When you’re flying above Earth in a spaceship or space station, taking a clear picture below is more than a point-and-shoot job. As NASA astronaut Don Pettit explains in this video, you need to account for the motion of your little craft to get the best pictures below. And Pettit should know, being a photographer who captured many stunning timelapses in space.
“Apart from everything else an astronaut does on orbit, photography is actually part of our job,” Pettit said in the video. “We take pictures of Earth and the surroundings of Earth, the upper atmosphere. These pictures, in themselves, represent a scientific dataset, recorded now for over 14 years.”
The video is called “From Above” and is a production of SmugMug films, who also did an interview with Pettit. As it turns out, much of the photography taken in space is not of Earth — it’s engineering photography of window smudges or electrical connections to help diagnose problems happening in space.
“These things need to be documented so the images can be downlinked for engineers on the ground to assess what’s happening to the systems on space station,” Pettit said in the interview. “We get training specifically on doing these engineering images, which, for the most part, are not really interesting to the public.”
For a brief period in the 1960s and 1970s, 12 people ventured all the way to the surface of the Moon. The accomplishment at the time was hailed as a political victory over the Soviet Union, but as decades have passed the landings have taken on more symbolic meaning with NASA — a time of optimism, of science and of the American spirit.
The last lunar landing was Apollo 17, which took place on Dec. 11, 1972. Commander Eugene Cernan and lunar module pilot Harrison Schmitt did three moonwalks in the Taurus-Littrow valley, scoping out the highlands to try to get a geologic sense of the area. Among their more memorable findings are orange soil. You can see some pictures from their sojourn below.
A United Launch Alliance Altas V 401 rocket like that shown here will launch the next Orbital Sciences Cygnus cargo ship to the space station in place of the Antares rocket. NASA’s Mars-bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
More photos added[/caption]
Following the catastrophic Oct. 28 failure of an Orbital Sciences Corporation Antares rocket on a critical resupply mission to the space station for NASA, the company is seeking to quickly make up the loss to NASA by announcing the selection of the venerable Atlas V rocket built by United Launch Alliance to launch Orbital’s next Cygnus cargo ship to the orbital science lab.
Orbital and ULA signed a contract to launch at least one, and up to two, Cygnus cargo missions to the International Space Station (ISS) under NASA’s Commercial Resupply Services (CRS) program.
The first Cygnus mission would liftoff sometime late in the fourth quarter of 2015 aboard an Atlas V 401 vehicle from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.
Given that ULA’s full launch manifest was fairly full for the next 18 months, Orbital is fortunate to have arranged one or two available launch slots so quickly in the wake of the Antares launch disaster.
“Orbital is pleased to partner with ULA for these important cargo missions to the International Space Station,” said Frank Culbertson, Orbital executive vice president and general manager of its Advanced Programs Group.
“ULA’s ability to integrate and launch missions on relatively short notice demonstrates ULA’s manifest flexibility and responsiveness to customer launch needs.”
Orbital also stated that there will be “no cost increase to the space agency” by utilizing the Atlas V as an interim launcher.
If necessary, a second Cygnus would be launched by the Atlas V in 2016.
The 401 version of the Atlas uses a 4 meter diameter payload fairing, no solid rocket boosters strapped on to the first stage, and a single-engine Centaur upper stage.
Orbital had been evaluating at least three different potential launch providers.
Observers speculated that in addition to ULA, the other possibilities included a SpaceX Falcon 9 or a rocket from the European Space Agency at the Guiana Space Center.
“We could not be more honored that Orbital selected ULA to launch its Cygnus spacecraft,” said Jim Sponnick, vice president, Atlas and Delta Programs.
“This mission was awarded in a highly competitive environment, and we look forward to continuing ULA’s long history of providing reliable, cost-effective launch services for customers.”
The Orbital-3, or Orb-3, mission that ended in disaster on Oct. 28 was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.
The highly anticipated launch of the Antares rocket on Oct 28 suddenly went awry when one of the Soviet-era first stage engines unexpectedly exploded and cascaded into a spectacular aerial fireball just above the launch pad at NASA’s Wallops Flight Facility on the Orb-3 mission to the ISS.
Read my earlier eyewitness accounts at Universe Today.
Orbital was awarded a $1.9 Billion contract with NASA under the CRS program to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.
In choosing the Atlas V with a greater lift capacity compared to Antares, Orbital will also be able to significantly increase the cargo mass loaded inside the Cygnus by about 35%.
