Assembly Complete for NASA’s Maiden Orion Spacecraft Launching in December 2014

Technicians complete final assembly of NASA’s first Orion spacecraft with installation of the close out panels on the Launch Abort System that smooth airflow. Credit: Photo credit: Kim Shiflett

Technicians at the Kennedy Space Center have completed the final major assembly work on NASA’s maiden Orion crew module slated to launch on its first unmanned orbital test flight this December, dubbed Exploration Flight Test-1 (EFT-1)

After first attaching the Launch Abort System (LAS) to the top of the capsule, engineers carefully installed a fairing composed of a set of four ogive panels over the crew module and the abort systems lower structural framework joining them together.

“The ogive panels smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future,” according to a NASA description.

Upon finishing the panel assembly work inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center, the teams cleared the last major hurdle before the Orion stack is rolled out to launch pad 37 in mid-November and hoisted to the top of the Delta IV Heavy rocket.

Technicians complete final assembly of NASA’s first Orion spacecraft with installation of the  last ogive close out panels on the Launch Abort System that smooth airflow. Credit: Photo credit: Kim Shiflett
Technicians complete final assembly of NASA’s first Orion spacecraft with installation of the last ogive close out panels on the Launch Abort System that smooth airflow. Photo credit: Kim Shiflett

The Orion stack is comprised of the LAS, crew module (CM) and service module (SM).

The maiden blastoff of the state-of-the-art Orion spacecraft on the EFT-1 mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida atop the triple barreled United Launch Alliance (ULA) Delta IV Heavy booster.

Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHFS) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHSF) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

The two-orbit, four and a half hour EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years. It will test the avionics and electronic systems inside the Orion spacecraft.

Then the spacecraft will travel back through the atmosphere at speeds approaching 20,000 mph and temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.

Launch Abort System (LAS) for Orion EFT-1 on view horizontally inside the Launch Abort System Facility at the Kennedy Space Center, Florida, prior to installation atop the crew module. Credit: Ken Kremer/kenkremer.com
Launch Abort System (LAS) for Orion EFT-1 on view horizontally inside the Launch Abort System Facility at the Kennedy Space Center, Florida, prior to installation atop the crew module. Credit: Ken Kremer/kenkremer.com

The LAS plays a critically important role to ensure crew safety.

In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts’ lives. The quartet of LAS abort motors would generate some 500,000 pounds of thrust to pull the capsule away from the rocket.

And don’t forget that you can fly your name on Orion and also print out an elegant looking “boarding pass.”

Details below and in my article – here.

NASA announced that the public can submit their names for inclusion on a dime-sized microchip that will travel on Orion and succeeding spacecraft voyaging to destinations beyond low-Earth orbit, including Mars.

The deadline to submit your name is soon: Oct 31, 2014.

Click on this weblink posted online by NASA today: http://go.usa.gov/vcpz

NASA invites you to send your name to Mars via the first Orion test flight in December 2014.  Deadline for submissions is Oct 31, 2014. Join over 170,000 others! See link below. Credit: NASA
NASA invites you to send your name to Mars via the first Orion test flight in December 2014. Deadline for submissions is Oct 31, 2014. Join over 170,000 others! See link below. Credit: NASA

“NASA is pushing the boundaries of exploration and working hard to send people to Mars in the future,” said Mark Geyer, Orion Program manager, in a NASA statement.

“When we set foot on the Red Planet, we’ll be exploring for all of humanity. Flying these names will enable people to be part of our journey.”

NASA’s Orion Program manager Mark Geyer discusses Orion EFT-1 mission.  Credit: Ken Kremer - kenkremer.com
NASA’s Orion Program manager Mark Geyer discusses Orion EFT-1 mission, while holding a model of the Launch Abort System. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace
The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace

…………….

Learn more about Orion, Space Taxis, and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

This 3-D Martian Picture Feels Like You’re Standing Beside The Opportunity Rover

A 3-D image of "Wdowiak Ridge" on Mars, based on images from the left and right side of the Opportunity rover's Pancam. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Grab your 3-D glasses (you do have a pair handy, right?) and take a look at this latest vista from Mars. This is a view taken by the Opportunity rover that looks at a location nicknamed “Wdowiak Ridge”, on the rim of Endeavour Crater.

