A Comet’s Tale – Rosetta’s Philae, Five Days from Touchdown

Rosetta, the scientific mission to explore a comet's surface. "Ambition", a short Sci-Fi film, set in the near future, and Rosetta, the children's fable, to encourage the next generations to undertake on the great adventures still to come. (Photo Credits: ESA, Platige Image, ESA Communications)

In the recently released Rosetta short film called “Ambition”, the master begins a story to his apprentice – “Once upon a time.” The apprentice immediately objects to his triteness. But he promises that it is worth the slight tribulation. Who could have imagined ten years ago that Rosetta would become so successful in two such contrasting approaches to telling a tale.

The Rosetta mission is part franchise and part scientific mission. In five days, Rosetta will reach a crossroad, a point of no return as epic as moments in Harry Potter or Lord of the Rings. A small mindless little probe called Philae will be released on a one-way trip to the surface of a comet. Win or lose, Philae will live on in the tale of a comet and a mission to uncover the mysteries of our planet’s formation.

ESA did not promise a good mission as Aidan Gillen promises a good story in Ambition. A space mission is never put in terms of a promise but rather it is thousands of requirements and constraints that formulate a mission plan and a spacecraft design. The European Space Agency put 1 billion Euros ($1.3 billion) to work and did so in what now looks like one of the greatest space missions of the first century of space exploration.

The Rosetta mission is actually two missions in one. There is the comet chaser, the orbiter – Rosetta and then the lander Philae. The design of Rosetta’s objectives is some part, probably in large part, was conceived by dismissing the presence of Philae. Make a space probe to a comet that just orbits the small body. Select your scientific instrumentations accordingly. Now add a small lander to the mission profile that will do something extraordinary – what Rosetta cannot do with its instrumentation. Finally, make sure that Rosetta has everything needed to support Philae’s landing on a comet.

Here is what they have as the game plan on November 12th (the sequence of events begins while its still November 11th in the Americas). These two times are absolutely non- trivial. They are finely tuned to a timepiece called  67P/Churyumov–Gerasimenko. If calculations were made in error, then Philae’s ultimate fate is unknown. Start exactly on time and Philae will be given the best chance at making a successful  touchdown on the comet.

Separation of Philae from Rosetta:   09:03 GMT (10:03 CET)

Touchdown on the comet:                    16:02 GMT (17:02 CET).

During this time, comet  67P/Churyumov–Gerasimenko will complete over half a rotation on its axis. To be exact, it will rotate 56.2977% of a full rotation. Comet 67P will have its back turned towards Rosetta as it holds the diminutive Philae for the last time and releases Philae for the first and only time.

Now that the ESA, with help from the graphic artists from Platige Image from Poland, has released something entertaining for the science fiction minded among us, they have again released a next episode in their children’s fable of Rosetta and Philae (video below). This cartoon of the final moments of Rosetta and Philae together preparing for the descent which could well be the final moments of Philae.

Philae could fail, crack like an egg on a sharp rock or topple over a cliff or into a crevasse on the surface of 67P. What happens to Philae will make for a Grimm’s fairy tale ending or something we would all prefer. In either case, the ESA is using graphic arts and storytelling to inspire the next generations to join in what our JFK called “great adventures of all time” [ref].

Through a contest something NASA and JPL have used several times to involve the public, the ESA asked the public to come up with a name for the landing site, site J. Out of the thousands of entries, 150 people suggested the name Agilkia [ref]. Alexandre Brouste from France, the designated winner, has been invited to watch the landing activities at Rosetta’s mission control in Darmstadt, Germany. It follows from the Eqyptian theme of the mission’s two probes. “Rosetta” comes from the clay tablet discovered in the 1800s that led to the deciphering of Egyptian hieroglyphics. Philae” is a island on the Nile which held magnificent Eqyptian temples. With the operation  of the Aswan dam starting in 1902, the island of Philae was repeatedly flooded and the temple was at risk. UNESCO beginning in 1960 started a project to save the islands historic structures. They were all moved to a nearby Nile island called Agilkia [related U.T. article]. This becomes a part of the Rosetta story – a lander named Philae in reference to the obelisks used along with the Rosetta stone to decipher Eqyptian writings, departing its mother ship on a short but critical voyage to a final resting place, the landing site now called Agilkia.

Upon landing, a landing confirmation signal is expected from Philae via Rosetta at about 8:02 AM PST (11:02 AM EST, 17:02 Central European Time). Alexandre Brouste of France, the designated winner of the landing site naming contest will be in Darmstadt, Germany in mission control to watch the landing unfold with the Rosetta engineers and scientists. Surely, millions of citizens of the European Union and people worldwide will be watching via the World Wide Web.

