris basin. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
A crater on Mercury at the edge of the larger Oskison crater located in the plains north of Caloris basin. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

However long the mission does end up lasting, MESSENGER has shown us some unexpected things about the planet that is closest to the Sun. Turns out that water ice likely lies in some of the shadowed craters on its surface. And that organics, which were possibly delivered to Earth via comets and asteroids, are also on Mercury.

Atmospheric changes have been seen in the tenuous gases surrounding Mercury, showing a definite influence from the nearby Sun. And even the magnetic field lines on the planet are influenced by charged particles from our closest star.

And with MESSENGER viewing the planet from close-up, NASA and Johns Hopkins hope to learn more about volcanic flows, how crater walls are structured, and other features that you can see on the airless planet. Despite a 10-year mission and more than three years orbiting Mercury, it’s clear from MESSENGER that there is so much more to learn.

Source: Johns Hopkins University Applied Physics Laboratory

Best Space Photos Of 2014 Bring You Across The Solar System

A raw shot from the front hazcam of NASA's Opportunity rover taken on Sol 3757, on Aug. 19, 2014. Credit: NASA/JPL-Caltech

Feel like visiting a dwarf planet today? How about a comet or the planet Mars? Luckily for us, there are sentinels across the Solar System bringing us incredible images, allowing us to browse the photos and follow in the footsteps of these machines. And yes, there are even a few lucky humans taking pictures above Earth as well.

Below — not necessarily in any order — are some of the best space photos of 2014. You’ll catch glimpses of Pluto and Ceres (big destinations of 2015) and of course Comet 67P/Churyumov–Gerasimenko (for a mission that began close-up operations in 2014 and will continue next year.) Enjoy!

The Philae that could! The lander photographed during its descent by Rosetta. Credit: ESA/Rosetta/MPS for Rosetta Team/
The Philae that could! The lander photographed during its descent by Rosetta. Credit: ESA/Rosetta/MPS for Rosetta Team/
The Aurora Borealis seen from the International Space Station on June 28, 2014, taken by astronaut Reid Wiseman. Credit: Reid Wiseman/NASA.
The Aurora Borealis seen from the International Space Station on June 28, 2014, taken by astronaut Reid Wiseman. Credit: Reid Wiseman/NASA.
NASA's Mars Curiosity Rover captures a selfie to mark a full Martian year -- 687 Earth days -- spent exploring the Red Planet.  Curiosity Self-Portrait was taken at the  'Windjana' Drilling Site in April and May 2014 using the Mars Hand Lens Imager (MAHLI) camera at the end of the roboic arm.  Credit: NASA/JPL-Caltech/MSSS
NASA’s Mars Curiosity Rover captures a selfie to mark a full Martian year — 687 Earth days — spent exploring the Red Planet. Curiosity Self-Portrait was taken at the ‘Windjana’ Drilling Site in April and May 2014 using the Mars Hand Lens Imager (MAHLI) camera at the end of the roboic arm. Credit: NASA/JPL-Caltech/MSSS
This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn's intense magnetic environment. Credit: NASA/JPL/Space Science Institute
This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn’s intense magnetic environment. Credit: NASA/JPL/Space Science Institute
Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA
Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA
This "movie" of Pluto and its largest moon, Charon b yNASA's New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies - resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto's surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
This “movie” of Pluto and its largest moon, Charon b yNASA’s New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies – resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
The Mars Reconnaissance Orbiter took this image of a "circular feature" estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona
The Mars Reconnaissance Orbiter took this image of a “circular feature” estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona
Jets of gas and dust are seen escaping comet 67P/C-G on September 26 in this four-image mosaic. Click to enlarge. Credit: ESA/Rosetta/NAVCAM
Jets of gas and dust are seen escaping comet 67P/C-G on September 26 in this four-image mosaic. Click to enlarge. Credit: ESA/Rosetta/NAVCAM
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell

Space-y Charity: Some Ideas To Respond To Astronaut Hadfield’s Challenge

Canadian astronaut Chris Hadfield in the Cupola of the International Space Station. Credit: NASA/CSA

While the world was enchanted with Chris Hadfield’s social media posts last year, a new video has the retired astronaut talking about loftier things. Say, for example, how humanity landed a camera on the Saturn moon Titan back in 2005. Or to be more practical, the fact that smallpox was eradicated in its naturally occurring form.

