NASA and SpaceX targeting Dec. 19 for next Space Station Launch

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

NASA and SpaceX are now targeting Dec. 19 as the launch date for the next unmanned cargo run to the International Space Station (ISS) under NASA’s Commercial Resupply Services contract.

The fifth SpaceX cargo mission was postponed from Dec. 16 to Dec. 19 to “allow SpaceX to take extra time to ensure they do everything possible on the ground to prepare for a successful launch,” according to a statement from NASA.

The Dragon spacecraft will launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Both the Falcon 9 rocket and its Dragon spacecraft are in good health, according to NASA.

The mission dubbed SpaceX CRS-5 is slated for liftoff at 1:20 p.m.

An on time liftoff will result in a rendezvous with the ISS on Sunday. The crew would grapple the Dragon with the stations 57 foot long robotic arm at about 6 a.m.

The SpaceX Dragon capsule is snared by the International Space Station's Canadarm 2. Credit: NASA
The SpaceX Dragon capsule is snared by the International Space Station’s Canadarm 2. Credit: NASA

US astronaut and station commander Barry Wilmore will operate the Canadarm2 to capture the SpaceX Dragon when it arrives Sunday morning. ESA astronaut Samantha Cristoforetti will assist Wilmore working at a robotics workstation inside the domed Cupola module during the commercial craft’s approach and rendezvous.

The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.

The SpaceX CRS-4 mission to the ISS concluded with a successful splashdown on Oct 25 after a month long stay.

The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.

With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.

Orbital Sciences has now contracted United Launch Alliance (ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.

Martian Teardrop: Here’s How The Sun Moves Over A Red Planet Year

The Opportunity rover captured this analemma showing the Sun's movements over one Martian year. Images taken every third sol (Martian day) between July, 16, 2006 and June 2, 2008. Credit: NASA/JPL/Cornell/ASU/TAMU

Stand in the same spot every day. Take a picture of the Sun. What happens? Slowly, you see our closest star shifting positions in the sky. That motion over an entire year is called an analemma. The Opportunity rover on Mars even captured one on the Red Planet, which you can see above, and it’s a different shape than what you’ll find on Earth.

An April Astronomy Picture of the Day post (highlighted this weekend on Reddit) explains that Earth’s analemma of the Sun is figure-8-shaped, while that on Mars looks somewhat like a pear (or a teardrop, we think.) The Earth and Mars each have about the same tilt in their orbit — that same tilt that produces the seasons — but the orbit of Mars is more elliptical (oval) than that of Earth.

An analemma of the Sun, taken from Budapest, Hungary over a one year span. (Courtesy of György Soponyai, used with permission).
An analemma of the Sun, taken from Budapest, Hungary over a one year span. (Courtesy of György Soponyai, used with permission).

“When Mars is farther from the Sun, the Sun progresses slowly in the martian sky creating the pointy top of the curve,” the APOD post stated. “When close to the Sun and moving quickly, the apparent solar motion is stretched into the rounded bottom. For several sols some of the frames are missing due to rover operations and dust storms.”

The picture you see at the top of the post was taken every third sol (or Martian day, which is 24 hours and 37 minutes) between July 2006 and June 2008. The landscape surrounding the analemma is from Victoria Crater, where Opportunity was roaming at that time. (The rover is now on the rim of Endeavour Crater, still trucking after nearly 11 full years on the surface.)

In 2006, APOD also published a simulated analemma from Sagan Memorial Station, the landing site of the Sojourner spacecraft and tiny Pathfinder rover. In this case, the simulation showed the Sun’s movements every 30 sols. A Martian year is 668 sols.

You can read more details about analemmae in this past Universe Today post by David Dickinson, which relates the phenomenon to the passage of time.

Could Mercury Get A Meteor Shower From Comet Encke?

