Building A Space Base, Part 1: Why Mine On The Moon Or An Asteroid?

Building a lunar base might be easier if astronauts could harvest local materials for the construction, and life support in general. Credit: NASA/Pat Rawlings

So can we get off of Earth already and start building bases on the Moon or an asteroid? As highlighted in a recent Office of Science and Technology Policy blog post, one way to do that quickly could be to use resources on site. But how do we even get started? Can we afford to do it now, in this tough economic climate?

Universe Today spoke with Philip Metzger, a former senior research physicist at NASA’s Kennedy Space Center, who has explored this subject extensively on his website and in published papers. He argues that to do space this way would be similar to how the pilgrims explored North America. In the first of a three-part series, he outlines the rationale and the first steps to making it there.

UT: It’s been said that using resources on the Moon, Mars or asteroids will be cheaper than transporting everything from Earth. At the same time, there are inherent startup costs in terms of developing technology to do this extraction and also sending this equipment over there, among other things. How do we reconcile these two realities?

PM: Space industry will have a tremendous payback, but it will be costly to start. Several years ago I was frustrated because I didn’t think that commercial interests alone would be enough to get it fully started within our generation, so I asked the question, can we find an inexpensive way for the governments of the world (or philanthropists or others who may not have an immediate commercial interest) to get it started simply because of the societal benefits it will bring? That’s why my colleagues and I wrote the paper “Affordable Rapid Bootstrapping of Space Industry and Solar System Civilization.”

We are advocating a bootstrapping approach because it helps solve the problem of the high startup cost and it enables humanity to start reaping the benefits quickly, since we need them quickly. A bootstrapping approach works like this: instead of building all the hardware on Earth and sending it into space ready to start manufacturing things, we can send a reduced set of hardware into space and make only a little bit of what we need. We can send the rest of the manufactured parts from Earth and combine them with what we made in space. Over time we keep doing this until we evolve up to a full manufacturing capability in space.

On a clear day, astronauts aboard the ISS can see over 1,000 miles from Havana to Washington D.C. Image Credit: Chris Hadfield / NASA
On a clear day, astronauts aboard the ISS can see over 1,000 miles from Havana to Washington D.C. Image Credit: Chris Hadfield / NASA

This is how colonies on Earth built themselves up until eventually they were able to match the industry of their homelands. The pilgrims, for example, didn’t bring entire factories from Europe over on the Mayflower.  Now it took hundreds of years to build up American industry, but with robotics and advanced manufacturing and with some intentionality we can get it done much more quickly at still an affordable price. We have done some rudimentary modeling of this bootstrapping approach and it looks as though it would be a small part of our annual space budget and it could establish the industry within just decades.

What I think is even more important than the cost is that with a bootstrapping approach we can get started right away. We don’t need to complete the entire design and development up front. It also spreads the cost over time so the annual expenses are very low. And it allows us time to evolve our strategy, to figure out what works and what will have more immediate economic payback, as we go along. Many people are looking for the immediate ways to get a payback in space, and there are some great ideas and I am sure they will be successful. One example is to set up a mining operation that refuels communication satellites in geosynchronous orbit. These sorts of activities will contribute to, and will benefit from, the effort to start industry in space, and they will generate revenue to fund their portion of the effort.

UT: Why do you feel the Moon is a good spot to start operations? What would be some activities to start with there? How do we move from there into the rest of the solar system?

When my colleagues and I wrote the paper, we were focused on the Moon in part because that was during NASA’s Constellation program to establish a lunar outpost.  However, it is equally possible to use near-Earth asteroids to start this space industry, or to use both.  In any case, we need to start space industry close to the Earth. That will keep transportation costs low during the startup. It also enables us to work with much shorter time delay in the radio communications, which is important in the early stages before robotics become sufficiently automated. Ideally the industry will be fully automated; we want robots to prepare the way for humans to follow.

The cancelled Constellation Program.  Credit: NASA
The cancelled Constellation Program. Credit: NASA

However, if we think we will need humans during initial start-up of the industry – for example, to fix or troubleshoot broken hardware, or to do complex tasks that robots can’t yet do – then starting near Earth becomes even more important.  It turns out that both the Moon and asteroids are excellent places to start industry. We now know that they have abundant water, minerals from which metals can be refined, carbon for making plastics, and so on. I am glad there are companies planning to develop mining in both locations so we can see what works best.