In his talks and books, Hadfield describes himself as one who never focuses on complaining. He was almost yanked from his command of the International Space Station due to a medical issue, but he pressed on and convinced the doctors to let him fly. And in this new video, he focuses on what humans do generally to make the world better — imperfect as it is.

“There are problems with everything, and nothing’s perfect, but that shouldn’t be cause to moan. That should be cause to achieve. Our world is a better place than we often claim it to be,” Hadfield said. “We live the way we do,” he added, “because people chose to tackle their problems, head on.”

The video appears to have a heavy emphasis on the Bill & Melinda Gates Foundation, a gigantic philanthropic network that works to improve lives in the developing world and also for the disadvantaged in the United States. But there are many ways to give back to your community, even through gestures as simple as volunteering.

Here are some examples in the space world (note that these aren’t necessarily endorsements for the organizations, but just ideas for making contributions in space and astronomy):

  • Cosmoquest, which runs online astronomy courses and also allows citizens to map extraterrestrial bodies right alongside astronomers.
  • Astronomers Without Borders brings astronomy education across the world, particularly to developing countries.
  • Uwingu says that half of its donations goes to grants to support learning in astronomy.

Other examples of space-y charity could include volunteering or donating to a local school or university, joining one of the numerous volunteer organizations in astronomy, or getting involved in a space advocacy group.

Incredible Towering Structures Cast Shadows Across Saturn’s Rings

Vertical structures cause shadows on Saturn's B ring in this August 2009 picture from the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

From a distance, Saturn’s rings look like a sheer sheet, but peer up close and you can see that impression is a mistake. Shadows from rubble believed to be two miles (3.2 kilometers) high are throwing shadows upon the planet’s B ring in this image from the Cassini spacecraft.

While the picture is from 2009, it caught the eye of the lead of the Cassini imaging team, who wrote eloquently about it in a blog post recently celebrating the link between wonder and the holidays.

“I have often thought: What a surreal sight this would be if you were flying low across the rings in a shuttle craft. To your eyes, the rings would seem like a gleaming white, scored, gravelly sheet below you, extending nearly to infinity,” wrote Carolyn Porco, the lead imager for the mission at the Cassini Imaging Central Laboratory for Operations (CICLOPS).

“And as you flew, you would see in the distance a wall of rubble that, eventually, as it neared, you would come to realize towered two miles above your head. There isn’t another sight like it in the Solar System!”

A 2007 artist impression of the aggregates of icy particles that form the 'solid' portions of Saturn's rings. These elongated clumps are continually forming and dispersing. The largest particles are a few metres across.They clump together to form elongated, curved aggregates, continually forming and dispersing. Credit: NASA/JPL/Univ. of Colorado
A 2007 artist impression of the aggregates of icy particles that form the ‘solid’ portions of Saturn’s rings. These elongated clumps are continually forming and dispersing. The largest particles are a few metres across.They clump together to form elongated, curved aggregates, continually forming and dispersing. Credit: NASA/JPL/Univ. of Colorado

Besides the inherent beauty and delicacy of this picture, another notable feature is how hard it is to capture. According to CICLOPS, one can only take this photo during Saturn’s equinox — once every 15 years in Earth time! That’s because the angle of the Sun’s light reaches the plane of the rings, allowing shadows to fall. The area itself is likely filled with moonlets of a kilometer (0.62 miles) in size.

“It is possible that these bodies significantly affect the ring material streaming past them and force the particles upward, in a ‘splashing’ manner,” the CICLOPS website notes.

We’ve included more pictures of Saturn’s rings below, all taken from the Cassini spacecraft. The machine is healthy and working hard after about 10.5 years working at the planet. One of its major tasks now is to observe changes in the planet and particularly its large moon, Titan, as the system nears the solstice.