Artist's concept of the planet Mercury orbiting through a debris trail from Comet Encke that may cause a meteor shower. Credit: NASA's Goddard Space Flight Center

We’re sure going to miss the MESSENGER spacecraft at Mercury when it concludes its mission in 2015, because it keeps bringing us really unexpected news about the Sun’s closest planet. Here’s the latest: Mercury may get a periodic meteor shower when it passes through the debris trail of Comet Encke.

Why do scientists suspect this? It’s not from patiently watching for shooting stars. Instead, they believe the signature of calcium in Mercury’s tenuous atmosphere may be pointing to a pattern.

MESSENGER (which stands for MErcury Surface, Space ENvironment, GEochemistry, and Ranging) has been orbiting the planet for three Earth years and sees regular “surges” in calcium abundance on a predictable schedule. The researchers suspect it’s because of bits of dust colliding with Mercury and ricocheting bits of calcium up from the surface.

Mercury also picks up bits of dust from interplanetary debris, but the scientists say it’s not enough to account for the amounts of calcium they see. Extrapolating, the researchers suspect it must occur as the planet passes through debris left behind from a comet or asteroid. There are a small number of such small bodies that do this, and the scientists narrowed it down to Encke.

Illustration of MESSENGER in orbit around Mercury (NASA/JPL/APL)
Illustration of MESSENGER in orbit around Mercury (NASA/JPL/APL)

Computer simulations of the comet’s debris showed a slight difference from what researchers predicted, but they believe it’s because of variations in Mercury’s orbit as it gets tugged by larger planets, particularly Jupiter. Encke itself takes about 3.3 years to do one lap around the Sun, and has been photographed by MESSENGER in the past.

“The possible discovery of a meteor shower at Mercury is really exciting and especially important because the plasma and dust environment around Mercury is relatively unexplored,” stated lead author Rosemary Killen, a planetary scientist at NASA’s Goddard Space Flight Center in Maryland.

MESSENGER, meanwhile, is burning off the last of its fuel to stay in orbit; the final engine maneuver is expected for Jan. 21. Once that’s finished, the spacecraft will slowly spiral down towards the planet for an expected impact in March, ending the mission.

Source: NASA

How NASA Filmed Humans Last Leaving The Moon, 42 Years Ago

Still of the Apollo 17 spacecraft leaving the moon on Dec. 14, 1972. Credit: NASA/YouTube (screenshot)

When Apollo 17 lifted off from the moon, a camera captured the movements of the spacecraft — even though nobody was left behind to, say, establish a lunar base. How was that possible? With a camera on the lunar rover that could be controlled — or even programmed — from Earth.

Pretty impressive technology for the takeoff 42 years ago yesterday (Dec. 14) in 1972, although it took three tries to get the technique right.

As the Smithsonian National Air and Space Museum explains in a 2011 blog post, the camera was available on Apollos 15, 16 and 17. The television camera communicated from Earth using a high-gain antenna on the rover, but there was a slight time delay for the radio waves to travel (a couple of seconds) between the Earth and the Moon.

So the engineers suggested moving the rover a certain distance from the lunar module and setting the camera to automatically tilt to show the lunar liftoff when commanded from Earth.

That was the plan, at least. On Apollo 15, the tilt mechanism malfunctioned and the camera never moved upwards, allowing the lunar module to slip out of sight. And while the attempt on Apollo 16 gave a longer view of the lunar module rising up, the astronauts actually parked the rover too close to it, which threw off the calculations and timing of the tilt upwards so it left view just a few moments into the flight.

Ed Fendall was the person doing the controlling. In an oral history for NASA done in 2000, he recalled how complex the procedure was.