This mosaic was obtained Sept. 17 as Opportunity continued its journey to “Marathon Valley”, a spot that could hold clays (which would indicate a water-rich environment in the past.) The rover is more than a decade into its mission and has been sending back images amid battling Flash memory problems lately.

Check out more recent pictures below, including a probable one of Comet Siding Spring passing by Mars (which Bob King wrote about in detail earlier this week.)

“Wdowiak Ridge sticks out like a sore thumb.  We want to understand why this ridge is located off the primary rim of Endeavour Crater and how it fits into the geologic story of this region,” stated Jim Rice, the Opportunity science-team of the Planetary Science Institute in Arizona.

More specifically, the team is interested in why this ridge is so prominent and sharp — they are calling it one of the most distinctive features Opportunity has ever seen. How it resisted erosion in an area so worn down is one thing scientists are hoping to learn about.

A Martian mosaic showing "Wdowiak Ridge", which the Opportunity rover imaged Sept. 17, 2014. The rover's tracks are visible at right. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A Martian mosaic showing “Wdowiak Ridge”, which the Opportunity rover imaged Sept. 17, 2014. The rover’s tracks are visible at right. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

The last Opportunity rover update talks about activities through Sept. 30, but NASA has released raw images available since then. Check out a selection below.

Is this an image of Comet Siding Spring? It's the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Is this an image of Comet Siding Spring? It’s the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
The Opportunity rover at work on Mars on Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover at work on Mars on Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
An image of Martian terrain with the Opportunity's rover solar panel just visible at the bottom of the panel. Picture taken Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
An image of Martian terrain with the Opportunity’s rover solar panel just visible at the bottom of the panel. Picture taken Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
A dramatic, shadowy picture showing part of the Opportunity rover on Mars lit by the Sun (at top). Picture taken Sol 3,812 in October 2014. Credit: NASA/JPL-Caltech
A dramatic, shadowy picture showing part of the Opportunity rover on Mars lit by the Sun (at top). Picture taken Sol 3,812 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover's tracks dominate this image taken on Mars on Sol 3,807 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover’s tracks dominate this image taken on Mars on Sol 3,807 in October 2014. Credit: NASA/JPL-Caltech

Stunning View of Solar System’s Largest Volcano and Valles Marineris Revealed by India’s Mars Orbiter Mission

Olympus Mons, Tharsis Bulge trio of volcanoes and Valles Marineris from ISRO's Mars Orbiter Mission. Note the clouds and south polar ice cap. Credit: ISRO

India’s Mars Orbiter Mission (MOM) has delivered another sweet treat – a stunning view of our Solar System’s largest volcano and the largest canyon.

Just days ago, MOM captured a new global image of the Red Planet dominated by Olympus Mons and Valles Marineris – which is the largest known volcano and the largest known canyon in the Solar System, respectively.

Situated right in between lies a vast volcanic plateau holding a trio of huge volcanoes comprising the Tharsis Bulge: Arsia Mons, Pavonis Mons, and Ascraeus Mons. All four volcanoes are shield volcanoes.

To give an idea of its enormity, Olympus Mons stands about three times taller than Mount Everest and is about the size of Arizona.

Olympus Mons from Mars orbit compared to the state of Arizona. Credit: NASA
Olympus Mons from Mars orbit compared to the state of Arizona. Credit: NASA

Olympus Mons is located in Mars’ western hemisphere and measures 624 kilometers (374 miles) in diameter, 25 km (16 mi) high, and is rimmed by a 6 km (4 mi) high scarp.

Valles Marineris is often called the “Grand Canyon of Mars.” It spans about as wide as the entire United States.

The Indian Space Research Organization (ISRO), India’s space agency which designed and developed the orbiter released the image on Oct. 17, barely two days ahead of the planet’s and spacecrafts’ extremely close encounter with comet Siding Spring.