The timeline and events to unfold as Philae, the lander is released from Rosetta, the comet orbiter. (Illustration Credit: ESA)
The timeline and events to unfold as Philae, the lander is released from Rosetta, the comet orbiter. (Illustration Credit: ESA)

Previous Rosetta and Philae articles at Universe Today

Rosetta’s Philae Lander: A Swiss Army Knife of Scientific Instruments

Why Watch ESA Rosetta’s Movie ‘Ambition’? Because We Want to Know What is Possible

Giant Water Bubble Engulfs Video Camera On Space Station, With Hilarious Results

Expedition 40 astronauts Reid Wiseman (left) and Alexander Gerst as viewed in a water bubble surrounding a video camera on the International Space Station. Credit: NASA/YouTube (screenshot)

What does the view look like from inside a water bubble? Earlier this year, astronauts on the International Space Station completely submersed a GoPro video recorder inside liquid and filmed the view — which is quite amusing.

Look below for some distorted views of then-Expedition 40 astronauts Reid Wiseman and Alexander Gerst … and an awesome 3-D video besides!

NASA’s goal in tasking the astronauts with this is to better understand how water behaves in space. (It’s actually quite a serious matter, as a lack of understanding of the physics was one factor leading to a dangerous water leak during a spacewalk in 2013.) In this case, the astronauts were looking at how surface tension works in microgravity.

As for that 3-D video, the agency says it is going to offer more of these from space as it gets people even closer to actually being there. Here’s a neat phenomenon: typically the higher radiation levels in space damage video cameras to the extent where they need to be replaced every 8-12 months.

A 3-D camera sent up in 2011, however, had virtually no dead pixels in the images, prompting NASA to investigate. Officials requested the camera come back to Earth on a Dragon splashdown in 2012. That’s when they discovered the way the 3-D camera is structured — with stereo images layered on top of each other — lessens the appearance of any damage.

But there’s also less damage in the first place, NASA said, because the 3-D camera doesn’t use charge-coupled imaging sensors that are susceptible to radiation. The newer system uses a metal-oxide semiconductor sensor, which doesn’t get hurt as badly. We guess that’s more argument for bringing 3-D images from the final frontier.

Source: NASA

Expedition 40 commander Steve Swanson (left) and Reid Wiseman view a water bubble surrounding a video camera on the International Space Station in summer 2014. Credit: NASA/YouTube (screenshot)
Expedition 40 commander Steve Swanson (left) and Reid Wiseman view a water bubble surrounding a video camera on the International Space Station in summer 2014. Credit: NASA/YouTube (screenshot)

Curiosity Rover Sees a Pixel’s-Worth of Comet Siding Spring

In this panoramic view taken by NASA's Curiosity Rover on October 19th shortly after local sunset (6:11 p.m.), Comet Siding Spring is the single bright pixel at far upper left. Click for a high resolution version. Credit: NASA/JPL-Caltech/Malin Space Science Systems/James Sorenson

When Comet Siding Spring skimmed just 84,500 miles from Mars last month, NASA’s Opportunity and Curiosity Rovers – along with several orbiting Mars spacecraft – readied their cameras to record the historic flyby. Opportunity’s photos revealed a small, fuzzy blob against the stars of Cetus the Whale, but most of us searched in vain to find any trace of the comet among the blizzard of noise in pictures snapped by Curiosity. Yet it may be there after all. 

In this before and after animation, you can see how much noise needed to be cleaned from one of the original photos to uncover the the comet. Credit: NASA/JPL-Caltech/Malin Space Science Systems/James Sorenson
In this before-and-after animation, you can see how much noise needed to be cleaned from the original photos to uncover the the comet. Credit:  NASA/JPL-Caltech/Malin Space Science Systems/James Sorenson

In this panoramic image at top, assembled and processed by James Sorenson to remove the pervasive noise in the original photos, we see with a twilit landscape just after sundown. Look closely in the upper left hand corner and you’ll see a speck of light. That’s it! Combined with positional information, Sorenson tentatively identified that pixel as Comet C/2013 A1 Siding Spring. OK, it’s not much to look at but may be our best candidate for the hoped-for photo from Curiosity.

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

Remember that conditions were far from ideal when the picture was taken. There was considerable dust and haze in the Martian atmosphere over Gale Crater. Dust effectively absorbs and also scatters light. The bright twilight sky only made the comet more difficult to discern. If you’ve ever struggled to see Mercury at dusk on a hazy summer evening, you’ll understand what our robot was up against.