Another reason to start industry close to Earth is so it can have an early economic payback. In the end, when everything including spaceships and refueling depots are made in space by autonomous robotics, then industry becomes self-sustaining and it will pay us back inestimably for no further cost. Getting to that point requires some serious investment, though, and it will be easier to make the investments if we are getting something back. So what kinds of payback can it give us in the near-term? I keep a list of ideas how to make money in space, and there are about 19 items on the list, some crazy and some not so crazy. A few of the serious ideas include: space tourism; making and selling propellants to NASA for exploration and science missions; returning metals like platinum for sale on Earth; and manufacturing spare parts for other activities in space.

Artist's rendition of a Moon Base. Credit: John Spencer/Space Tourism Society.
Artist’s rendition of a Moon Base. Credit: John Spencer/Space Tourism Society.

Some of the initial things we will do on the Moon or asteroids includes perfecting the low-gravity mining techniques, learning how to make solar cells out of regolith, and learning how to extract useful metals from minerals that would not be considered “ore” here on Earth. All of these are possible and require only modest investment to make them work.

It will take decades of effort to make space industry self-sustaining. Maybe 2 decades if we get started right away and work steadily, or maybe 5 decades if we have a lower level of funding.  But if robotics advance as fast as the roboticists are expecting, soon there will be no manufacturing task a robot cannot do. When that day arrives, and we have set up a complete supply chain in space, then it will be an easy thing to send sets of hardware to the main asteroid belt to begin mining and manufacturing where there are billions of times the resources more than what we have on Earth.

Then, the industry could build landing craft to take equipment to the surface of Mars where it can build cities and eventually even terraform the planet. When we have machines that can use local resources to perform work and build copies of themselves, then they can perform the same role on dry worlds that biological life has performed here on our wet Earth. They can transform the environment and become the food chain so those worlds will be places where humanity can work and live. I realize this sounds too ambitious, but 20 to 50 years of technology growth is going to make a huge difference, and we are only talking about manufacturing – not rocket science —  and that is something that we are already quite good at here on Earth. With just a little extrapolation into the future it is not a crazy idea.

Artist concept of a Moon base. Credit: NASA/Pat Rawlings.
Artist concept of a Moon base. Credit: NASA/Pat Rawlings.

UT: What are the main pieces of equipment and robotics that we need up there to accomplish these objectives?

PM: There is an interesting open source project developing what they call the “Global Village Construction Set.” It is 50 machines that will be capable of restarting civilization. It includes things like a windmill, a backhoe, and a 3D printer. What we need is the equivalent “Lunar/Asteroid Village Construction Set.”

A study was done by NASA in 1980 to determine what set of machines are needed in factories on the Moon to build 80% of their own parts. The other 20% would need to be supplied constantly from Earth. In our paper we argued that we can start at much less than 80% closure, making it more affordable and allowing us to start today, but the system should evolve until it reaches 100% closure. So the first set of hardware might make crude solar cells, metal, 3D printed metal parts, and rocket propellants.

Having just that will allow us to make a significant mass of the next generation of hardware as well as support the transportation network.  Over time, we want to develop an entire supply chain which would be more extensive than just 50 different types of machines. But before we put anything in space we will want to test them in rugged locations here on Earth, and in the process we will discover what set of machines makes the most sense for the first generation. The idea is to learn as we go, so we can get started right away.

This is the first in a three-part series about building a space base. Tomorrow: How much money would it take? Day after tomorrow: Making remote robots smart.

Why Watch ESA Rosetta’s Movie ‘Ambition’? Because We Want to Know What is Possible

Ambition is a collaboration between Platige Image and ESA. Shot on location in Iceland, it is directed by Tomek Bagi?ski and stars Aiden Gillen and Aisling Franciosi. Does Ambition accomplish more in 7 minutes than Gravity did in 90? Consider the abstraction of the Rosetta mission in light of NASA’s ambitions. (Credit: ESA, Illustration- TRR)

NASA has taken on space missions that have taken years to reach their destination; they have more than a dozen ongoing missions throughout the Solar System and have been to comets as well. So why pay any attention to the European Space Agency’s comet mission Rosetta and their new short film, “Ambition”?