By the way, a relieved ISRO tweeted MOM’s survival of her close shave with the once-in-a-lifetime cometary passage with gusto, soon after the swingby:

“Phew! Experience of a lifetime. Watched the #MarsComet #SidingSpring whizzing past the planet. I’m in my orbit, safe and sound.”

The new global image was taken by the tri-color camera as MOM swooped around the Red Planet in a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km, according to ISRO.

To date ISRO has released four global images of the Red Planet, including a 3-D view, reported here.

Olympus Mons, the Tharsis Bulge, and Valles Marineris are near the equator.

Valles Marineris stretches over 4,000 km (2,500 mi) across the Red Planet, is as much as 600 km wide, and measures as much as 7 kilometers (4 mi) deep.

Here’s a comparison view of the region taken by NASA’s Viking 1 orbiter in the 1970s.

Global Mosaic of Mars Centered on Valles Marineris
Global Mosaic of Mars Centered on Valles Marineris from NASA’s Viking 1 orbiter. Credit: NASA

MOM is India’s first deep space voyager to explore beyond the confines of her home planet’s influence and successfully arrived at the Red Planet only one month ago after the “history creating” orbital insertion maneuver on Sept. 23/24 following a ten month journey.

The $73 million MOM mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

With MOM’s arrival, India became the newest member of an elite club of only four entities that have launched probes that successfully investigated Mars – following the Soviet Union, the United States, and the European Space Agency (ESA).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISRO's Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74500 km on Sept. 28, 2014.  Credit: ISRO
ISRO’s Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74,500 km on Sept. 28, 2014. Credit: ISRO

Mr. Fusion? Compact Fusion Reactor Will be Available in 5 Years Says Lockheed-Martin

Could the future of fusion driven rockets for interplantary or even interstellar travel be near at hand? Engineers at the Lockheed-Martin Skunk Works believe they will have a compact fusion reactor prototype operational in five years and in use within 10 years. (Illustration Credit:© David A. Hardy/www.astroart.org, Project Daedalus)

The Farnsworth Fusor; Pons and Fleishmann. It seems the trail to fusion energy has long gone cold — stone cold, that is, and not cold as in cold fusion. Despite the promise of fusion providing a sustainable and safe energy source, fusion reactors are not a dime a dozen and they won’t be replacing coal fired power plants any time soon. Or will they? Lockheed-Martin Skunk Works announced a prototype compact fusion reactor that could be ready within five years. This revelation has raised eyebrows and sparked moments of enthusiasm.

But, let’s considers this story and where it all fits in both the history and future.

For every Skunk Works project that has made the runway such as the Stealth Fighter or SR-71 Blackbird, there are untold others that never see the light of day. This adds to the surprise and mystery of Lockheed-Martin’s willingness to release images and a detailed narrative describing a compact fusion reactor project. The impact that such a device would have on humanity can be imagined … and at the same time one imagines how much is unimaginable.

Lockheed-Martin engineers in the Skunkworks prepare a vessel, one component of an apparatus that they announced will lead to nuclear fusion in a truck-sized reactor within 5 years. An international effort is underway in Europe to create the worlds first practical tokamak fusion reactor, a much larger and costlier design that has never achieved the long sought "breakeven" point. (Photo Credit: Lockheed-Martin)
Lockheed-Martin engineers in the Skunkworks prepare a vessel, one component of an apparatus that they announced will lead to nuclear fusion in a truck-sized reactor within 5 years. An international effort is underway in Europe to create the world’s first practical tokamak fusion reactor, a much larger and costlier design that has never achieved the long sought “breakeven” point. (Photo Credit: Lockheed-Martin)

The program manager of the Skunk Works’ compact fusion reactor experiment is Tom Maguire. Maguire and his team places emphasis on the turn-around time for modifying and testing the compact fusion device. With the confidence they are expressing in their design and the ability to quickly build, test and modify, they are claiming only five years will be needed to reach a prototype.

What exactly the prototype represents was left unexplained, however. Maguire continues by saying that in 10 years, the device will be seen in military applications and in 20 years it will be delivered to the world as a replacement for the dirty energy sources that are in use today. Military apps at 10 years means that the device will be too expensive initially for civilian operations but such military use would improve performance and lower costs which could lead to the 20 year milestone moment if all goes as planned.