Now, the way that worked was this. Harley Weyer, who worked for me, sat down and figured what the trajectory would be and where the lunar rover would be each second as it moved out, and what your settings would go to. That picture you see was taken without looking at it [the liftoff] at all. There was no watching it and doing anything with that picture. As the crew counted down, that’s a [Apollo] 17 picture you see, as [Eugene] Cernan counted down and he knew he had to park in the right place because I was going to kill him, he didn’t — and Gene and I are good friends, he’ll tell you that — I actually sent the first command at liftoff minus three seconds. And each command was scripted, and all I was doing was looking at a clock, sending commands. I was not looking at the television. I really didn’t see it until it was over with and played back. Those were just pre-set commands that were just punched out via time. That’s the way it was followed.

Amazing Up Close Videos Capture Orion’s Final Descent, Splashdown and Ocean Recovery

The Orion crew module was recovered Dec. 5, 2014 after splashdown in the Pacific Ocean about 600 miles off the coast of San Diego, California. Credit: U.S. Navy

Video Caption: Last moments of Orion descent as viewed from the recovery ship USS Anchorage. Credit: NASA/US Navy

Relive the final moments of the first test flight of NASA’s Orion spacecraft on Dec. 5, 2014, through this amazing series of up close videos showing the spacecraft plummeting back to Earth through the rollicking ocean recovery by dive teams from the US Navy and the USS Anchorage amphibious ship.

The two orbit, 4.5 hour flight maiden test flight of Orion on the Exploration Flight Test-1 (EFT-1) mission was a complete success.

It was brought back to land to the US Naval Base San Diego, California.

Orion’s test flight began with a flawless launch on Dec. 5 as it roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The unpiloted test flight of Orion on the EFT-1 mission ignited NASA’s roadmap to send Humans to Mars by the 2030s by carrying the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

Video Caption: NASA TV covers the final moments of Orion spacecraft descent and splashdown in the Pacific Ocean approximately 600 miles southwest of San Diego on Dec. 5, 2014, as viewed live from the Ikhana airborne drone. Credit: NASA TV

The spacecraft was loaded with over 1200 sensors to collect critical performance data from numerous systems throughout the mission for evaluation by engineers.

EFT-1 tested the rocket, second stage, and jettison mechanisms as well as avionics, attitude control, computers, environmental controls, and electronic systems inside the Orion spacecraft and ocean recovery operations.

It also tested the effects of intense radiation by traveling twice through the Van Allen radiation belt.

After successfully accomplishing all its orbital flight test objectives, the capsule fired its thrusters and began the rapid fire 10 minute plummet back to Earth.

During the high speed atmospheric reentry, it approached speeds of 20,000 mph (32,000 kph), approximating 85% of the reentry velocity for astronauts returning from voyages to the Red Planet.

The capsule endured scorching temperatures near 4,000 degrees Fahrenheit in a critical and successful test of the 16.5-foot-wide heat shield and thermal protection tiles.

The entire system of reentry hardware, commands, and 11 drogue and main parachutes performed flawlessly.

Finally, Orion descended on a trio of massive red and white main parachutes to achieve a statistical bulls-eye splashdown in the Pacific Ocean, 600 miles southwest of San Diego, at 11:29 a.m. EST.

It splashed down within one mile of the touchdown spot predicted by mission controllers after returning from an altitude of over 3600 miles above Earth.

The three main parachutes slowed Orion to about 17 mph (27 kph).

Here’s a magnificent up close and personal view direct from the US Navy teams that recovered Orion on Dec. 5, 2014.

Video Caption: Just released footage of the Orion Spacecraft landing and recovery! See all the sights and sounds, gurgling, and more from onboard the Zodiac boats with the dive teams on Dec. 5, 2014. See the initial recovery operations, including safing the crew module and towing it into the well deck of the USS Anchorage, a landing platform-dock ship. Credit: US Navy

Navy teams in Zodiac boats had attached a collar and winch line to Orion at sea and then safely towed it into the flooded well deck of the USS Anchorage and positioned it over rubber “speed bumps.”

Next they secured Orion inside its recovery cradle and transported it back to US Naval Base San Diego where it was off-loaded from the USS Anchorage.

The Orion EFT-1 spacecraft was recovered by a combined team from NASA, the U.S. Navy, and Orion prime contractor Lockheed Martin.