‘Ambition’ might accomplish more in 7 minutes than ‘Gravity’ did in 90.

‘Ambition’ is a 7 minute movie created for ESA and Rosetta, shot on location in Iceland, directed by Oscar-winning Tomek Baginski, and stars Aidan Gillen—Littlefinger of ‘Game of Thrones.’ It is an abstraction of the near future where humans have become demigods. An apprentice is working to merge her understanding of existence with her powers to create. And her master steps in to assure she is truly ready to take the next step.

In the reality of today, we struggle to find grounding for the quest and discoveries that make up our lives on a daily basis. Yet, as the Ebola outbreak or the Middle East crisis reminds us, we are far from breaking away. Such events are like the opening scene of ‘Ambition’ when the apprentice’s work explodes in her face.

The ancient Greeks also took great leaps beyond all the surrounding cultures. They imagined themselves as capable of being demigods. Achilles and Heracles were born from their contact with the gods but they remained fallible and mortal.

The Comet Rendezvous and Flyby Mission conceived in one of two Mariner Mark II spacecraft was abandoned by the US Congress. The American led mission would have accomplished the objectives now being completed by the European Rosetta mission. (Photo Credit: NASA)
The Comet Rendezvous and Flyby Mission conceived in one of two Mariner Mark II spacecraft was abandoned by the US Congress. The American led mission would have accomplished the objectives now being completed by the European Rosetta mission. (Photo Credit: NASA)

But consider the abstraction of the Rosetta mission in light of NASA’s ambitions. As an American viewing the European short film, it reminds me that we are not unlike the ancient Greeks. We have seen the heights of our powers and ability to repel and conquer our enemies, and enrich our country. But we stand manifold vulnerable.

In ‘Ambition’ and Rosetta, America can see our European cousins stepping ahead of us. The reality of the Rosetta mission is that a generation ago – 25 years — we had a mission as ambitious called Comet Rendezvous Asteroid Flyby (CRAF). From the minds within NASA and JPL, twin missions were born. They were of the Mariner Mark II spacecraft design for deep space. One was to Saturn and the other  – CRAF was to a comet. CRAF was rejected by congress and became an accepted sacrifice by NASA in order to save its twin, the Cassini mission.

The short film ‘Ambition’ and the Rosetta mission is a reminder of what American ambition accomplished in the 60’s – Apollo, and the 70s – the Viking Landers, but then it began to falter in the 80s. The ambition of the Europeans did not lose site of the importance of comets. They are perhaps the ultimate Rosetta stones of our star system. They are unmitigated remnants of what created our planet billions of years ago unlike the asteroids that remained close to the Sun and were altered by its heat and many collisions.

Artist Illustration of the Cassini space probe to Saturn and Titan, a joint NASA, ESA mission. Cassini was the only Mariner Mark II spacecraft completed. (Photo Credit: NASA)
Artist Illustration of the Cassini space probe to Saturn and Titan, a joint NASA, ESA mission. Cassini was the only Mariner Mark II spacecraft completed. (Photo Credit: NASA)

Our cousins picked up a scepter that we dropped and we should take notice that the best that Europe spawned in the last century  – the abstract art of Picasso and Stravinsky, rocketry, and jet travel — remains alive today. Europe had the vision to continue a quest to something quite abstract, a comet, while we chose something bigger and more self-evident, Saturn and Titan.

‘Ambition’ shows us the forces at work in and around ESA. They blend the arts with the sciences to bend our minds and force us to imagine what next and why. There have been American epoch films that bend our minds, but yet sometimes it seems we hold back our innate drive to discover and venture out.

NASA recently created a 7 minute film of a harsh reality, the challenge of landing safely on Mars. ESA and Rosetta’s short film reminds us that we are not alone in the quest for knowledge and discovery, both of which set the stage for new growth and invention. America needs to take heed so that we do not wait until we reach the moment when an arrow pierces our heel as with Achilles and we succumb to our challengers.