Their system uses magnetic confinement, the same basic principle behind the tokamak toroidal plasma confinement system that has received the greatest attention and government funding for over 50 years.

The ITER Tokamak Fusion Reactor is expected to begin operational testing in 2020 and begin producing deuterium-tritium fusion reactions in 2027. (Credits: ITER, Illus. T.Reyes)
The ITER Tokamak Fusion Reactor is expected to begin operational testing in 2020 and begin producing deuterium-tritium fusion reactions in 2027. (Credits: ITER, Illus. T.Reyes)

The International Thermonuclear Experimental Reactor (ITER) is currently under construction in Europe under the assumption that it will be the first net energy producing fusion generator ever. It is funded by the European Union, India, Japan, People’s Republic of China, Russia, South Korea and the United States. But there are cost over-runs and its price has gone from $5 billion to $50 billion.

ITER is scheduled to begin initial testing in 2019 about the time Lockheed-Martin’s compact fusion reactor prototype is expected. If Lockheed-Martin succeeds in their quest, they will effectively have skunked ITER and laid to waste a $50 billion international effort at likely 1/1000th the cost.

There are a few reasons Lockheed-Martin has gone out on a limb. Consider the potential. One ton of Uranium used in Fission reactors has as much energy as 1,500 tons of coal. But fission reactors produce radioactive waste and are a finite resource without breeder reactors, themselves a nuclear proliferation risk. Fusion produces 3 to 4 times more energy per reaction than fission. Additionally, the fuel — isotopes of hydrogen — is available from sea water — which is nearly limitless — and the byproducts are far less radioactive than with fission. Fusion generators once developed could provide our energy needs for millions of years.

More pragmatically, corporations promote their R&D. They are in a constant state of competition. They present a profile that ranges from the practical to the cutting edge to instill confidence in their Washington coffers. Furthermore, their competitors have high profile individuals and projects. A fusion project demonstrates that Lockheed-Martin is doing more than creating better mouse-traps.

To date, no nuclear fusion reactor has achieved breakeven. This is when the fusion device outputs as much energy as is input to operate it. Magnetic confinement such as the various tokamak designs, Lawrence Livermore’s laser-based inertial confinement method, and even the simple Philo Farnsworth Fusor can all claim to be generating energy from fusion reactions. They are just all spending more energy than their devices output.

An example of a homemade Fusor. Originally invented in the 1960s by the inventor of the television, Philo Farnsworth. (Credit: Wikipedia, W.Jack)
An example of a homemade Fusor. Originally invented in the 1960s by the inventor of the television, Philo Farnsworth. (Credit: Wikipedia, W.Jack)

The fusor, invented in the 1960s by Farnsworth and Hirsh, is a electrostatic plasma confinement system. It uses electric fields to confine and accelerate ions through a central point at which some ions will collide with sufficient energy to fuse. Although the voltage needed is readily achieved by amateurs – about 4000 volts – not uncommon in household devices, no fusor has reached breakeven and theoretically never will. The challenge to reaching breakeven involves not just energy/temperature but also plasma densities. Replicating conditions that exist in the core of stars in a controllable way is not easy. Nevertheless, there is a robust community of “fusioneers” around the world and linked by the internet.

Mr Fusion, the compact fusion reactor that drove the 21st Century version of the DeLorian in Back to the Future. The movie trilogy grossed $1 billion at the box office. Mr Fusion could apparently function off of any water bearing material. (Credit: Universal Pictures)
Mr Fusion, the compact fusion reactor that drove the 21st Century version of the DeLorean in Back to the Future. The movie trilogy grossed $1 billion at the box office. Mr Fusion could apparently function off of any water bearing material. (Credit: Universal Pictures)

It remains to be seen who, what and when a viable fusion reactor will be demonstrated. With Lockheed-Martin’s latest announcement, once again, fusion energy is “just around the corner.” But many skeptics remain who will quickly state that commercial fusion energy remains 50 years in the future. So long as Maguire’s team meets milestones with expected performance improvements, their work will go on. The potential of fusion energy remains too great to dismiss categorically.