Orion has been offloaded from the USS Anchorage and moved about a mile to the “Mole Pier” where Lockheed Martin technicians have conducted the first test inspection of the crew module and collected test data.

It will soon be hauled on a flatbed truck across the US for a nearly two week trip back to Kennedy where it will arrive just in time for the Christmas holidays.

NASA Administrator Charles Bolden briefs the media about the ‘Big Deal’ goals of the first Orion deep space crew module during prelaunch meeting backdropped by Orion and Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida prior to launch on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden briefs the media about the “Big Deal” goals of the first Orion deep space crew module during prelaunch meeting backdropped by Orion and Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida prior to launch on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Technicians at KSC will examine every nook and cranny of Orion and will dissemble it for up close inspection and lessons learned.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com
Prelaunch night view of NASA’s first Orion spacecraft bolted atop triple barreled United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.  Credit: Ken Kremer - kenkremer.com
Prelaunch night view of NASA’s first Orion spacecraft bolted atop triple barreled United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer – kenkremer.com

New Map Shows ‘Marsquakes’ Shook Wet Valles Marineris Sand, NASA Says

A color mosaic of Candor Chasma (part of Mars' Valles Marineris) based on data from Voyager 1 and Voyager 2. Credit: NASA

Mars today is a planet that appears to be mostly shaped by wind, but that wasn’t always the case. A new map adds information to the hypothesis that “marsquakes” affected at least a part of the planet’s vast canyon, Valles Marineris, while the area contained spring-filled lakes.

When the damp sand got shaken up, it deposited itself in hills. NASA says the new map, based on observations from the Mars Reconnaissance Orbiter (which you can see below), adds credence to the theory that it was water that made these deposits.

“The conditions under which sedimentary deposits in it formed have been an open issue for decades,” NASA wrote in a press release. “Possibilities proposed have included accumulation in lakebeds, volcanic eruptions under glaciers within the canyons, and accumulation of wind-blown sand and dust.”

The map you see below was created by the U.S. Geological Survey, which has more extensive information on the findings at this website. The observations also produced a suite of research in recent years, such as this 2009 paper led by Scott Murchie at the Johns Hopkins University Applied Research Laboratory.

Part of a map of Candor Chasma (part of Mars' Valles Marineris) based on observations from the Mars Reconnaissance Orbiter. Green is knobby terrain, pink is lobate deposits (ridged material) and blue "stair-stepped morphology" of hills and mesas. Credit: U.S. Geological Survey
Part of a map of Candor Chasma (part of Mars’ Valles Marineris) based on observations from the Mars Reconnaissance Orbiter. Green is knobby terrain, pink is lobate deposits (ridged material) and blue “stair-stepped morphology” of hills and mesas. Credit: U.S. Geological Survey

Freak Fast Winds Created Titan’s Massive, Mysterious Dunes

Titan's surface is almost completely hidden from view by its thick orange "smog" (NASA/JPL-Caltech/SSI. Composite by J. Major)

Titan is Saturn’s largest moon and is constantly surprising scientists as the Cassini spacecraft probes under its thick atmosphere. Take its dunes, for example, which are huge and pointed the wrong way.

Why are they pointing opposite to the prevailing east-west winds? It happens during  two rare wind reversals during a single Saturn year (30 Earth years), investigators suggest.

Investigators repurposed an old NASA wind tunnel to simulate how Titan is at the surface, watching how the wind affects sand grains. (They aren’t sure what kind of sand is on Titan, so they tried 23 different kinds to best simulate what they think it is, which is small hydrocarbon particles that are about 1/3 the density of what you find on Earth.)

After two years of work with the model — not to mention six years of refurbishing the tunnel — the team determined that the wind must blow 50% faster than believed to get the sand moving.