References:

Rosetta: The Ambition to turn Science Fiction into Science Fact

SpaceX Dragon Departs Space Station after Delivering Slew of Science and Returns with Ocean Splashdown

A space-weathered @SpaceX #Dragon looking great moments before release today. Credit: NASA/Reid Wiseman

Concluding a busy five week mission, the SpaceX Dragon CRS-4 commercial cargo ship departed the International Space Station (ISS) this morning, Oct. 25, after delivering a slew of some 2.5 tons of ground breaking science experiments and critical supplies that also inaugurated a new era in Earth science at the massive orbiting outpost following installation of the ISS-RapidScat payload.

Dragon was released from the snares of the station’s robotic arm at 9: 57 a.m. EDT while soaring some 250 mi (400 km) over the northwest coast of Australia.

It returned safely to Earth with a splashdown in the Pacific Ocean some six hours later, capping the fourth of SpaceX’s twelve contracted station resupply missions for NASA through 2016.

“The Dragon is free!” exclaimed NASA commentator Rob Navias during a live broadcast on NASA TV following the ungrappling this morning. “The release was very clean.”

Dragon released from snares of ISS robotic arm on Oct. 25, 2014 for return to Earth.  Credit: NASA
Dragon released from snares of ISS robotic arm on Oct. 25, 2014, for return to Earth. Credit: NASA

The private resupply ship was loaded for return to Earth with more than 3,276 pounds of NASA cargo and science samples from the station crew’s investigations on “human research, biology and biotechnology studies, physical science investigations, and education activities sponsored by NASA and the Center for the Advancement of Science in Space, the nonprofit organization responsible for managing research aboard the U.S. national laboratory portion of the space station,” said NASA.

The release set up a quick series of three burns by the ship’s Draco thrusters designed to carry Dragon safely away from the station.

NASA astronauts Reid Wiseman and Butch Wilmore quickly retracted the arm working from their robotics workstation in the domed Cupola module.

“Thanks for the help down there,” the astronauts radioed. “It was a great day.”

Dragon moves away from ISS on Oct. 25, 2014 for return to Earth.  Credit: NASA  TV
Dragon moves away from ISS on Oct. 25, 2014, for return to Earth. Credit: NASA TV

The first burn took place a minute later at about 9:58 a.m. EDT and the second at about 10:00 a.m. A yaw maneuver at 10:05 a.m. set up the orientation required for the third burn at about 10:08 a.m.

Dragon moved away quickly during the nighttime release and was already outside the Keep Out Sphere (KOS), an imaginary bubble surrounding the station at a distance of 200 m. It disappeared quickly in the dark and was barely visible within minutes.

“The propulsion systems are in good shape,” said Navias. “All systems on Dragon are functioning perfectly.”

With Dragon safely gone following the trio of burns, the next major event was the deorbit burn at 2:43 p.m. EDT at a distance of about 90 statute miles from the station.

Dragon slipped out of orbit. After surviving the scorching heat of reentry through the Earth’s atmosphere, the ship sequentially deployed its drogue chutes and three main parachutes at about 3:30 p.m.

Splashdown in the Pacific Ocean occurred as expected at about 3:39 p.m., approximately 265 miles west of the Baja peninsula.

Dragon is the only vehicle that can return intact from the ISS with a substantial load of cargo and is carrying critical science samples for distribution to researchers.

Today’s Dragon departure starts a week of heavy traffic of comings and goings to the ISS involving a series of US and Russian unmanned cargo ships.

SpaceX Dragon captures view of ISS after departure on Oct. 25, 2014 for return to Earth.  Credit: NASA  TV
SpaceX Dragon captures view of ISS after departure on Oct. 25, 2014, for return to Earth. Credit: NASA TV

The Orbital Sciences Antares rocket with the commercial Cygnus cargo freighter is set to launch on Monday, Oct. 27, from NASA Wallops, VA. It will dock at the ISS on Nov. 2 at the Earth-facing port on the Harmony module just vacated by Dragon.

Russia’s Progress 56 unmanned cargo ship will also undock on Oct. 27. And Progress 57 will launch from Baikonur on Wednesday, Oct 29.

The SpaceX Dragon CRS-4 cargo resupply mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

Dragon was successfully berthed at the Harmony module on Sept. 23, 2014.

Among the nearly 5000 pounds of cargo hauled up by Dragon was as an Earth observation platform named ISS-RapidScat loaded in the unpressurized trunk section.