Source: Lockheed-Martin Products Page, Compact Fusion

Could ‘Heavy Metal’ Frost Lurk Beneath Venus’ Hothouse Clouds?

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL

Talk about using old data for a new purpose! Researchers re-examining information from the completed NASA Magellan mission found signs of what could be “heavy metal” frost on the hell-like surface. What the researchers saw in radio-wave reflectance is the highlands appear brighter, with dark spots in the tallest locations.

What substance exactly is causing the patches on the surface is unknown, and it is extremely hard to make predictions given the difficulty of simulating Venus’ 900-degree Fahrenheit (500-degree Celsius) surface temperature, which is also 90 times Earth’s air pressure at sea level.

“Like on Earth, the temperature changes with elevation,” stated Elise Harrington, an Earth sciences undergraduate at British Columbia’s Simon Fraser University who led the research. “Among the possibilities on Venus are a temperature dependent chemical-weathering process or heavy metal compound precipitating from the air – a heavy metal frost.”

Venus' volcano Sapas Mons, which was imaged by the Magellan mission in 1991. Credit: NASA
Venus’ volcano Sapas Mons, which was imaged by the Magellan mission in 1991. Credit: NASA

Scrutiny of a previously examined area on Venus, the Odva Regio highlands, saw a low radar reflection at 2,400 meters (7,900 feet), which progressively gets brighter until dark spots begin appearing and reflections drop at 4,700 meters (15,400 meters).

While previous research spotted a few of these patches, Harrington and supervisor Allan Treiman (Lunar and Planetary Institute) saw hundreds. There’s no radar-imaging spacecraft in orbit around Venus right now, but the authors hope that the finding will generate more interest in this planet. (Of note, the European Space Agency’s Venus Express is finishing up a mission there now, which included several daring atmosphere-skimming maneuvers earlier this year.)

The research was presented at the Geological Society of America meeting in Vancouver, British Columbia.

Source: Geological Society of America

Martian Permafrost And Dust-Sculpted Surface Captured By NASA Spacecraft

Frost deposits in Louth Crater appears to remain through the year, as found in Mars Reconnaissance Orbiter HiRISE photos of the region. Credit: NASA/JPL/University of Arizona

Mars was once thought to be a fairly unchanging planet, similar to the Moon. But now we know it is a planet that was shaped by water and other forces in the past — and that these forces still come into play today.

Above is a picture of permafrost deposits just discovered in Louth Crater. This find comes from NASA’s Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) and you can see some of its latest water- and dust- shaped environments imaged below.

“A still-unexplained feature of this crater is the diffuse dark smudges visible on the crater floor,” read an update on the University of Arizona HiRISE website explaining this image. “These resemble ‘defrosting spots’ which are visible on carbon dioxide ice in the early spring, but they occur on frost-free areas and survive throughout the summer.”

The frost was caught in a HiRISE image early in the summer, and it persisted as controllers watched it through the summer — indicating that it is permanent. Its size did diminish somewhat, however. Scientists are pretty sure that this is water ice, as carbon dioxide can’t survive the summer.

See more new HiRISE photos below.

A close-up of "chaotic terrain" in Valles Marineris imaged by the Mars Reconnaissance Orbiter's HiRISE camera. Wind or fluid may have further shaped this region, which could be related to possible signs of an ancient lake found in other regions of Valles Marineris. Credit: NASA/JPL/University of Arizona
A close-up of “chaotic terrain” in Valles Marineris imaged by the Mars Reconnaissance Orbiter’s HiRISE camera. Wind or fluid may have further shaped this region, which could be related to possible signs of an ancient lake found in other regions of Valles Marineris. Credit: NASA/JPL/University of Arizona
A section of the vast Valles Marineris ravine called Melas Chasma, a spot where sulfates (minerals formed in water) have been found before. The image shows layers of deposits that were formed before and after the formation of VAlles Marineris. Credit: NASA/JPL/University of Arizona
A section of the vast Valles Marineris ravine called Melas Chasma, a spot where sulfates (minerals formed in water) have been found before. The image shows layers of deposits that were formed before and after the formation of Valles Marineris. Credit: NASA/JPL/University of Arizona
A section of Eastern Elysium Planitia imaged by the Mars Reconnaissance Orbiter's HiRISE camera showing a possible old lava field near dust avalanches stirred up more recently. Credit: NASA/JPL/University of Arizona
A section of Eastern Elysium Planitia imaged by the Mars Reconnaissance Orbiter’s HiRISE camera showing a possible old lava field near dust avalanches stirred up more recently. Credit: NASA/JPL/University of Arizona