This may allow Orbital to meet its overall space station payload obligation to NASA in 7 total flights vs. the originally planned 8.
The venerable Atlas V rocket is one of the most reliable and well built rockets in the world.
Indeed the Atlas V has been entrusted to launch many high value missions for NASA and the Defense Department – such as MAVEN, Curiosity, JUNO, TDRSS, and the X-37 B.
MAVEN launched on a similar 401 configuration being planned for Cygnus.
The two-stage Atlas rocket is also being man-rated right now to launch humans to low Earth orbit in the near future.
Orbital is still in the process of deciding on a new first stage propulsion system for Antares’ return to flight planned for perhaps sometime in 2016.
Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Here’s the awesome thing about space and social media: in some cases, you can often follow along with a mission almost as soon as the images come to Earth. A group of Canadians is taking that to the next level this month as they take control of the 211th imaging cycle of a powerful camera on the Mars Reconnaissance Orbiter.
While some images need to be kept back for science investigations, the team is sharing several pictures a day on Twitter and on Facebook portraying the views they saw coming back from the High Resolution Imaging Science Experiment (HiRISE) camera. The results are astounding, as you can see in the images below.
“It’s mind-blowing to realize that when the team, myself included, first look at the images, we are likely the first people on Earth to lay eyes upon a portion of the Martian surface that may have not been imaged before at such high resolution,” stated research lead Livio Tornabene, who is part of Western University’s center for planetary science and exploration.
The team will capture up to 150 images between Nov. 30 and Dec. 12, and already have released close to two dozen to the public. Some of the best are below.
.@HiRISE image ESP_039152_1450 Tongue-shaped feature on south mid-latitude crater; Mars sticking its tongue out at us pic.twitter.com/F5LeG5e03m
— Western Mars Imaging (@westernuMars) December 5, 2014
— Western Mars Imaging (@westernuMars) December 5, 2014
Beautiful two-toned ejecta impact crater on Mars! Another lovely image brought to you by @HiRISE#WesternU 🙂 pic.twitter.com/q0FY2r6q8Y — Western Mars Imaging (@westernuMars) December 8, 2014
— Western Mars Imaging (@westernuMars) December 5, 2014
.@HiRISE image ESP_039149_1475 Gully monitoring in crater; looking for various changes over time. #WesternU#LdnOntpic.twitter.com/0DiXo7xrbd — Western Mars Imaging (@westernuMars) December 5, 2014
Can the just-flown Orion spacecraft truly get us to Mars? NASA has been portraying the mission as part of the roadmap to the Red Planet, but there are observers who say a human landing mission is an unrealistic goal given the budget just isn’t there right now in Congress.
That doesn’t stop Boeing from dreaming, though. In this new video, the prime contractor for the future Space Launch System rocket suggests that going to Mars will take six spacecraft elements. Two are in the works right now — Orion and SLS — while a Mars lander and other bits are just ideas right now, but shown in the video.
According to Boeing, the missing elements include a deep-space tug, a habitat, a lander and a rocket designed to get up out of the Mars gravity well. They also suggest it will take several SLS launches to assemble all the pieces to bring humans to the Red Planet.
“I think we’ll be able to colonize Mars someday,” said Mike Raftery, director of Boeing Space Exploration Systems, in the video. “It’ll take time. It may take hundreds of years. But that’s not unusual for humans. It’s really about establishing a human foothold on the planet. It’s a natural evolution of humanity to take this challenge on.”
That said, the video does hold to the old joke that a Mars landing is always 20 years in the future; the opening sequence suggests that the landing would take place in the 2030s and that those first astronauts are between the ages of 10 to 20 right now. What will it take to make the Mars mission possible? Let us know in the comments.
Edit, 3:39 p.m. EST: Thank you to a reader on Twitter, who pointed out this presentation by Boeing that explains the concepts in more detail.
Gimme a rocketship – we want to see what those bands are made of! This is a strange view of Jupiter, a familiar gas giant that humanity has sent several spacecraft to. This particular view, taken in 2000 and highlighted on the European Space Agency website recently, shows the southern hemisphere of the mighty planet.
The underneath glimpse came from the Cassini spacecraft while it was en route to Saturn. Lucky for researchers, at the time the Galileo Jupiter spacecraft was still in operation. But now that machine is long gone, leaving us to pine for a mission to Jupiter until another spacecraft gets there in 2016.