Dunes on Titan seen in Cassini's radar (top) that are similar to Namibian sand dunes on Earth. The features that appear to be clouds in the top picture are actually topographic features. Credit: NASA
Dunes on Titan seen in Cassini’s radar (top) that are similar to Namibian sand dunes on Earth. The features that appear to be clouds in the top picture are actually topographic features. Credit: NASA

“It was surprising that Titan had particles the size of grains of sand—we still don’t understand their source—and that it had winds strong enough to move them,” stated Devon Burr, an associate professor at the University of Tennessee Knoxville’s  earth and planetary science department, who led the research. “Before seeing the images, we thought that the winds were likely too light to accomplish this movement.”

The winds reverse when the Sun moves over the equator, affecting Titan’s dense atmosphere. And the effects are powerful indeed, creating dunes that are hundreds of yards (or meters) high and stretch across hundreds of miles (or kilometers).

To accomplish this, the winds would need to blow no slower than 3.2 miles per hour (1.4 meters per second), which sounds slow until you consider how dense Titan’s atmosphere is — about 12 times thicker surface pressure than what you would find on Earth. More information on the research is available in the journal Nature.

Sources: Arizona State University and the University of Tennessee, Knoxville.

Dawn Spacecraft’s Dwarf Planet Dance Improves Hubble’s Far-Away View

Vesta seen from the Earth-orbit based Hubble Space Telescope in 2007 (left) and up close with the Dawn spacecraft in 2011. Hubble Credit: NASA, ESA, and L. McFadden (University of Maryland). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell

The Hubble Space Telescope is one of the best observatories humanity has. It’s been operating for nearly 25 years in space, is still highly productive, and is a key element to mission planning for NASA as it sends spacecraft out into the Solar System. When the agency was getting ready to send Dawn to Vesta, for example, it took pictures to help with calibration.

Then Dawn got up close to the dwarf planet in 2011 and found a few surprises — liquid water that possibly flowed temporarily on the surface, for example. And as the spacecraft draws near to Ceres for a close encounter next year, it also will be looking for water — in the form of its atmosphere.

That’s following on from research out of the Herschel Space Telescope published earlier this year, showing that Ceres has a thin water vapor atmosphere surrounding the dwarf planet. It could be producing water similarly to how a comet does, through sublimation, but investigators won’t know much until they get close-up.

“Ceres has some sort of mechanism that’s putting out water vapor and causing a thin, temporary atmosphere,” said Keri Bean, a mission operations engineer at the Jet Propulsion Laboratory who works on Dawn, in a Google+ Hangout yesterday (Dec. 11). “I think that we’re going to try to look into this, and we don’t know what else Ceres will have in store for us.”

Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell

Dawn is now so close to Ceres that its pictures will soon exceed the best ones Hubble had to offer. The image above (at right) is modest compared to the space telescope, but in a planned photo session Jan. 26 Dawn will have slightly better pictures than Hubble. By Feb. 4 they will be twice as good in quality and then seven times as good Feb. 20.

The spacecraft’s images not only have science purposes, as they let investigators study the surface, but also serve as optical navigation aids. Ceres is a tiny body and hard to navigate to from far away, so as it gets closer these pictures are crucial for Dawn to figure out where to go next.

Dawn will get its close-up of Ceres in the spring when it arrives at the dwarf planet. To get the latest on the mission, check out the entire Google+ Hangout from yesterday.

Opportunity Mars Rover Plagued By Flash Memory Problems, But Carries On

Opportunity's robotic arm is cast in shadow as the Mars rover explores the rim of Endeavour Crater on Sol 3,854 (Nov. 26, 2014). Credit: NASA/JPL-Caltech

NASA’s aging Mars rover is still struggling with Flash memory after several months of controllers trying to work around frequent resets and amnesia events, according to a recent update.

The Opportunity rover is coming up on its 11th anniversary of landing on Mars, and is busy exploring the rim of Endeavour crater, en route to a region that could have clay minerals (showing evidence of water). But the rover has been dogged by frequent memory problems that forced a reformat in September, with only partial success.