This animation combines multiple images that were acquired by the HRSC camera on board Mars Express during the comet Siding Spring flyby on October 19, 2014. Click to animate Credit: ESA/DLR/FU Berlin
This single image is one of series that were acquired by the HRSC camera on board Mars Express during the comet Siding Spring flyby on October 19, 2014. Click to animate. Credit: ESA/DLR/FU Berlin

The European Space Agency’s Mars Express orbiter also chimed in with a recent set of comet images. As it flew by, Siding Spring was traveling at around 35 miles per second (56 km/sec) relative to Mars. Images were acquired at 17-second intervals at a resolution of 10.5 miles (17 km) per pixel. What do they show? The irregular shape might make you might think you’re seeing the actual shape of the comet’s nucleus. Unfortunately, that’s impossible because it’s less than a kilometer across and each pixel in the photo spans 17 km.  Instead, we’re seeing the combined light of the nucleus and extended coma, the surrounding cloud of gas and dust. Why the images are pure black and white with no grey tones is unclear.

Two photos of comet C/2013 A1 Siding Spring taken 37 minutes apart by the CRISM imager. The subtle coloration of the comet indicates the abundance of different molecules. Credit: NASA / JPL / JHUAPL
Two photos of comet C/2013 A1 Siding Spring taken 37 minutes apart by the CRISM imager when the comet was closest to Mars. The subtle colors seen are likely related to dust grain size or composition. The nucleus itself is not resolved. Credit: NASA/JPL/JHUAPL

Besides the the close-up photo taken with the HiRISE camera on NASA’s Mars Reconnaissance Orbiter, its Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) got busy photographing the dusty inner coma generated when sunlight warms and vaporizes dust-laden ice in the nucleus. The  scale of the left image is approximately 2.5 miles (4 km) per pixel; for the right image, it is about 3 miles (5 km) per pixel.

According to NASA, CRISM observed 107 different wavelengths of light in each pixel. Here, only three colors are shown. Researchers think the appearance of color variations in the inner coma could be due to the properties of the comet’s dust, possibly dust grain size or composition. More photos and results from all the spacecraft will appear in the weeks and months ahead as scientists continue their analyses.

Comet Siding Spring shows a condensed coma and a short, faint tail in this photo taken on November 5, 2014. Credit: Alfons Diepvens
Comet Siding Spring shows a condensed coma and hint of a tail in this photo taken on November 5, 2014. Credit: Alfons Diepvens

Comet Siding Spring has left Mars and its crew of robotic eyes behind as it crawls north into the constellation Serpens low in the southwest at dusk. Amateur astronomers are still keen to photograph it at every opportunity. Recent observations indicate a temporary re-brightening, though the comet remains a dim 11th magnitude object.

How Dust Lightens Up The ‘Dark Side’ Of Rosetta’s Comet

This "dark side" image of Comet 67P/Churyumov-Gerasimenko shows light backscattered from dust particles in the coma surrounding the comet, which helps scientists search for surface features. The picture was taken by the Rosetta spacecraft Sept. 29 from about 19 kilometers (12 miles). Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

How do you see a side of a comet that is usually shrouded in darkness? For the plucky scientists using the Rosetta spacecraft, the answer comes down to using dust to their advantage. They’re trying to catch a glimpse of the shadowed southern side using light scattering from dust particles in anticipation of watching the comet’s activity heat up next year.

Using Rosetta’s OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) instrument, scientists are diligently mapping Comet 67P/Churyumov-Gerasimenko’s surface features as it draws closer to the Sun. Funny enough, the shadowed side will be in full sunlight by the time the comet gets to its closest approach. This gives scientists more incentive to see what it looks like now.

The comet side is in shadow because its is not perpendicular to its orbital plane, the Max Planck Institute for Solar System Research stated. This means that areas of the comet can stay in shadow for months at a time. But using OSIRIS’ powerful receptors, scientists can get a few hints about what those surface features are, using dust scattering.

Playing with saturation levels in these images, scientists using the Rosetta's spacecraft imaging system are able to get more information about surface features in the image at right. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Playing with saturation levels in these images, scientists using the Rosetta’s spacecraft imaging system are able to get more information about surface features in the image at right. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“For a normal camera, this tiny bit of scattered light would not help very much”, stated OSIRIS team member Maurizio Pajola from the University of Padua in Italy. A normal camera has eight bits per pixel of information (256 shades of gray), while OSIRIS’ 16 bits allow it to distinguish between 65,000 shades. “In this way, OSIRIS can see black surfaces darker than coal together with white spots as bright as snow in the same image,” he added.

The scientists were not specific in a press release about what they are seeing so far, but they said that in May 2015 they expect to get a lot more data very quickly — once the area goes into full sunlight.

Rosetta, a mission of the European Space Agency, has been orbiting the comet since August. Next Wednesday it will release a lander, Philae, that will attempt to make the first soft landing on a comet’s surface.