That spacecraft is called Juno and is a NASA spacecraft the agency sent aloft in August 2011. And here’s the cool thing; once it gets there, Juno is supposed to give us some insights into how the Solar System formed by looking at this particular planet.
“Underneath its dense cloud cover, Jupiter safeguards secrets to the fundamental processes and conditions that governed our Solar System during its formation. As our primary example of a giant planet, Jupiter can also provide critical knowledge for understanding the planetary systems being discovered around other stars,” NASA wrote on the spacecraft’s web page.
The spacecraft is supposed to look at the amount of water in Jupiter’s atmosphere (an ingredient of planet formation), its magnetic and gravitational fields and also its magnetic environment — including auroras.
Much further in the future (if the spacecraft development is approved all the way) will be a European mission called JUICE, for Jupiter Icy Moon Explorer.
The mission will check out the planet and three huge moons, Ganymede, Callisto and Europa, to get a better look at those surfaces. It is strongly believed that these moons could have global oceans that may be suitable for life.
Earlier this month, the European Space Agency approved the implementation phase for JUICE, which means that designers now have approval to come up with plans for the spacecraft. But it’s not going to launch until 2022 and get to Jupiter until 2030, if the schedule holds.
NASA is puzzled by this “enigmatic landform” caught on camera by one of its Mars orbiters, but looking around the region provides some possible clues. This 1.2-mile (2-kilometer) feature is surrounded by relatively young lava flows, so they suspect that it could be some kind of volcanism in the Athabasca area that created this rippled surface.
“Perhaps lava has intruded underneath this mound and pushed it up from beneath. It looks as if material is missing from the mound, so it is also possible that there was a significant amount of ice in the mound that was driven out by the heat of the lava,” NASA wrote in an update on Thursday (Dec. 4).
“There are an array of features like this in the region that continue to puzzle scientists. We hope that close inspection of this … image, and others around it, will provide some clues regarding its formation.”
The picture was captured by the Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE), a University of Arizona payload which has released a whole slew of intriguing pictures lately. We’ve collected a sample of them below.
It’s funny to think that your smartphone might be faster than a new spaceship, but that’s what one report is saying about the Orion spacecraft. The computers are less-than-cutting-edge, the processors are 12 years old, and the speed at which it “thinks” is … slow, at least compared to a typical laptop today.
But according to NASA, there’s good reasoning behind using older equipment. In fact, it’s common for the agency to use this philosophy when designing missions — even one such as Orion, which saw the spacecraft soar 3,600 miles (roughly 5,800 kilometers) above Earth in an uncrewed test last week and make the speediest re-entry for a human spacecraft since the Apollo years.
The reason, according to a Computer World report, is to design the spacecraft for reliability and being rugged. Orion — which soared into the radiation-laden Van Allen belts above Earth — needs to withstand that environment and protect humans on board. The computer is therefore based on a well-tested Honeywell system used in 787 jetliners. And Orion in fact carries three computers to provide redundancy if radiation causes a reset.
“The one thing we really like about this computer is that it doesn’t get destroyed by radiation,” said Matt Lemke, NASA’s deputy manager for Orion’s avionics, power and software team, in the report. “It can be upset, but it won’t fail. We’ve done a lot of testing on the different parts of the computer. When it sees radiation, it might have to reset, but it will come back up and work again.”
A 2013 NASA presentation points out that the agency is a common user of commercial off-the-shelf (COTS) electronics. This usually happens for three reasons: officials can’t find military or aerospace alternatives, unknown risks are a part of the mission, or a mission has “a short lifetime or benign space environment exposure”. NASA makes sure to test the electronics beyond design limits and will often make accommodations to make it even safer. Ideally, the use of proven hardware overall reduces risk and cost for a mission, if used properly.
“The more understanding you have of a device’s failure modes and causes, the higher the confidence level that it will perform under mission environments and lifetime,” the presentation says. “Qualification processes are statistical beasts
designed to understand/remove known reliability risks and uncover unknown risks inherent in a part.”
In fact, the rocket that is eventually supposed to pair up with Orion will also use flight-tested systems for at least the first few flights. The Space Launch System, which NASA hopes will heft Orion on the next test flight in 2017 or 2018, will use solid rocket boosters based on those used with the shuttle. But NASA adds that upgrades are planned to the technology, which flew on shuttle missions in space starting in 1981.
“Although similar to the solid rocket boosters that helped power the space shuttle to orbit, the five-segment SLS boosters include several upgrades and improvements implemented by NASA and ATK engineers,” NASA wrote in a 2012 press release. “In addition, the SLS boosters will be built more affordably and efficiently than shuttle boosters, incorporating new and innovative processes and technologies.”
A handful of other prominent space recycling uses in space exploration:
Venus Express, a European Space Agency mission that uses designs and hardware from the Mars Express and Rosetta missions. It’s finishing its mission soon after eight years in orbit — four times the original plan.
If you think the upside-down Christmas tree above is bizarre — that’s one of the latest activities of Expedition 42 astronauts in space right now — think back to the history of other holidays in orbit.
We’ve seen a vital telescope undergo repairs, an emergency replacement of part of a space station’s cooling system, and even a tree made of food cans. Learn more about these fun holiday times below.
Reading from above the moon (Apollo 8, 1969)
In this famous reading from the Bible, astronauts Frank Borman, Jim Lovell and Bill Anders shared their experience looking at the Moon on Dec. 24, 1968. The Apollo 8 crew was the first to venture to lunar orbit, just seven months before the Apollo 11 crew made it all the way to the surface.
Food can “Christmas tree” (Skylab 4, 1973)
Living on the Skylab station taught astronauts the value of improvisation, such as when the first crew (under NASA’s instructions) repaired a sunshield to stop electronics and people from roasting inside. Skylab 4 took the creativity to Christmas when they created a tree out of food cans.
Hubble Space Telescope repair (STS-103, 1999)
When the Hubble Space Telescope was in hibernation due to a failed gyroscope, the STS-103 crew made repairs in December 1999 that culminated with the final spacewalk on Christmas Day. The telescope remains in great shape to this day, following another repair mission in 2009.
First Christmas on the International Space Station (Expedition 1, 2000)
The Expedition 1 crew was the first on the International Space Station to spend Christmas in orbit. “On this night, we would like to share with all-our good fortune on this space adventure; our wonder and excitement as we gaze on the Earth’s splendor; and our strong sense — that the human spirit to do, to explore, to discover — has no limit,” the crew said in a statement on Christmas Eve, in part.
Ammonia tank replacement (Expedition 38, 2013)
Just last year, an ammonia tank failure crippled a bunch of systems on the International Space Station and forced spacewalkers outside to fix the problem, in the middle of a leaky suit investigation. The astronauts made the final repairs ahead of schedule, on Christmas Eve.
Don’t forget about Philae! The comet lander made a touchdown a month ago this week on its target, marking the first time we’ve ever made a soft landing on such a body. Celebrations were quickly mixed with confusion, however, as controllers realized the spacecraft drifted quite a ways off target. In fact, we still don’t know exactly where it is.
The parent Rosetta spacecraft is working well in orbit and still transmitting images of the comet while Philae hibernates in a shady spot below. This latest image here shows a clear view of where the European Space Agency thinks the lander arrived — somewhere in the rim of that shadowy crater you see up front.
“The internal walls are seen in quite some detail. It is thought that Philae’s final touchdown site might be located close to the rim of this depression, but further high-resolution imaging is still being obtained and analyzed to confirm this,” the agency wrote in a statement concerning the image of Comet 67P/Churyumov-Gerasimenko.
This is based on data collected from Philae in a brief science surge on the surface. Recently, information based on measured magnetic fields showed the spacecraft likely hit an object — perhaps a crater rim — as it drifted for two hours on the surface, unsecured by the harpoons that were supposed to fire to hold it in place.
Searches for the lander are ongoing, but it’s hard to pick it out on such a boulder-strewn landscape. Yet the agency is doing its mightiest, and has made some progress on the problem since the landing took place. Rosetta caught several glimpses of the lander during its journey across the surface. And they have data from an experiment that communicated between Rosetta and Philae which could help pinpoint the location.
Rosetta science results have been quiet in the past week, although ESA has released several images of the comet. This comes as the agency has been criticized for its data release policy regarding the mission. It’s a vigorous debate, with there being examples of more open missions (such as Curiosity) and more closed missions (such as the Hubble Space Telescope) to compare Rosetta’s releases with.
As these activities continue, however, Rosetta will remain transmitting information from 67P through at least part of 2015, watching the comet increase in activity as both draw closer to the Sun. Jets and gas are visible already in some of the recent images of the comet, which you can see below.