Also loaded aboard were a slew of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

It also carried the first 3-D printer to space for the first such space based studies ever attempted by the astronaut crews. The printer will remain at the station for at least the next two years.

20 mice housed in a special rodent habitat were also aboard, as well as fruit flies.

The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module.  It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.
ISS-RapidScat instrument, shown in this artist’s rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014, and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

The successful installation and activation of the ISS-RapidScat science instrument on the exterior of Europe’s Columbus module in late September and early October inaugurated a new era in space station science.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.

The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40  awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 with Dragon spaceship erect at Cape Canaveral launch pad 40 awaiting launch on Sept. 21, 2014, on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

“This mission enabled research critical to achieving NASA’s goal of long-duration human spaceflight in deep space,” said Sam Scimemi, director of the International Space Station division at NASA Headquarters.

“The delivery of the ISS RapidScatterometer advances our understanding of Earth science, and the 3-D printer will enable a critical technology demonstration. Investigations in the returned cargo could aid in the development of more efficient solar cells and semiconductor-based electronics, the development of plants better suited for space, and improvements in sustainable agriculture.”

The next SpacX cargo Dragon on the CRS-5 mission is slated for launch no earlier then Dec. 9.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

Google Exec Hands Silicon Valley the Stratospheric Jump Record

Google’s Vice President of Search, Alan Eustace, has just smashed the altitude record for stratospheric skydiving. His liftoff was from Roswell, New Mexico is where the record was first set in 1960 by USAF Colonel Joseph Kittinger. (Credit: Paragon Space Development Corporation)

Just a little over two years since Felix Baumgartner broke USAF Colonel Joseph Kittinger’s stratospheric jump record, Alan Eustace from Google has independently smashed the high altitude skydiving record again. This brings home to Silicon Valley a record that might stand for a while. Eustace took a minimalist approach to the jump. His setup involved a helium filled balloon and just him hanging from the balloon in a spacesuit. Pure and simple, this permitted his system to reach 135,890 feet above the Earth, over 41 kilometers altitude, exceeding Baumgartner’s record by 7000 feet.

The simple design of his balloon launch might remind one of a bungy jump. This one maxed out at 822 mph and created a sonic boom. How can anyone break his record now? Can someone rise to a higher altitude? What is next for the Google high flyers? Will Baumgartner take this as a challenge to retake the record?

Balloon preparations for Alan Eustace's record flight at the Roswell airport in the early morning hours of Ocotber 24, 2014. (Credit: Paragon Space Development Corporation)
Balloon preparations for Alan Eustace’s record flight at the Roswell airport in the early morning hours of October 24, 2014. (Credit: Paragon Space Development Corporation)

The 57 year old Alan Eustace is a Senior Vice President at Google in its Knowledge department. He is a licensed pilot but not known for undertaking extraordinary feats of daredevil. Eustace grew up in Florida and recalls that his childhood was filled with trips to Cape Canaveral for NASA launches. Not a spur of the moment undertaking, Eustace had dreamt of accomplishing this feat and record for some time.

This is the third successful balloon skydiving jump from over 100,000 feet. All three have been accomplished from Roswell, New Mexico. Kittinger’s was in 1961, Baumgartner in 2012, and now Eustace in 2014. A fourth jump was undertaken in 1966 from a height of 123,000 feet but ended in failure and the death of the skydiver, Nicholas Piantanida.

The trip to the upper heights of the atmosphere took two hours. All this time he was forced to hang very still to avoid over-heating. His spacesuit had minimal ability to cool his body during the ascent. While the stratosphere reaches temperatures of 100 below zero, the atmosphere is exceedingly thin and body heat has no way to radiate away.

Eustace as he appeared in the first moments of his ascent. He maintained this posture throughout the 2 hour flight. (Credit: Paragon Space Development Corporation)
Eustace as he appeared in the first moments of his ascent. He maintained this posture throughout the 2 hour flight. (Credit: Paragon Space Development Corporation)

Without a capsule like Baumgartner and Kittinger before him, he relied solely on a spacesuit custom built by Paragon Space Development Corporation, a designer of life support devices. The simple design exceeded Baumgartner by over 7000 feet, nearly a mile and a half more. Eustace’s new record is approaching the maximum that has ever been achieved by any lighter than air craft, manned or unmanned.