While the updates have said the rover is still performing science, NASA says in a Dec. 4 to Dec. 9 update of the mission that the Flash memory was reformatted once again, and that controllers don’t plan to use any of it for the time being. Flash is useful because it retains data even when the rover is turned off. NASA is instead storing “data products” in RAM format.

“Longer term, the project is developing a strategy to mask off the troubled sector of Flash and resume using the remainder of the Flash file system,” NASA stated.

Highlights of the rover’s 10-year mission on Mars are in this Universe Today article, and also in the video below.

Orion Off-Loaded for Cross Country Trek to Florida Home Base

The Orion crew module was recovered Dec. 5, 2014 after splashdown in the Pacific Ocean about 600 miles off the coast of San Diego, California. Credit: U.S. Navy

After a brilliant first test flight, and historic Pacific Ocean splashdown and recovery on Dec. 5, 2014, NASA’s Orion spacecraft was brought onshore inside the USS Anchorage to the US Naval Base San Diego and has now been offloaded for the cross country trek back her home base in Florida.

Orion was off-loaded from the well deck of the USS Anchorage Monday night after the amphibious ship docked in San Diego.

NASA officials pronounced the two orbit, 4.5 hour flight maiden test flight of Orion on the Exploration Flight Test-1 (EFT-1) mission to be a complete success.

The EFT-1 spacecraft was recovered at sea, brought to land, and off-loaded by a combined team from NASA, the U.S. Navy, and Orion prime contractor Lockheed Martin.

NASA's Orion spacecraft is being offloaded from the well deck of the USS Anchorage at Naval Base San Diego in California  and has been secured in its crew module recovery cradle to prepare for return to Kennedy Space Center in Florida.  Credit:  NASA/Amber Philman
NASA’s Orion spacecraft is being offloaded from the well deck of the USS Anchorage at Naval Base San Diego in California and has been secured in its crew module recovery cradle to prepare for return to Kennedy Space Center in Florida. Credit: NASA/Amber Philman

Years of planning, rehearsals, and hard work on land, in the air, and at sea paid off handsomely for the Orion Recovery Team, led by the Ground Systems Development and Operations Program (GSDO) based at NASA’s Kennedy Space Center in Florida.

“The recovery of Orion was flawless,” said Jeremy Graeber, NASA recovery director. “We wanted to be patient, take our time. We didn’t rush.”

Navy teams in Zodiac boats had attached a collar and winch line to Orion at sea and then safely towed it into the flooded well deck of the USS Anchorage and positioned it over rubber “speed bumps.”

Next they secured Orion inside its recovery cradle and transported it back to US Naval Base San Diego where it was off-loaded from the USS Anchorage.

Orion has now been moved about a mile to the “Mole Pier” where Lockheed Martin has conducted the first test inspection of the crew module and collected test data.

The Orion crew module is being moved into a covered structure at the Mole Pier at Naval Base San Diego in California where it will be prepared for return to NASA's Kennedy Space Center in Florida. Orion was secured on its crew module recovery cradle in the well deck of the USS Anchorage after it was recovered from the Pacific Ocean.   Credit: NASA/Cory Huston
The Orion crew module is being moved into a covered structure at the Mole Pier at Naval Base San Diego in California where it will be prepared for return to NASA’s Kennedy Space Center in Florida. Orion was secured on its crew module recovery cradle in the well deck of the USS Anchorage after it was recovered from the Pacific Ocean. Credit: NASA/Cory Huston

Next, it was placed into the crew module transportation fixture with a rigorous environmental control system and generator to ensure the crew module’s safety during transport.

Orion will be hauled on a flatbed truck across the US for a nearly two-week trip back to Kennedy where it will arrive just in time for the Christmas holidays.

Technicians at KSC will examine every nook and cranny of Orion, and will disassemble it for up close inspection and lessons learned.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer