The Perfect Holiday Gift: The Year In Space Calendar 2015!

Here’s our most-recommended holiday gift every year: The Year In Space Calendar! And for 2015 it’s back, it’s big and it’s what every space enthusiast will enjoy all year. The gigantic wall calendar is full of amazing color images, daily space facts, historical references, and it even shows you where you can look in the sky for all the best astronomical sights. The 2015 version of Steve Cariddi’s wonderful Year in Space wall and desk calendars are now available to order, perfect for your Cyber Monday shopping.

Wall-calendar-blurb_2015_A

The gorgeous wall calendar has over 120 crisp color images and is larger, more lavishly illustrated, and packed with more information than any other space-themed wall calendar. It’s a huge 16″ x 22″ when hanging up!

Published in cooperation with The Planetary Society, the Year In Space calendar takes you on a year-long guided tour of the Universe, providing in-depth info on human space flight, planetary exploration, and deep sky wonders. You’ll even see Universe Today featured in this calendar!

Other features of the Year In Space calendar:
– Background info and fun facts
– A sky summary of where to find naked-eye planets
– Space history dates
– Major holidays (U.S. and Canada)
– Daily Moon phases
– A mini-biography of famous astronomer, scientist, or astronaut each month

TPS_Email_1_595x260

These calendars normally sell for $17.95, but Universe Today readers can buy the calendar for only $13.95 or less (using the “Internet” discount), and get free U.S. shipping and discounted international shipping. There are also volume discounts. Check out all the details here.

There’s also the 136-Page Desk Calendar at a similar discounts.

You can preview the entire calendar at the Year in Space Calendar website.

2015_Wall_Calendar_images_1333x1000_B

And FYI, Universe Today will be having some giveaways of this calendar soon, but put in your gift orders today!

Jupiter-Bound Spacecraft Takes A Small Step To Seek Habitable Worlds

Artist's impression of the Jupiter Icy Moons Explorer (JUICE) near Jupiter and one of its moons, Europa. Credit: ESA/AOES

It takes years of painstaking work to get a spacecraft off the ground. So when you have a spacecraft like JUICE (the Jupiter Icy Moons Explorer) set to launch in 2022, you need to back up about a decade to get things figured out. How will the spacecraft get there? What science instruments will it carry? What will the spacecraft look like and what systems will support its work?

JUICE just hit another milestone in its development a few days ago, when the European Space Agency gave the go-ahead for the “implementation phase” — the part where the spacecraft design begins to take shape. The major goal of the mission will be to better understand those moons around Jupiter that could be host to life.

The spacecraft will reach Jupiter’s system in 2030 and begin with observations of the mighty planet — the biggest in our Solar System — to learn more about the gas giant’s atmosphere, faint rings and magnetic environment. It also will be responsible for teaching us more about Europa (an icy world that could host a global ocean) and Callisto (a moon pockmarked with the most craters of anything in the Solar System.)

Its major departure from past missions, though, will come when JUICE enters orbit around Ganymede. This will the first time any spacecraft has circled an icy moon repeatedly; past views of the moon have only come through flybys by the passing-through spacecraft (such as Pioneer and Voyager) and the Galileo mission, which stuck around Jupiter’s system in the 1990s and early 2000s.

Ganymede
Ganymede Credit: NASA

With Ganymede, another moon thought to host a global ocean, JUICE will examine its surface and insides. What makes the moon unique in our neighborhood is its ability to create its own magnetic field, which creates interesting effects when it interacts with Jupiter’s intense magnetic environment.

“Jupiter’s diverse Galilean moons – volcanic Io, icy Europa and rock-ice Ganymede and Callisto – make the Jovian system a miniature Solar System in its own right,” the European Space Agency stated when the mission was selected in 2012.

“With Europa, Ganymede and Callisto all thought to host internal oceans, the mission will study the moons as potential habitats for life, addressing two key themes of cosmic vision: what are the conditions for planet formation and the emergence of life, and how does the Solar System work?”

JUICE is one of several major spacecraft ESA plans to launch in the next couple of decades. You can read more about the other Cosmic Vision candidates at this ESA website.

Source: European Space Agency

Dawn Spacecraft Will Take Pictures Of Its Target Dwarf Planet Today

Artist's conception of the Dawn spacecraft approaching the asteroid Ceres. Credit: NASA/JPL-Caltech

The year 2015 is going to be a big one for far-off spacecraft. Among them is the long-running Dawn mission, which is on its way to the dwarf planet Ceres (by way of Vesta) and should settle into orbit in April after a radiation blast delayed the original flight plan.

And today (Dec. 1) comes a special day for Dawn — when it turns its cameras to Ceres to capture the world, which will appear about nine pixels across. The reason? Besides scientific curiosity, it turns out to be a perfect calibration target, according to NASA.

“One final calibration of the science camera is needed before arrival at Ceres,” wrote Marc Rayman, the mission director at the Jet Propulsion Laboratory, in a recent blog post.

“To accomplish it, the camera needs to take pictures of a target that appears just a few pixels across. The endless sky that surrounds our interplanetary traveler is full of stars, but those beautiful pinpoints of light, while easily detectable, are too small for this specialized measurement. But there is an object that just happens to be the right size. On Dec. 1, Ceres will be about nine pixels in diameter, nearly perfect for this calibration.”

The Dawn spacecraft's first image of Ceres, taken July 20, 2010. Credit: NASA/JPL-Caltech/MPS/DLR/IDA
The Dawn spacecraft’s first image of Ceres, taken July 20, 2010. Credit: NASA/JPL-Caltech/MPS/DLR/IDA

This isn’t the first picture of Ceres by Dawn — not by a long-shot — but it sure will loom bigger than you see in the image at left, which was taken in 2010. Dawn hadn’t even arrived at Vesta at the time, the blog post points out, and the spacecraft was about 1,300 times further from Ceres then as it is now. Translating that into visual magnitude, the new pictures of Ceres will show an appearance about as bright as Venus, from Earth’s perspective.

In October, the Dawn blog said that more pictures of Ceres are planned on Jan. 13, when Ceres will appear 25 pixels across. This won’t be quite the best view ever — that was taken by the Hubble Space Telescope, which you can see below, — but just wait a couple of weeks. The mission planners say that by Jan. 26, the images will be slightly better. On Feb. 4, they will be twice as good and by Feb. 20, seven times as good.

As with the calibration photo taken today, these photos in 2015 will have a double purpose: optical navigation. It’s to help the spacecraft figure out where to go, because our pictures of Ceres are so fuzzy that mission planners will need more exact information as the mission proceeds.

You can read more information about the picture-taking, and Dawn’s planned approach to Ceres, in the Nov. 28 entry of the Dawn blog.

Pictures of the asteroid Ceres taken by the Hubble Space Telescope and released in 2005. It shows the asteroid moving over two hours and 20 minutes, which is about a quarter of a day on Ceres (nine hours). At the time, scientists said the bright spot is a mystery. Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), and L. McFadden (University of Maryland, College Park)
Pictures of the asteroid Ceres taken by the Hubble Space Telescope and released in 2005. It shows the asteroid rotating over two hours and 20 minutes, which is about a quarter of a day on Ceres (nine hours). At the time, scientists said the bright spot is a mystery. Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), and L. McFadden (University of Maryland, College Park)

Probing Pluto’s Paltry Atmosphere Using A Solar Eclipse And Spacecraft

Artist's conception of the Pluto system from the surface of one of its moons. Credit: NASA, ESA and G. Bacon (STScI)

Pluto is so far away from us and so tiny that it’s hard to glean even basic facts about it. What is its tenuous atmosphere made of? And how to observe it during NASA’s New Horizons very brief flyby next July? A recent Johns Hopkins blog post explains how a careful maneuver post-Pluto will let investigators use the Sun to examine the dwarf planet’s true nature.

Investigators will use an instrument called Alice, an ultraviolet spectrometer, to look at the atmosphere around Pluto and its largest moon, Charon. Alice is capable of examining the gases in the atmosphere using a large “airglow” aperture (4 by 4 centimeters) and also using the Sun for observation with a smaller, 1-mm solar occultation channel.

“Once New Horizons flies past Pluto, the trajectory will conveniently (meaning, carefully planned for many years) fly the spacecraft through Pluto’s shadow, creating an effect just like a solar eclipse here on Earth,” wrote Joel Parker, New Horizons co-investigator, in a blog post.

New Horizons
New Horizons spacecraft. Image Credit: NASA

“So we can (and will) just turn the spacecraft around and stare at the Sun, using Alice as it goes behind Pluto to measure how the Sun’s ultraviolet light changes as that light passes through deeper and deeper parts of Pluto’s atmosphere. This technique lets us measure the composition of Pluto’s atmosphere as a function of altitude.”

And guess where the technique was used not too long ago? Titan! That’s a moon of Saturn full of hydrocarbons and what could be a precursor chemistry to life. The moon is completely socked in with this orange haze that is intriguing. Scientists are still trying to figure out what it is made of — and also, to use our understanding of it to apply to planets outside our solar system.

When a huge exoplanet passes in front of its star, and it’s close enough to Earth, scientists are starting to learn how to ferret out information about its chemistry. This shows them what temperature the atmosphere is like and what it is made of, although it should be emphasized scientists are only starting on this work.

A composite image of Titan's atmosphere, created using blue, green and red spectral filters to create an enhanced-color view.  Image Credit: NASA/JPL/Space Science Institute
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute

The goal of performing these transit observations of Titan was to understand how haze on an exoplanet might blur the observations. From four passes with the Cassini spacecraft, the team (led by Tyler Robinson at NASA’s Ames Research Center) found that haze would make it difficult to get information from all but the upper atmosphere.

“An additional finding from the study is that Titan’s hazes more strongly affect shorter wavelengths, or bluer, colors of light,” NASA stated at the time. “Studies of exoplanet spectra have commonly assumed that hazes would affect all colors of light in similar ways. Studying sunsets through Titan’s hazes has revealed that this is not the case.”

The nature of Pluto will better come to light when New Horizons makes its pass by the planet in July 2015. Meanwhile, controllers are counting down the days until the spacecraft emerges from its last hibernation on Saturday (Dec. 6).

Source: Johns Hopkins Applied Physics Laboratory

Delaying Death: Mercury Spacecraft Firing Engines To Stay Up Until 2015

Illustration of MESSENGER in orbit around Mercury (NASA/JPL/APL)

Don’t take these spectacular Mercury images (below the jump) for granted. Three weeks ago, NASA’s orbiting Mercury spacecraft did an engine fire to boost its altitude above the hothouse planet. Another one is scheduled for January.

But all this will do is delay the end of the long-running mission — the first one to orbit Mercury — until early 2015, the Johns Hopkins Applied Physics Laboratory wrote in an update. These maneuvers “extend orbital operations and delay the probe’s inevitable impact onto Mercury’s surface until early next spring,” the organization said in a statement.

Until MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) flew by Mercury for the first time in January 2008, we knew very little about the planet. The only close-up pictures previously came from Mariner 10, which whizzed by a few times in 1974-75. After a few flybys, MESSENGER settled into orbit in 2011.

A 3-D image of Balanchine crater on Mercury obtained by the MESSENGER spacecraft. Scientists are examining the region to learn more about its oddly shaped ejecta, which may have occurred when one impact crater dumped material on top of another pile. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
A 3-D image of Balanchine crater on Mercury obtained by the MESSENGER spacecraft. Scientists are examining the region to learn more about its oddly shaped ejecta, which may have occurred when one impact crater dumped material on top of another pile. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

In that brief span of years, MESSENGER has taught us that Mercury is a different planet than we imagined. In a statement this August celebrating the spacecraft’s 10th launch anniversary, NASA identified several things that made MESSENGER’s science special:

  • Mercury’s high density compared to other planets remains a mystery. MESSENGER investigations found a surface that didn’t have a lot of iron in it, but lots of volatile materials such as sodium and sulfur.
  • The surface had volcanoes on it and still has water ice in permanently shadowed craters near the poles.
  • Its magnetic field produces weird effects that are still being examined. NASA speaks of “unexplained bursts of electrons and highly variable distributions of different elements” in its tenuous atmosphere, called an exosphere.
This is an Andy Warhol-like image of an unnamed crater near Mercury's north pole. Data obtained by the MESSENGER spacecraft makes scientists suspect there is water ice inside the 15-mile (24-kilometer) divot. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
This is an Andy Warhol-like image of an unnamed crater near Mercury’s north pole. Data obtained by the MESSENGER spacecraft makes scientists suspect there is water ice inside the 15-mile (24-kilometer) divot. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“Our only regret is that we have insufficient propellant to operate another 10 years, but we look forward to the incredible science returns planned for the final eight months of the mission,” stated Andy Calloway, MESSENGER mission operations manager at the Johns Hopkins University Applied Physics Laboratory, at the time.

MESSENGER has done several orbital-boosting maneuvers in recent months to prolong the mission as possible. The first one in June adjusted its orbit to between 71.4 miles (115 kilometers) and 97.2 miles (156.4 kilometers), while the second in September went lower: a minimum of 15.7 miles (25.2 kilometers) to 58.2 miles (93.7 kilometers).

As of late October, MESSENGER’s minimum altitude was 115.1 miles (185.2 miles) and it took roughly eight hours for it to orbit Mercury. Once it finally crashes, Europe’s and Japan’s BepiColombo is expected to be the next Mercury orbiting mission. It launches in 2016, but will take several flybys past planets to get there and won’t arrive until 2024.

Ice is lurking at the bottom of these craters on Mercury in this double image. From left to right, the large craters are  Chesterton, Tryggvadóttir, and Tolkien. The right-hand image is stretched to show the permanent dark bottoms in each crater. Data is from the NASA MESSENGER mission. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Ice is lurking at the bottom of these craters on Mercury in this double image. From left to right, the large craters are Chesterton, Tryggvadóttir, and Tolkien. The right-hand image is stretched to show the permanent dark bottoms in each crater. Data is from the NASA MESSENGER mission. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Beam Me Up, Mars! Uwingu Will Send 90,000 Radio Messages There Today

Early Spring Dust Storms at the North Pole of Mars. Early spring typically brings dust storms to northern polar Mars. As the north polar cap begins to thaw, the temperature difference between the cold frost region and recently thawed surface results in swirling winds. The choppy dust clouds of several dust storms are visible in this mosaic of images taken by the Mars Global Surveyor spacecraft in 2002. The white polar cap is frozen carbon dioxide. (NASA/JPL/Malin Space Science Systems)

Maybe you can’t climb on a rocketship to Mars, at least yet, but at the least you can get your desire for exploration out through other means. Today, take comfort that humanity is sending 90,000 messages in the Red Planet’s direction. That’s right, the non-profit Uwingu plans to transmit these missives today around 3 p.m. EST (8 p.m. UTC).

Among the thousands of ordinary folks are a collection of celebrities: Bill Nye, the Science Guy; George Takei (“Sulu” on Star Trek) and commercial astronaut Richard Garriott, among many others.

“This is the first time messages from people on Earth have been transmitted to Mars by radio,” Uwingu stated. “The transmission, part of Uwingu’s ‘Beam Me to Mars’ project, celebrates the 50th anniversary of the 28 November 1964 launch of NASA’s Mariner 4 mission—the first successful mission to explore Mars.”

The project was initially released in the summer with the idea that it could help support struggling organizations, researchers and students who require funding for their research. The messages cost between $5 and $100, with half the money going to the Uwingu Fund for space research and education grants, and the other half for transmission costs to Mars and other needed things.

While only robots can receive those messages for now, it’s another example of transmission between the planets that we take for granted. For example, check out this stunning picture below from Mars Express, a European Space Agency mission, that was just released yesterday (Nov. 27). Every day we receive raw images back from the Red Planet that anyone can browse on the Internet. That was unimaginable in Mariner 4’s days. What will we see next?

Close-up of a trough in the huge Hellas Basin on Mars, taken by the European Space Agency's Mars Express spacecraft and released Nov. 27, 2014. Credit: ESA/DLR/FU Berlin
Close-up of a trough in the huge Hellas Basin on Mars, taken by the European Space Agency’s Mars Express spacecraft and released Nov. 27, 2014. Credit: ESA/DLR/FU Berlin

Rocket Remains? Video Shows ‘Pieces Of Whatever’ Flaming High Above Belgrade

Just before dawn on Wednesday (Nov. 26), a pilot in Belgrade caught this stunning video of a “huge number of glowing pieces of whatever” breaking up in the atmosphere above.

You know what this is? A rocket, most likely! It’s the upper stage for the Soyuz that launched three people to space on Sunday (Nov. 23), the European Space Agency says.

Continue reading “Rocket Remains? Video Shows ‘Pieces Of Whatever’ Flaming High Above Belgrade”

‘Meteoric Smoke’: Comet Siding Spring Could Alter Mars Chemistry Permanently

Observations of Comet Siding Spring Oct. 19 by the Mars Orbiter Mission. Credit: Indian Space Research Organisation

Feeling lucky? Events such as the Comet Siding Spring approach by Mars in October only happen about once every eight million years, according to NASA.

And after we were treated to spectacular views from the agency’s spacecraft (see Curiosity and Opportunity and MAVEN, for example), we now have fresh pictures this month from an Indian mission. Also, NASA has released science results suggesting that the chemistry of Mars’ atmosphere could be changed forever from the close encounter.

“The image in the center shows a streak … radiating out of the comet’s nucleus (out of frame), possibly indicating the jet from [the] comet’s nucleus,” the Indian Science Research Organisation wrote of the above image sequence on its Facebook mission page.

“Usually jets represent outgassing activity from [the] vents of the comet-nucleus, releasing dust and ice crystals. The outgassing activity gradually increases as the comet moves closer to the Sun.”

Artist view of the comet passing closest to Mars this Sunday. At the time, the Mars orbiters from the U.S., Europe and India will be huddled on the opposite side of the planet to avoid possible impacts from comet dust. Credit: NASA
Artist view of the comet passing closest to Mars this Sunday. At the time, the Mars orbiters from the U.S., Europe and India will be huddled on the opposite side of the planet to avoid possible impacts from comet dust. Credit: NASA

The comet’s dust likely produced a meteor shower or meteor storm when particles from it crashed into the upper atmosphere, which “literally changed the chemistry,” added Jim Green, director of NASA’s planetary science division, in a recent discussion highlighted on an agency blog.

The agency says the dust created vaporized metals, which will eventually transform to dust or “meteoric smoke.” MAVEN (which stands for Mars Atmosphere and Volatile EvolutioN) will be monitoring the long-term effects. Possible results include high-altitude clouds or at the most extreme, maybe permanently altering what the chemistry of the atmosphere is. Not a bad thing for a mission to study shortly after it arrived at Mars.

You can view more science results from NASA’s studies of Siding Spring in this recent Universe Today story from Bob King, which talks in more detail about the meteor shower, new layers in the Mars atmosphere and the omnipresent dust.

Venus Express Spacecraft, Low On Fuel, Does Delicate Dance Above Doom Below

Artist's impression of Venus Express performing aerobreaking maneuvers in the planet's atmosphere in June and July 2014. Credit: ESA–C. Carreau

It’s been an interesting year for Venus Express. A few months ago, controllers deliberately dipped the spacecraft into the atmosphere of the planet — for science purposes, of course. The daring maneuver was approved because the spacecraft is near the end of its mission. It’s nearly out of fuel and will fall into Venus — sometime. Likely in 2015. No one knows exactly when, however.

Until Dec. 30, European Space Agency operators are going to boost the spacecraft’s orbit to try to get a little more productivity out of it. After that, all depends on what gas is left in the tank.

The push against the dense atmosphere revealed a few surprises. In a recent blog post, ESA said the atmosphere was changing more than expected. Between different altitudes, controllers sometimes saw a steady rise in pressure and sometimes multiple peaks. The spacecraft’s journeys took it as low as 129.2 kilometers (80 miles) above the surface, but mostly involving a month of “surfing” between 131 km and 135 km (81.4 miles and 83.9 miles).

Artist's conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau
Artist’s conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau

“One possible explanation is that we detected atmospheric waves,” stated Håkan Svedhem, Venus Express project scientist.

“These features can be caused when high speed winds travel over mountain ranges. The waves then propagate upwards. However, such waves have never before been detected at such heights – twice the altitude of the cloud deck that blankets Venus.”

ESA observed that the atmospheric density increased 1,000 times between 165 km and 130 km (102.5 miles and 80.8 miles) and that it also changed when the spacecraft moved from day to night (specifically, it was four times greater on the sunlit side.) Measurements were also taken of high-energy particles and Venus’ magnetic fields, which are still being examined.

False colour composite of a ‘glory’ seen on Venus on 24 July 2011. The image is composed of three images at ultraviolet, visible, and near-infrared wavelengths from the Venus Monitoring Camera. The images were taken 10 seconds apart and, due to the motion of the spacecraft, do not overlap perfectly. The glory is 1200 km across, as seen from the spacecraft, 6000 km away. Credit: ESA/MPS/DLR/IDA.
False colour composite of a ‘glory’ seen on Venus on 24 July 2011. The image is composed of three images at ultraviolet, visible, and near-infrared wavelengths from the Venus Monitoring Camera. The images were taken 10 seconds apart and, due to the motion of the spacecraft, do not overlap perfectly. The glory is 1200 km across, as seen from the spacecraft, 6000 km away. Credit: ESA/MPS/DLR/IDA.

But now, the end is indeed near for the spacecraft after eight years at Venus — four times longer than its primary mission. Although it is healthy and performing routine science operations, fuel is only standing at around 3 kilograms (6.6 pounds) and oxidizer at 5 kg (11 lbs). It’s possible not all of it is accessible due to propellant movement in the tanks, ESA said. The new maneuvers are expected to subtract 1.4 kg of fuel and 2 kg of oxidizer from these totals.

“Unfortunately, we do not know how much fuel remains in its tanks, but we are intending to continue the up-down process as long as possible, until the propellant runs out,” Svedhem added.

“We have yet to decide whether we shall simply continue until we lose control, allowing it to enter the atmosphere and burn up naturally, or whether we attempt a controlled descent until it breaks up.”

Source: European Space Agency (here and here)

How Do Astronauts Celebrate Thanksgiving On The Space Station?

The Expedition 28 crew on the International Space Station celebrates after a fresh food delivery in 2011. Credit: NASA

As Americans get ready for turkey feasts and other Thanksgiving goodies today, let’s take a few moments to think about the crew of six people on board the International Space Station. Two Americans, a European and three Russians are working there now and will be taking most of today (Nov. 26) off for the holiday.

What the heck will they eat? The NASA interview above provides some clues, including a surprise about leftovers. More details below the jump.

NASA, which is responsible for supplying the three astronauts using the American segment of the space station, generally allocates four pounds of food per crew member per day (including packaging), according to Vickie Kloeris, food system manager for the station. Astronauts can also bring a little bit of bonus food with them for special treats. The food isn’t sent up as meal plans, but as different kinds (meats, vegetables, and the like) that the astronauts can assemble at will.

“We don’t have a set-aside meal for Thanksgiving. but they do have all these products available to choose from,” Kloeris said in the interview. “Crew members do know that they’re going to be on orbit during the holidays, [so] they often put special items in their bonus containers with the holidays in mind.”

Kloreis said she couldn’t reveal what Expedition 42 has in its grab boxes, but in the past astronauts have brought up items such as cranberry sauce or icing/frosting to put on cookies in orbit.

Below you can see a recent tweet from former Canadian astronaut Chris Hadfield concerning a typical meal for astronauts, which he put up with a Thanksgiving reference. Whatever the crew is having up there, we wish them a Happy Thanksgiving!