Saturn's rings. Credit: NASA/JPL/Space Science Institute.
Saturn’s rings. Credit: NASA/JPL/Space Science Institute.
Enceladus and Tethys hang below Saturn's rings in this image from the Cassini spacecraft. Credit: NASA/JPL-Caltech/SS
Enceladus and Tethys hang below Saturn’s rings in this image from the Cassini spacecraft. Credit: NASA/JPL-Caltech/SS
Raw Cassini image of Titan and Enceladus backdropped by Saturn's rings. Image Credit: NASA/JPL/Space Science Institute
Raw Cassini image of Titan and Enceladus backdropped by Saturn’s rings. Image Credit: NASA/JPL/Space Science Institute
A close look at Enceladus, with Saturn's rings in the background. Credit: NASA/JPL/Space Science Institute
A close look at Enceladus, with Saturn’s rings in the background. Credit: NASA/JPL/Space Science Institute
The Cassini spacecraft looks close at Saturn to frame a view encompassing the entire C ring. Image credit: NASA/JPL/SSI
The Cassini spacecraft looks close at Saturn to frame a view encompassing the entire C ring. Image credit: NASA/JPL/SSI
Raw image of Saturn's rings. Credit: NASA/JPL/Space Science Institute
Raw image of Saturn’s rings. Credit: NASA/JPL/Space Science Institute
Rhea poses with Saturn's rings; Janus and Prometheus are off in the distance.  Credit: NASA/JPL/Space Science Institute. Click for larger version
Rhea poses with Saturn’s rings; Janus and Prometheus are off in the distance. Credit: NASA/JPL/Space Science Institute. Click for larger version
Spokes visible in Saturn's B ring. Credit: NASA/JPL/Space Science Institute
Spokes visible in Saturn’s B ring. Credit: NASA/JPL/Space Science Institute
Looming vertical structures, seen here for the first time and created by Saturn's moon Daphnis, rise above the planet's otherwise flat, thin disk of rings to cast long shadows in this Cassini image.  Credit: CICLOPS
Looming vertical structures, seen here for the first time and created by Saturn’s moon Daphnis, rise above the planet’s otherwise flat, thin disk of rings to cast long shadows in this Cassini image. Credit: CICLOPS

Station Astronauts Send Christmas Greetings from the International Space Station

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA
Story/pics expanded. Send holiday tweet to crew below![/caption]

There is a long tradition of Christmas greetings from spacefarers soaring around the High Frontier and this year is no exception!

The Expedition 42 crew currently serving aboard the International Space Station has decorated the station for the Christmas 2014 holiday season and send their greetings to all the people of Earth from about 240 miles (400 km) above!

“Merry Christmas from the International Space Station!” said astronauts Barry Wilmore and Terry Virts of NASA and Samantha Cristoforetti of ESA, who posed for the group shot above.

Italian astronaut Samantha Cristoforetti is in the holiday spirit as the station is decorated with stockings for each crew member and a tree.  Credit: NASA/ESA
Italian astronaut Samantha Cristoforetti is in the holiday spirit as the station is decorated with stockings for each crew member and a tree. Credit: NASA/ESA

“It’s beginning to look like Christmas on the International Space Station,” said NASA in holiday blog update.

“The stockings are out, the tree is up and the station residents continue advanced space research to benefit life on Earth and in space.”

And the six person crew including a trio of Russian cosmonauts, Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov who celebrate Russian Orthodox Christmas, are certainly hoping for and encouraging a visit from Santa. Terry Virts even tweeted a picture of the special space style milk and cookies awaiting Santa and his Reindeer for the imminent arrival!

“No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed,” tweeted Virts.

No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed.  Credit: NASA/Terry Virts
No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed. Credit: NASA/Terry Virts

And here’s a special Christmas video greeting from Wilmore and Virts:

Video Caption: Aboard the International Space Station, Expedition 42 Commander Barry Wilmore and Flight Engineer Terry Virts of NASA offered their thoughts and best wishes to the world for the Christmas holiday during downlink messages from the orbital complex on Dec. 17. Wilmore has been aboard the research lab since late September and will remain in orbit until mid-March 2015. Virts arrived at the station in late November and will stay until mid-May 2015. Credit: NASA

“We wish you all a Merry Christmas and Happy New Year. Christmas for us is a time of worship. It’s a time that we think back to the birth of what we consider our Lord. And we do that in our homes and we plan to do the same thing up here and take just a little bit of time just to reflect on those topics and, also, just as the Wise Men gave gifts, we have a couple of gifts,” Wilmore says in the video.

“It’s such an honor and so much fun to be able to celebrate Christmas up here. This is definitely a Christmas that we’ll remember, getting a chance to see the beautiful Earth,” added Virts. “Have fun with your family. Merry Christmas!”

And you can send a holiday tweet to the crew – here:
holiday-tweet-banner-02

Meanwhile the crew is still hard at work doing science and preparing for the next space station resupply mission launch by SpaceX from Cape Canaveral, Florida.

A SpaceX Falcon 9 rocket is now set to blastoff on Jan. 6, 2015 carrying the Dragon cargo freighter on the CRS-5 mission bound for the ISS.

The launch was postponed from Dec. 19 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

A second static fire test of the SpaceX Falcon 9 went the full duration and cleared the path for the Jan. 6 liftoff attempt.

Among the science studies ongoing according to NASA are:

“Behavioral testing for the Neuromapping study to assess changes in a crew member’s perception, motor control, memory and attention during a six-month space mission. Results will help physicians understand brain structure and function changes in space, how a crew member adapts to returning to Earth and develop effective countermeasures.”

“Another study is observing why human skin ages at a quicker rate in space than on Earth. The Skin B experiment will provide scientists a model to study the aging of other human organs and help future crew members prepare for long-term missions beyond low-Earth orbit.”

Merry Christmas to All!

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Successful Engine Test Enables SpaceX Falcon 9 Soar to Space Station in Jan. 2015

SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

KENNEDY SPACE CENTER, FL – To ensure the highest possibility of success for the launch of a critical resupply mission to the International Space Station (ISS), SpaceX has announced the successful completion of a second static fire test of the first stage propulsion system of the firms commercial Falcon 9 rocket on Dec. 19.

The successful engine test clears the path towards a liftoff now rescheduled to early January 2015.

The launch of the Falcon 9 had been slated for Dec. 19, but NASA and SpaceX decided just 1 day before liftoff on Dec. 18 to postpone the launch of the CRS-5 resupply mission into the new year, when the first static fire test failed to run for its full duration of approximately three seconds.

“SpaceX completed a successful static fire test of the Falcon 9 rocket [on Dec. 19] in advance of the CRS-5 mission for NASA,” said SpaceX in a statement.

The second test was done because the first test of the Merlin 1D engines did not run for its full duration of about three seconds.

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit:  NASA
SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: SpaceX

“While the Dec. 17 static fire test accomplished nearly all of our goals, the test did not run the full duration, ”SpaceX spokesman John Taylor confirmed to Universe Today.

“The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”

Both tests were conducted at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

“We opted to execute a second test,” noted SpaceX.

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on Dec. 19 on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct 28 from NASA’s Wallops Flight Facility in Virginia, officials are being prudently cautious to ensure that all measures are being carefully rechecked to maximize the possibilities of a launch success.

The new launch date for CRS-5 is now set for no earlier than Jan. 6, 2015

“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now January 6 with January 7 as a backup,” said SpaceX.

The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

Among the other mission goals, SpaceX is planning a daring and bold attempt to propulsively land and recover the first stage on an ocean going platform called the “autonomous spaceport drone ship.”

SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014, from Cape Canaveral, Florida. Credit: SpaceX
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014, from Cape Canaveral, Florida. Credit: SpaceX

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Video Shows Astronaut’s-Eye View of “Trial by Fire” from Inside Orion EFT-1 on First Test Flight

NASA’s Orion spacecraft glides through clouds under its three massive main parachutes on its way toward a splashdown in the Pacific Ocean on Dec. 5, 2014. Credit: NASA

Video Caption: New video recorded during NASA’s Orion return through Earth’s atmosphere provides viewers a taste of what the vehicle endured as it returned through Earth’s atmosphere during its Dec. 5 flight test. Credit: NASA

KENNEDY SPACE CENTER, FL – Newly released NASA footage recorded during the first test flight of NASA’s Orion crew capsule this month gives an astronaut’s-eye view of what it would have been like for a crew riding along on the “Trial by Fire” as the vehicle began the fiery reentry through the Earth’s atmosphere and suffered scorching temperatures during the approximately ten minute plummet homewards and parachute assisted splashdown.

“The video provides a taste of the intense conditions the spacecraft and the astronauts it carries will endure when they return from deep space destinations on the journey to Mars,” NASA said in a statement.

The video was among the first data to be removed from Orion following its unpiloted Dec. 5 flight test and was recorded through windows in Orion’s crew module.

The Orion deep space test capsule reached an altitude of 3604 miles and the video starts with a view of the Earth’s curvature far different from what we’ve grown accustomed to from Space Shuttle flight and the International Space Station (ISS).

Then it transitions to the fiery atmospheric entry and effects from the superheated plasma, the continued descent, gorgeous series of parachute openings, and concludes with the dramatic splashdown.

Although parts of the video were transmitted back in real time and shown live on NASA TV, this is the first time that the complete video is available so that “the public can have an up-close look at the extreme environment a spacecraft experiences as it travels back through Earth’s environment from beyond low-Earth orbit.”

A portion of the video could not be sent back live because of the communications blackout that always occurs during reentry when the superheated plasma surrounds the vehicle as it endures peak heating up to 4000 F (2200 C) and prevents data downlink. Video footage “shows the plasma created by the interaction change from white to yellow to lavender to magenta as the temperature increases.”

The on-board cameras continued to operate all the way through the 10 minute reentry period to unfurling of the drogue and three main parachutes and splashdown in the Pacific Ocean at 11:29 a.m. EST at about 20 mph.

The Orion EFT-1 spacecraft was recovered from the Pacific by a combined team from NASA, the U.S. Navy, and Orion prime contractor Lockheed Martin and safely towed into the flooded well deck of the USS Anchorage.

The Orion spacecraft is guided into the well deck of the USS Anchorage during recovery operations following splashdown. Credit: U.S. Navy
The Orion spacecraft is guided into the well deck of the USS Anchorage during recovery operations following splashdown. Credit: U.S. Navy

It was brought to shore and off-loaded from the USS Anchorage at US Naval Base San Diego.

Orion was then hauled 2700 miles across the US from California on a flat bed truck for her homecoming arrival back to the Kennedy Space Center in Florida on Dec. 19 just prior to the Christmas holidays.

Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014.  Credit: Ken Kremer - kenkremer.com
Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014, after successful blastoff on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Orion’s inaugural test flight began with the flawless Dec. 5 launch as it soared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Orion flew on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that carried the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

EFT-1 tested the rocket, second stage, and jettison mechanisms as well as avionics, attitude control, computers, environmental controls and electronic systems inside the Orion spacecraft, heat shield, thermal protection tiles, and ocean recovery operations.

NASA intends that the EFT-1 test flight starts the agency on the long awaited road to send astronauts beyond Earth and eventually to Mars in the 2030s.

View of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
View of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Walk Beside China’s Moon Rover In Best Chang’e-3 Mission Pictures Ever

Taking the Chinese Yutu rover out for a spin on the Moon. The mission began in December 2013. Credit: Chinese Academy of Sciences

It’s been just over a year since China wowed the world with the first soft Moon landing in almost 40 years. The Chang’e-3 robotic lander made it all the way to Mare Imbrium (Sea of Rains) on Dec. 14, 2013, quickly deploying the Yutu rover for a spin.

Mission updates have been sparse in recent months, but the Planetary Society and a forum on Unmanned Spaceflight recently pointed out a new image archive. These pictures are so high-definition, it’s almost as good as being on the Moon beside the rover.

While some of the images are familiar to followers of the mission, what makes the image archive stick out is how high-definition many of them are.

China's Yutu rover scoots around on the Moon in this undated photo. The mission began in December 2013. Credit: Chinese Academy of Sciences
China’s Yutu rover scoots around on the Moon in this undated photo. The mission began in December 2013. Credit: Chinese Academy of Sciences

A few great shots have been sent back from the surface, including a set from January that was combined into a 360-degree panorama by Marco Di Lorenzo and Universe Today’s Ken Kremer. But this archive contains a wealth of them.

The lander/rover team made it to the surface last year equipped with high-definition video cameras, prepared to catch some of the first new views of the lunar surface from close up since the Apollo robotic/human and Soviet robotic moon landing era of the 1960s and 1970s.

While Chinese officials reportedly said the rover would last three months and the lander a year, difficulties quickly cropped up.

Chang'e 3 viewed from the Yutu lunar rover. The mission began in December 2013. Credit: Chinese Academy of Sciences
Chang’e-3 viewed from the Yutu lunar rover. The mission began in December 2013. Credit: Chinese Academy of Sciences

Shortly before Yutu entered a planned hibernation for its second lunar night (about two weeks on Earth) in January, a technical problem was reported that was later identified as a problem with its solar panel.

A “control circuit malfunction”, according to the Xinhua news agency, left the rover at risk of not waking up after that second hibernation. The mast it controlled was supposed to lower and protect some of the rover’s sensitive electronics. Yutu survived the night, but was left unable to move through the third lunar day.

According to the Planetary Society (based on Chinese news media reports), there are no current status updates for Yutu, but Chang’e-3 is still working a year after the landing.

The Yutu rover leaves the Chang'e 3 lunar lander in December 2013. Credit: Chinese Academy of Sciences
The Yutu rover leaves the Chang’e-3 lunar lander in December 2013. Credit: Chinese Academy of Sciences
The Chang'e 3 mission's view of lunar rocks. The mission began in December 2013. Credit: Chinese Academy of Sciences
The Chang’e-3 mission’s view of lunar rocks. The mission began in December 2013. Credit: Chinese Academy of Sciences

Gallery: Diving For Spacewalks Is Way Tougher Than You Think

A diver tests out a spacesuit in NASA's Neutral Buoyancy Laboratory in Houston in December 2014. Credit: Zugzwang5 (imgur)

If you’ve spent any length of time underwater, you appreciate just how much drag it creates on your limbs — especially if you’re wearing a little clothing or carrying around diving equipment. Now, try to imagine using a pressurized spacesuit in that environment. You’re already puffed up like a balloon and have the drag to contend with.

Few of us will get that experience — NASA won’t let just anybody try on an expensive suit — but luckily for us, a person saying he is a diver (identifying himself only as Zugzwang5) posted about the experience on Reddit. The pictures alone are incredible, but the insights the diver provides show just how tough an astronaut has to be to get ready for spacewalking.

Using the spacesuit compared to a wetsuit, wrote Zugzwang 5 on Reddit, was “incredibly cumbersome”. He says he’s a contracted diver for Oceaneering working at NASA’s Neutral Buoyancy Laboratory in Houston, which has a model of the International Space Station in a huge pool for astronauts to practice spacewalking. Usually he’s inside a wetsuit, but the spacesuit was a completely different experience, he said.

There’s so much resistance from the suit and the water every motion takes tremendous effort. You might not guess it from my pictures, but I’m actually pretty fit, and I was exhausted by the end of the day. The hardest thing to get used to was moving up and down in the water column. I’ve been diving so long controlling my buoyancy is basically a force of will at this point, having to actually crawl and direct myself up and down was such a weird feeling.

A diver at NASA's Neutral Buoyancy Laboratory in Houston tries out a spacesuit during a practice dive in December 2014. Credit: Zugzwang 5/imgur
A diver at NASA’s Neutral Buoyancy Laboratory in Houston tries out a spacesuit during a practice dive in December 2014. Credit: Zugzwang 5/imgur

Near the end of the marathon session, the diver had to bring back a simulated “incapacitated” astronaut to the airlock underwater, which he wrote was an extremely difficult task — especially while so tired.

So, for a real astronaut to pass their final evaluation they have to do a flawless incapacitated crew member rescue. this is actually very difficult as safely manipulating another suit is even more tiring and cumbersome than just moving your own. not only that but the airlock is very small, and safely (using proper tether technique) hooking someone else up into it is a surprisingly complex procedure where you have zero extra space to work with. Thirty minutes usually ends up being hardly enough time for the new guys, and even a vet will take more than 20.

You can check out the entire gallery at this link. Also, look at a past one the diver posted about the spacesuit fitting.