Source: Max Planck Institute for Solar System Research

Mars Habitability? Curiosity Rover Spots Intriguing Mineral On Red Planet

A view from the Curiosity rover on Sol 794 (Oct. 31, 2014) from its outpost at the base of Mount Sharp (Aeolis Mons). Credit: NASA/JPL-Caltech

NASA’s Curiosity rover has struck hematite — an iron-oxide mineral often associated with water-soaked environments — in its first drill hole inside the huge Mount Sharp (Aeolis Mons) on Mars. While in this case oxidization is more important to its formation, the sample’s oxidization shows that the area had enough chemical energy to support microbes, NASA said.

Hematite is not a new discovery for Curiosity or Mars rovers generally, but what excites scientists is this confirms observations from the Mars Reconnaissance Orbiter that spotted hematite from orbit in the Pahrump Hills, the area that Curiosity is currently roving.

“This connects us with the mineral identifications from orbit, which can now help guide our investigations as we climb the slope and test hypotheses derived from the orbital mapping,” stated John Grotzinger, Curiosity project scientist  at the California Institute of Technology in Pasadena.

This is the latest in a series of finds for the rover related to habitability. In December 2013, scientists announced it found a zone (dubbed Yellowknife Bay) that was likely an ancient lakebed. But Yellowknife’s mineralogy eluded detection from orbit, likely due to dust covering the rocks.

Photo mosaic shows NASA’s Curiosity Mars rover in action reaching out to investigate rocks at a location called Yellowknife Bay on Sol 132, Dec 19, 2012 in search of first drilling target. The view is reminiscent of a dried up shoreline. Curiosity’s navigation camera captured the scene surrounding the rover with the arm deployed and the APXS and MAHLI science instruments on tool turret collecting microscopic imaging and X-ray spectroscopic data. The mosaic is colorized. See the full 360 degree panoramic and black & white versions below. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Photo mosaic shows NASA’s Curiosity Mars rover in action reaching out to investigate rocks at a location called Yellowknife Bay on Sol 132, Dec 19, 2012, in search of first drilling target. The view is reminiscent of a dried up shoreline. Curiosity’s navigation camera captured the scene surrounding the rover with the arm deployed and the APXS and MAHLI science instruments on tool turret collecting microscopic imaging and X-ray spectroscopic data. The mosaic is colorized. See the full 360 degree panoramic and black & white versions below. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Hematite is perhaps most closely associated with spherical rocks called  “blueberries” that the Opportunity rover discovered on Mars in 2004. While Opportunity’s discovery showed clear evidence of water, the new Curiosity find is more closely associated with oxidization, NASA said.

The new find, contained in a pinch of dust analyzed in Curiosity’s internal Chemistry and Mineralogy (CheMin) instrument, yielded 8% and 4% magnetite. The latter mineral is one way that hematite can be created, should magnetite be placed in “oxidizing conditions”, NASA stated. Previous samples en route to Mount Sharp had concentrations only as high as 1% hematite, but more magnetite. This shows more oxidization took place in this new sample, NASA stated.

Curiosity will likely stick around Pahrump Hills for at least weeks, perhaps months, until it climbs further up the mountain. Among Mount Sharp’s many layers is one that contains so much hematite (as predicted from orbit) that NASA calls it “Hematite Ridge.”

Source: NASA

Building A Space Base, Part 3: Making Remote Robots Smart

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA

We’re still a few years away from the cute robots in Moon or Interstellar that help their human explorers. But if we want to build a base off of Earth, robotic intelligence will be essential to lower the cost and pave the way for astronauts, argues Philip Metzger, a former senior research physicist at NASA’s Kennedy Space Center.

In the last of a three-part series on getting a base ready on the moon or an asteroid, Metzger talks about the steps to get robots ready for the work and what barriers are standing in the way of accomplishing this.

UT: A table in your 2012 paper talks about the steps of lunar industry, starting with tele-operation and an “insect-like” robotic intelligence and then progressing through a few steps to “closely supervised autonomy” (mouse-like) and eventually “nearly full autonomy” (monkey-like) and “autonomous robotics” (human-like). What sorts of developments and how much time/resources would it take to progress through these steps?

Most of the advances in robotic artificial intelligence are being made in software, but they also require advances in computing power. We mentioned in the paper that really only “mouse-like” robotics is needed for it to become successful in a near-Earth environment. We will need robots that can pick up a nut and screw it on a bolt without every motion being commanded from Earth. I believe we are on a trajectory to achieve these levels of autonomy already for robotics here on Earth.  I am more concerned about developing robots that can be made easily in space without an extensive supply chain. For example, we need to invent a simple way to manufacture functional motors for the robots, minimizing the assembly tasks for robots making the same motors that are in themselves.