The unmanned high altitude record for balloon flight was set in 2002 from Sanriku Balloon Center at Ofunato City, Iwate in Japan. This record stands at 173,900 feet. So there is plenty of room for record breaking but it will require pushing the limits of technology. In this day and age, there are many keen to push technological limits.

Alan Eustace now joins Google execs in high profile flight. H211 L.L.C. operates a Dornier Alpha Jet, owned and used by Mr. Page, Mr. Brin and the chief executive, Eric Schmidt, since 2007. The Alpha Jet is seen being taxiied on the Moffett field runway in Mountain View, CA. Insets show an Alpha in flight and Hangar One (a former Dirigble hangar from the 1930s) which H211 is planning to refurbish for NASA and to house their fleet of jets including the Alpha. (Credit: U.T./TRR)
Alan Eustace now joins Google execs in high profile flight. H211 L.L.C. operates a Dornier Alpha Jet, owned and used by Mr. Page, Mr. Brin, and the chief executive, Eric Schmidt, since 2007. The Alpha Jet is seen taxiing on the Moffett field tarmac in Mountain View, CA. Insets show an Alpha in flight and Hangar One (a former Dirigible hangar from the 1930s) which H211 is planning to refurbish for NASA and to house their fleet of jets including the Alpha. (Credit: U.T./TRR)

Google execs are no strangers to high flying. At Moffett Field in Mountain View, California, just a couple of miles from executive headquarters of Google, a small group of executives utilize a German made Dornier Alpha jet. Collaboratively with NASA Ames, the jet is flown by the execs and other experienced pilots to study the upper atmosphere and quite possibly to take in the views around the San Francisco bay area. They are often seen making touch n’ go’s at Moffett to maintain skills and certification. Google, the corporation, clearly showed its interest in space applications with the purchase of Skybox, a microsatellite builder, in June of this year for a reported $500 million.

Reference:

Paragon StratEx Team

Making Cubesats do Astronomy

Will cubesats develop a new technological branch of astronomy? Goddard engineers are taking the necessary steps to make cubesat sized telescopes a reality. (Credit: NASA, UniverseToday/TRR)

One doesn’t take two cubesats and rub them together to make static electricity. Rather, you send them on a brief space voyage to low-earth orbit (LEO) and space them apart some distance and voilà, you have a telescope. That is the plan of NASA’s Goddard Space Flight Center engineers and also what has been imagined by several others.

Cubesats are one of the big crazes in the new space industry. But nearly all that have flown to-date are simple rudderless cubes taking photos when they are oriented correctly. The GSFC engineers are planning to give two cubes substantial control of their positions relative to each other and to the Universe surrounding them. With one holding a telescope and the other a disk to blot out the bright sun, their cubesat telescope will do what not even the Hubble Space Telescope is capable of and for far less money.

Semper (left), Calhoun, and Shah are advancing the technologies needed to create a virtual telescope that they plan to demonstrate on two CubeSats. (Image/Caption Credit: NASA/W. Hrybyk)
Semper (left), Calhoun, and Shah are advancing the technologies needed to create a virtual telescope that they plan to demonstrate on two CubeSats. (Image/Caption Credit: NASA/W. Hrybyk)

The 1U, the 3U, the 9U – these are all cubesats of different sizes. They all have in common the unit size of 1. A 1U cubesat is 10 x 10 x 10 centimeters cubed. A cube of this size will hold one liter of water (about one quart) which is one kilogram by weight. Or replace that water with hydrazine and you have very close to 1 kilogram of mono-propellent rocket fuel which can take a cubestat places.

GSFC aerospace engineers, led by Neerav Shah, don’t want to go far, they just want to look at things far away using two cubesats. Their design will use one as a telescope – some optics and a good detector –and the other cubesat will stand off about 20 meters, as they plan, and function as a coronagraph. The coronagraph cubesat will function as a sun mask, an occulting disk to block out the bright rays from the surface of the Sun so that the cubesat telescope can look with high resolution at the corona and the edge of the Sun. To these engineers, the challenge is keeping the two cubesats accurately aligned and pointing at their target.

Only dedicated Sun observing space telescopes such as SDO, STEREO and SOHO are capable of blocking out the Sun, but their coronagraphs are limited. Separating the coronagraph farther from the optics markedly improves how closely one can look at the edge of a bright object. With the corongraph mask closer to the optics, more bright light will still reach the optics and detectors and flood out what you really want to see. The technology Shah and his colleagues develop can be a pathfinder for future space telescopes that will search for distant planets around other stars – also using a coronagraph to reveal the otherwise hidden planets.

The engineers have received a $8.6-million investment from the Defense Advanced Research Project Agency (DARPA) and are working in collaboration with the Maryland-based Emergent Space Technologies.

An example of a 3U cubesat - 3 1U cubes stacked. This cubesat size  could function as the telescope of a two cubesat telescope system. It could be a simple 10 cm diameter optic system or use fancier folding optics to improve its resolving power. (Credit: LLNL)
An example of a 3U cubesat – 3 1U cubes stacked. This cubesat size could function as the telescope of a two cubesat telescope system. It could be a simple 10 cm diameter optic system or use fancier folding optics to improve its resolving power. (Credit: LLNL)

The challenge of GSFC engineers is giving two small cubesats guidance, navigation, and control (GN&C) as good as any standard spacecraft that has flown. They plan on using off-the-shelf technology and there are many small and even large companies developing and selling cubesat parts.

This is a sorting out period for the cubesat sector, if you will, of the new space industry. Sorting through the off-the-shelf components, the GSFC engineers led by Shah will pick the best in class. The parts they need are things like tiny sun sensors and star sensors, laser beams and tiny detectors of those beams, accelerometers, tiny gyroscopes or momentum wheels and also small propulsion systems. The cubesat industry is pretty close to having all these ready as standard issue. The question then is what do you do with tiny satellites in low-Earth orbit (LEO). Telescopes for earth-observing are already making headway and scopes for astronomy are next. There are also plans to venture out to interplanetary space with tiny and capable cubesat space probes.

Whether one can sustain a profit for a company built on cubesats remains a big question. Right now those building cubesats to customer specs are making a profit and those making the tiny picks and shovels for cubesats are making profits. The little industry may be overbuilt which in economic parlance might be only natural. Many small startups will fail. However, for researchers at universities and research organizations like NASA, cubesats have staying power because they reduce cost by their low mass and size, and the low cost of the components to make them function. The GSFC effort will determine how quickly cubesats begin to do real work in the field of astronomy. Controlling attitude and adding propulsion is the next big thing in cubesat development.

References:

NASA Press Release

Comet Siding Spring Was Bleeding Hydrogen As It Sped By Mars

Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA

As Comet Siding Spring passed close by Mars on Sunday (Oct. 19), NASA’s newest Mars spacecraft took a time-out from its commissioning to grab some ultraviolet pictures of its coma. What you see above is hydrogen, a whole lot of it, leaving the comet in this picture taken from 5.3 million miles (8.5 million kilometers).

The hydrogen is a product of the water ice on the comet that the Sun is slowly melting and breaking apart into hydrogen and oxygen molecules. Because hydrogen scatters ultraviolet light from the Sun, it shows up rather clearly in this picture taken by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft.

Check out more recent pictures of Siding Spring below.

Is this an image of Comet Siding Spring? It's the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Is this an image of Comet Siding Spring? It’s the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Another photo, just in, taken of the comet and Mars today (Oct. 19) by Rolando Ligustri. Beautiful!
Another photo, just in, taken of the comet and Mars today (Oct. 19) by Rolando Ligustri. Beautiful!
Comet 2013 A1 Siding Spring on October 17, 2014, with two days to go until its Martian encounter. Very dense Milkyway starfield in the background with many darker obscured regions. Credit and copyright: Damian Peach.
Comet 2013 A1 Siding Spring on October 17, 2014, with two days to go until its Martian encounter. Very dense Milkyway starfield in the background with many darker obscured regions. Credit and copyright: Damian Peach.

Stinky! Rosetta’s Comet Smells Like Rotten Eggs And Ammonia

A view of Comet 67P/Churyumov-Gerasimenko on Sept. 26, 2014 from the orbiting Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM

While you can’t smell in space — there is no medium to carry the molecules, the same reason you can’t hear things — you can certainly detect what molecules are emanating from comets and other solar system bodies. A new analysis of Comet 67P/Churyumov-Gerasimenko by the orbiting Rosetta spacecraft thus found a rather pungent chemistry combination.

The spacecraft detected hydrogen sulphide (the smell of rotten eggs), ammonia and formaldehyde with traces of hydrogen cyanide and methanol. But compared to the amounts of water and carbon monixide 67P has, these molecule concentrations are quite miniscule.

“This all makes a scientifically enormously interesting mixture in order to study the origin of our solar system material, the formation of our Earth and the origin of life,” stated the University of Bern’s Kathrin Altwegg, from the center of space and habitability.

“And after all: it seems like comet Churyumov was indeed attracted by comet Gerasimenko to form Churyumov-Gerasimenko, even though its perfume may not be Chanel No 5, but comets clearly have their own preferences.”

More seriously, astronomers do say that at three astronomical units (Earth-Sun distances) from the Sun, the comet is emitting more molecules than expected. The next step will be to compare Rosetta’s data with ground-based data of other comets to see if this is common.

Source: University of Bern

Videos: From Space, Lightning Looks Like Creepy White Blobs

Lightning over Equatorial Africa
Lightning over Equatorial Africa

Standing on the ground, we’re used to seeing the bolts and flashes of lightning during epic thunderstorms. But how would it look like from space? These three Vine videos from orbiting NASA astronaut Reid Wiseman provide a glimpse.

As you can see in these videos he uploaded to his Twitter account a few days ago, flashes and pools of light appear in this lightning storm over Kansas that he spotted from the International Space Station. Check out more below the jump. Continue reading “Videos: From Space, Lightning Looks Like Creepy White Blobs”

Rosetta’s Comet Springs Spectacular Leaks As It Gets Closer To The Sun

This Rosetta image of Comet 67P/Churyumov-Gerasimenko shows spectacular jets erupting from the small body on Sept. 10, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Jet! The comet that the Rosetta spacecraft is visiting is shedding more dust as machine and Solar System body get closer to the Sun.

While activity was first seen at the “neck” of the rubber-duckie shaped comet a few weeks ago, now scientists are seeing jets spring from across the comet.

This is just one signal of cometary activity picking up as 67P gets closer to the Sun. For the moment, it appears the prime landing site is still safe enough for Philae to land on Nov. 19, officials said, while noting there is a jet about a kilometer away that the lander can study when it gets there.

Jets spring from the "neck" area of Comet 67P/Churyumov-Gerasimenko. The smaller lobe is on the left, and the larger on the right. These images were taken about 7.2 kilometers (4.5 miles) from the surface. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Jets spring from the “neck” area of Comet 67P/Churyumov-Gerasimenko. The smaller lobe is on the left, and the larger on the right. These images were taken about 7.2 kilometers (4.5 miles) from the surface. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“At this point, we believe that a large fraction of the illuminated comet’s surface is displaying some level of activity,” stated Jean-Baptiste Vincent a scientist from the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) that took the pictures. He is with the Max Planck Institute for Solar System Research in Germany.

The comet is about 470 million kilometers (292 miles) from the Sun and will make its closest approach in 2015. Rosetta is the first mission to orbit a comet as it gets close to the Sun, and Philae (if successful) will make the first “soft” landing on a cometary surface.

Source: European Space Agency

The Physics Behind “Interstellar’s” Visual Effects Was So Good, it Led to a Scientific Discovery

Kip Thorne’s concept for a black hole in 'Interstellar.' Image Credit: Paramount Pictures

While he was working on the film Interstellar, executive producer Kip Thorne was tasked with creating the black hole that would be central to the plot. As a theoretical physicist, he also wanted to create something that was truly realistic and as close to the real thing as movie-goers would ever see.

On the other hand, Christopher Nolan – the film’s director – wanted to create something that would be a visually-mesmerizing experience. As you can see from the image above, they certainly succeeded as far as the aesthetics were concerned. But even more impressive was how the creation of this fictitious black hole led to an actual scientific discovery.

Continue reading “The Physics Behind “Interstellar’s” Visual Effects Was So Good, it Led to a Scientific Discovery”