It is very difficult to estimate how long this will take. Here are some guiding ideas. First, robotics and manufacturing technologies are already on an explosive growth curve for terrestrial application, so we can ride on the coattails of that growth as we re-purpose the technologies for space.  Second, we are not talking about inventing new capabilities. Everything we are talking about doing in space is already being done on Earth. All we need to do is discover what sets of equipment will function together as partial supply chains using space resources. We need to develop a sequence of partial supply chains, each more sophisticated than the last, each one capable of making a significant portion of the mass of the next. It will require innovation, but it is lower-risk innovation because we already have Earth’s more sophisticated industry to copy.

R2 and D2? NASA and General Motors have come together to develop the next generation dexterous humanoid robot. The robots – called Robonaut2 – were designed to use the same tools as humans, which allows them to work safely side-by-side humans on Earth and in space. Credit: NASA
R2 and D2? NASA and General Motors have come together to develop the next generation dexterous humanoid robot. The robots – called Robonaut2 – were designed to use the same tools as humans, which allows them to work safely side-by-side humans on Earth and in space. Credit: NASA

Third, we tend to estimate things will happen faster than they do in the near term, but slower than they do in the long term. Consider how much technology has changed in the past 200 years, and you will agree that it won’t take another 200 years to get this done. I think it will be much less than 100 years. I am betting it will be done within 50 years, and if we try hard we could do it in 20. In fact, if we really wanted to, and if we put up the money, I think we could do it in 10. But I’m telling people 20 to 50 years.  Don’t worry if you think that’s too slow, because the fun of doing it can start immediately, and we will be doing really cool things in space long before the supply chain is complete.

UT: Is it really cheaper and scientifically viable to have a robotic fleet of spacecraft than humans, given development costs and the difficulties of making the robots as efficient to do work as humans?

Biological life needs a place like planet Earth.  Humans need more than that; we also need a food chain, and in the final analysis we need an entire ecology of networked organisms interdependent on each other. And if we want to be more than hunters and gatherers, then civilization requires even more than that. We require the industrial supply chain: all the tools and machines and energy sources that we have developed over the past 10,000 years.

When we leave Earth, we need to take not just a canister of air to breath to replicate the physical conditions of our planet. We need the benefit of the entire ecosystem and the entire industrial base to support us. So far we have stayed close to Earth so we have never really “cut the surly bonds of Earth.” We take a consumable supply of food and spare parts from Earth with us, and we send up rockets to the space station when we need more. Even schemes to colonize Mars are depending on regular shipments of things from Earth. These are the things that make it expensive to put humans in space.

Robots, on the other hand, can be adapted to living in the space environment with nothing more from Earth. They can become the ecosphere and the supply chain in space that we humans require. Under our guidance, they can transform any environment analogously to how life has transformed the Earth. They can make air, purify water, and build the habitats and landing pads. Then, when we arrive, it will be vastly less expensive, and it will be safer, too.  And this will free us up to spend our time in space doing the things that make us uniquely human. In the long term, robots will make space vastly cheaper for humans.

Canada’s Dextre robot (highlight) and NASA’s Robotic Refueling Experiment jointly performed groundbreaking robotics research aboard the ISS in March 2012.  Dextre used its hands to grasp specialized work tools on the RRM for experiments to repair and refuel orbiting satellites. Credit: NASA
Canada’s Dextre robot (highlight) and NASA’s Robotic Refueling Experiment jointly performed groundbreaking robotics research aboard the ISS in March 2012. Dextre used its hands to grasp specialized work tools on the RRM for experiments to repair and refuel orbiting satellites. Credit: NASA

But yes, in the near-term there are things we can do more affordably in space by skipping development of robotic industry. We can shoot off sortie missions to various places, and when we are done we can zip back home before everyone dies. But that doesn’t fulfill our great potential as a species. It doesn’t take civilization to the next level. It doesn’t enable scientific research with a billion times the budget we have today. It doesn’t save our planet from overuse and industrial pollution. It doesn’t bring all humanity up to the standard of living many of us are enjoying in the west. It doesn’t make our existence safe in the galaxy.  It doesn’t terraform new worlds.  It doesn’t take us to other stars.  All these things will be possible for almost no additional investment once we pay the tiny cost of bootstrapping industry in our solar system.  It’s worth the cost.

UT: We’re seeing a 3-D printer going on the International Space Station, and the European Space Agency has seriously talked about using this technology on the Moon. How close are we to actually doing this?

I know of several other groups also developing 3D printers that could work on the Moon or Mars to print things directly out of regolith. The KSC Swamp Works is pursuing one technological approach and has built a prototype, and Professor Behrokh Khoshnevis at the University of Southern California is pursing another approach and has printed many things already. My friend Jason Dunn who founded Made In Space, which put the 3D printer into the ISS, has another concept they are pursuing. My friends at NASA have told me that this is healthy, having a portfolio of technologies to pursue rather than just one.

To be ready for missions in space you have to do more than test things in a lab. You need to do testing in reduced gravity aircraft to see if the materials like regolith will flow properly, in vacuum chambers to make sure nothing overheats or jams, and in rugged field locations like a desert or on a volcano to check for dust problems or other unexpected effects. After that, you are ready to start designing the actual version that is going into space, to do the final qualification testing where you shake it and bake it half to death, to assemble and test the flight version, and to launch it.

Deputy Program Manager Matthew Napoli examines a 3D printed piece at Marshall Space Flight Center. Image courtesy Made In Space.
Deputy Program Manager Matthew Napoli examines a 3D printed piece at Marshall Space Flight Center. Image courtesy Made In Space.

So there are years of work ahead before all that is done. NASA’s direction is to put humans on Mars by the mid-2030’s, so we also have time and there is no rush. If we start to bootstrap space industry in the near-Earth region of space in parallel with getting ready for a Mars campaign then we will probably start testing regolith printers at field sites and making them interoperable with other equipment sooner than NASA presently needs them.

UT: What are the main barriers to robotic exploration on the Moon and beyond?

Budget is the only barrier. But taking a step back we might say a lack of vision is the only barrier because if enough of us understand what is now possible in space and how revolutionary it will be for humanity then there will be no lack of budget.

UT: Is there anything else you would like to add that I haven’t brought up yet?

We live in a very exciting time when these possibilities are being opened to us. It is exciting to think about the world our grandchildren will see, and it is exciting to think of what we can do to bring it about.

Whenever I speak on this topic, afterward the young people in the audience come up and start asking what they can do to get involved in space industry. They tell me that this is how they want to spend their lives. It gets that response because it is so compelling, so logical, and so right.

This is the third in a three-part series about building a space base. Two days ago: Why mine on the moon or an asteroid? Yesterday: How much money would it take?

Satellite Debris Forces Space Station To Evade Threat Hours Before Collision Risk

The International Space Station as seen by the departing STS-134 crew on May 29, 2011. Credit: NASA

A spacecraft attached to the International Space Station did an “emergency maneuver” to push the complex, which now houses six people, away from a threatening piece of space debris Oct. 27, the European Space Agency said in a statement.

A hand-sized shard of the Russian Cosmos-2251 satellite, which collided with a U.S. Iridium satellite in 2009, would have come within at least four kilometers (2.5 miles) of the orbiting outpost. This was close enough for the space station partners to agree to a move six hours before the potential impact.

“This is the first time the station’s international partners have avoided space debris with such urgency,” the European Space Agency wrote. The push to a safer orbit took place using the agency’s automated transfer vehicle Georges Lemaître, which docked with the space station in August.

The International Space Station in October 2014, with the European automated transfer vehicle Georges Lemaître attached. Credit: Alexander Gerst/ESA/NASA
The International Space Station in October 2014, with the European automated transfer vehicle Georges Lemaître attached. Credit: Alexander Gerst/ESA/NASA

While many collision threats are spotted at least days before impact, occasionally ground networks aren’t able to see a piece until 24 hours or less before the potential impact. Since 2012, the space station has normally done last-minute maneuvers using Russian cargo Progress vehicles, but this time around none were docked there. This is where the ATV came in.

Controllers at the ATV control center in France then did a four-minute preprogrammed move that raised the station’s orbit by one kilometer (0.6 miles), enough to get out of the way.

The ATV is expected to remain at the station until February, when it will undock and burn up in the atmosphere. This is the last of the series of ATVs that Europe agreed to make as a part of its space station agreement.

Building A Space Base, Part 2: How Much Money Would It Take?

Artist's concept for a Lunar base. Credit: NASA

How much would it cost to establish a space base close to Earth, say on the Moon or an asteroid? To find out, Universe Today spoke with Philip Metzger, a former senior research physicist at NASA’s Kennedy Space Center, who has explored this subject extensively on his website and in published papers.

Yesterday, Metzger outlined the rationale for establishing a base in the first place, while today he focuses on the cost.

UT: Your 2012 paper specifically talks about how much development is needed on the Moon to make the industry “self-sustaining and expanding”, but left out the cost of getting the technology ready and of their ongoing operation. Why did you leave this assessment until later? How can we get a complete picture of the costs?

PM: As we stated at the start of the paper, our analysis was very crude and was intended only to garner interest in the topic so that others might join us in doing a more complete, more realistic analysis. The interest has grown faster than I expected, so maybe we will start to see these analyses happening now including cost estimates. Previous analyses talked about building entire factories and sending them into space. The main contribution of our initial paper was to point out that there is this bootstrapping strategy that has not been discussed previously, and we argued that it makes more sense. It will result in a much smaller mass of hardware launched into space, and it will allow us to get started right away so that we can figure out how to make the equipment work as we go along.

Moonbase rover concept - could be used for long-term missions (NASA)
Moonbase rover concept – could be used for long-term missions (NASA)

Trying to design up front everything in a supply chain for space is impossible. Even if we got the budget for it and gave it a try, we would discover that it wouldn’t work when we sent it into the extraterrestrial environments.  There are too many things that could go wrong.  Evolving it in stages will allow us to work out the bugs as we develop it in stages. So the paper was arguing for the community to take a look into this new strategy for space industry.

Now, having said that, I can still give you a very crude cost estimate if you want one. Our model shows a total of about 41 tons of hardware being launched to the Moon, but that results in 100,000 tons of hardware when we include what was made there along the way. If 41 tons turns out to be correct, then let’s take 41% of the cost of the International Space Station as a crude estimate, because that has a mass of 100 tons and we can roughly estimate that a ton of space hardware costs about the same in every program. Then let’s multiply by four because it takes four tons of mass launched to low Earth orbit to land one ton on the Moon.

That may be an over-estimate, because the biggest cost of the International Space Station was the labor to design, build, assemble, and test before launch, including the cost of operating the space shuttle fleet. But the hardware for space industry includes many copies of the same parts so design costs should be lower, and since human lives will not be at stake they don’t need to be as reliable. As discussed in the paper, the launch costs will also be much reduced with the new launch systems coming on line.

The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA
The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA

Furthermore, the cost can be divided by 3.5 according to the crude modeling, because 41 tons is needed only if the industry is making copies of itself as fast as it can. If we slow it down to making just one copy of the industry along the way as it is evolving, then only 12 tons of hardware needs to be sent to the Moon. Now that gives us an estimate of the total cost over the entire bootstrapping period, so if we take 20 or 30 or 40 years to accomplish it, then divide by that amount to get the annual cost. You end up with a number that is a minority fraction of NASA’s annual budget, and a miniscule fraction of the total U.S. federal budget, and even tinier fraction of the US gross domestic product, and an utterly insignificant cost per human being in the developed nations of the Earth.

Even if we are off by a factor of 10 or more, it is something we can afford to start doing today. And this doesn’t account for the economic payback we will be getting while starting space industry. There will be intermediate ways to get a payback, such as refueling communications satellites and enabling new scientific activities. The entire cost needn’t be carried by taxpayers, either. It can be funded in part by commercial interests, and in part by students and others taking part in robotics contests.  Perhaps we can arrange shares of ownership in space industry for people who volunteer time developing technologies and doing other tasks like teleoperating robots on the Moon. Call that “telepioneering.”

Perhaps most importantly, the technologies we will be developing – advanced robotics and manufacturing – are the same things we want to be developing here on Earth for the sake of our economy, anyway. So it is a no-brainer to do this! There are also intangible benefits: giving students enthusiasm to excel in their education, focusing the efforts of the maker community to contribute tangibly to our technological and economic growth, and renewing the zeitgeist of our culture.  Civilizations fall when they become old and tired, when their enthusiasm is spent and they stop believing in the inherent value of what they do. Do we want a positive, enthusiastic world working together for the greater good? Here it is.

The Japanese Kibo robotic arm on the International Space Station deploys CubeSats during February 2014. The arm was holding a Small Satellite Orbital Deployer to send out the small satellites during Expedition 38. Credit: NASA
The Japanese Kibo robotic arm on the International Space Station deploys CubeSats during February 2014. The arm was holding a Small Satellite Orbital Deployer to send out the small satellites during Expedition 38. Credit: NASA

UT: We now have smaller computers and the ability to launch CubeSats or smaller accompanying satellites on rocket launches, something that wasn’t available a few decades ago. Does this reduce the costs of sending materials to the Moon for the purposes of what we want to do there?

Most of the papers about starting the space industry are from the 1980’s and 1990’s because that is when most of the investigations were performed, and there hasn’t been funding to continue their work in recent decades.  Indeed, changes in technology since then have been game-changing! Back then some studies were saying that a colony would need to support 10,000 humans in space to do manufacturing tasks before it could make a profit and become economically self-sustaining. Now because of the growth of robotics we think we can do it with zero humans, which drastically cuts the cost.

The most complete study of space industry was the 1980 Summer Study at the Ames Research Center. They were the first to discuss the vision of having space industry fully robotic.  They estimated mining robots would need to be made with several tons of mass. More recently, we have actually built lunar mining robots at the Swamp Works at the Kennedy Space Center and they are about one tenth of a ton, each. So we have demonstrated a mass reduction of more than 10 times.

But this added sophistication will be harder to manufacture on the Moon. Early generations will not be able to make the lightweight metal alloys or the electronics packages.  That will require a more complex supply chain. The early generations of space industry should not aim to make things better; they should aim to make things easier to make. “Appropriate Technology” will be the goal. As the supply chain evolves, eventually it will reach toward the sophistication of Earth. Still, as long as the supply chain is incomplete and we are sending things from Earth, we will be sending the lightest and most sophisticated things we can to be combined with the crude things made in space, and so the advances we’ve made since the 1980’s will indeed reduce the bootstrapping cost.

This is the second in a three-part series about building a space base. Yesterday: Why mine on the moon or an asteroid? Tomorrow: Making remote robots smart.

Comet Landing Countdown: Why ‘Agilkia’ Is The New Name For Philae Touchdown Site

Philae's landing site, dubbed Agilkia, as seen by the Rosetta spacecraft on Oct. 30, 2014. The spacecraft was 26.8 km (16.7 miles) from the comet's center when the picture was taken. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

After sifting through 8,000 entries in multiple languages — even in Esperanto! — the contest to name Philae’s landing site on Comet 67P/Churyumov–Gerasimenko has resulted in an Egyptian-themed name.

The European Space Agency lander will touch down on the comet on a site dubbed “Agilkia”, which is named after an Egyptian island that hosts the Temple of Isis and other buildings that previously were on the island Philae. The buildings were moved due to the Aswan dams flooding Philae in the past century.

Agilkia, which was voted for by more than 150 people, fits in perfectly with ESA’s decision to informally name features on the comet after Egyptian names. Mission planners for the Rosetta orbiter and its lander, Philae, previously dubbed the site “J” before the landing contest was announced.

NAVCAM image of the comet on 21 September, which includes a view of primary landing site J. Click for more details and link to context image. (Credits: ESA/Rosetta/NAVCAM)
NAVCAM image of the comet on 21 September, which includes a view of primary landing site J. Click for more details and link to context image. (Credits: ESA/Rosetta/NAVCAM)

“The decision was very tough,” stated steering committee chair Felix Huber, who is with the DLR German Aerospace Center. “We received so many good suggestions on how to name Site J, and we were delighted with such an enthusiastic response from all over the world. We wish to thank all participants for sharing their great ideas with us.”

Alexandre Brouste from France was voted the overall winner and will be invited to follow the Nov. 12 landing live at ESA’s Space Operations Control Centre in Darmstadt, Germany. The landing is expected to take place around 12 p.m. Eastern (4 p.m. UTC), and you can follow the livestream here.

For more details on how Philae will sail to the surface, check out this past Universe Today story.

Source: European Space Agency

Titanic Liquid: Blinding ‘Sunglint’ Shines On Saturn’s Swampy Moon

In this near-infrared mosaic, the sun shines off of the seas on Saturn's moon, Titan. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

See that yellow smudge in the image above? That’s what the Sun looks like reflecting off the seas of Titan, that moon of Saturn that excites astrobiologists because its chemistry resembles what early Earth could have looked like. This image represents the first time this “sunglint” and Titan’s northern polar seas have been captured in one mosaic, NASA said.

What’s more, if you look closely at the sea surrounding the sunlight, you can see what scientists dub a “bathtub ring.” Besides looking pretty, this image from the Cassini spacecraft shows the huge sea (called Kraken Mare) was actually larger at some point in Titan’s past.

“The southern portion of Kraken Mare … displays a ‘bathtub ring’ — a bright margin of evaporate deposits — which indicates that the sea was larger at some point in the past and has become smaller due to evaporation,” NASA stated. “The deposits are material left behind after the methane and ethane liquid evaporates, somewhat akin to the saline crust on a salt flat.”

In this near-infrared global mosaic of Titan, sunglint and the moon's polar seas are visible above the shadow. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho
In this near-infrared global mosaic of Titan, sunglint and the moon’s polar seas are visible above the shadow. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

The sunlight was so bright that it saturated the detector on Cassini that viewed it, called the Visual and Infrared Mapping Spectrometer (VIMS) instrument. The sun was about 40 degrees above the horizon of Kraken Mare then, which is the highest ever observed on Titan.

The T-106 flyby Oct. 23 was the second-to-last closeup view Cassini will have of Titan this year. The spacecraft has been circling Saturn’s system for more than 10 years, and is now watching Titan (and Saturn’s) northern hemisphere enter summer.

Titan is covered in a thick, orangey atmosphere that hid its surface from scientists the first time a spacecraft zoomed by it in the 1980s. Subsequent exploration (most especially by Cassini and a short-lived lander called Huygens) have revealed dunes on and near the equator and at higher altitudes, lakes of methane and ethane.

Source: Jet Propulsion Laboratory