MRO Spies Tiny, Bright Nucleus During Comet Flyby of Mars

High resolution image pairs made with HiRISE camera on MRO during Comet Siding Spring's closest approach to Mars on October 19. Shown at top are images of the nucleus region and inner coma. Those at bottom were exposed to show the bigger coma beginning of a tail. Credit: NASA/JPL/Univ. of Arizona

Not to be outdone by the feisty Opportunity Rover, the HiRISE camera on NASA’s Mars Reconnaissance Orbiter (MRO) turned in its homework this evening with a fine image of comet C/2013 Siding Spring taken during closest approach on October 19. 

The highest-resolution images were acquired by HiRISE at the minimum distance of 85,750 miles (138,000 km). The image has a scale of 453 feet (138-m) per pixel.

The top set of photos uses the full dynamic range of the camera to accurately depict brightness and detail in the nuclear region and inner coma. Prior to its arrival near Mars astronomers estimated the nucleus or comet’s core diameter at around 0.6 mile (1 km). Based on these images, where the brightest feature is only 2-3 pixels across, its true size is shy of 1/3 mile or 0.5 km. The bottom photos overexpose the comet’s innards but reveal an extended coma and the beginning of a tail extending to the right.

Annotated photo of Comet Siding Spring taken by the Opportunity Rover on October 19 when near closest approach. Credit: NASA/JPL-Caltech/Cornell Univ./ASU/TAMU
Annotated photo of Comet Siding Spring taken by the Opportunity Rover on October 19 when near closest approach. Credit: NASA/JPL-Caltech/Cornell Univ./ASU/TAMU

To photograph a fast-moving target from orbit, engineers at Lockheed-Martin in Denver precisely pointed and slewed the spacecraft based on comet position calculations by engineers at JPL. To make sure they knew exactly where the comet was, the team photographed the comet 12 days in advance when it was barely bright enough to register above the detector’s noise level. To their surprise, it was not exactly where orbital calculations had predicted it to be. Using the new positions, MRO succeeded in locking onto the comet during the flyby. Without this “double check” its cameras may have missed seeing Siding Spring altogether!

Meanwhile, the Jet Propulsion Lab has released an annotated image showing the stars around the comet in the photo taken by NASA’s Opportunity Rover during closest approach. From Mars’ perspective the comet passed near Alpha Ceti in the constellation Cetus, but here on Earth we see it in southern Ophiuchus not far from Sagittarius.

Comet Siding Spring continues on its way today past the planet Mars in this photo taken on October 20. Copyright: Rolando Ligustri
Comet Siding Spring continues on its way today past the planet Mars in this photo taken on October 20. Copyright: Rolando Ligustri

“It’s excitingly fortunate that this comet came so close to Mars to give us a chance to study it with the instruments we’re using to study Mars,” said Opportunity science team member Mark Lemmon of Texas A&M University, who coordinated the camera pointing. “The views from Mars rovers, in particular, give us a human perspective, because they are about as sensitive to light as our eyes would be.”

After seeing photos from both Earth and Mars I swear I’m that close to picturing this comet in 3D in my mind’s eye. NASA engineers and scientists deserve a huge thanks for their amazing and successful effort to turn rovers and spacecraft, intended for other purposes, into comet observatories in a pinch and then deliver results within 24 hours. Nice work!

How Rosetta Will Send Philae Lander To Comet’s Surface (Plus, Landing Site Contest!)

The Rosetta spacecraft takes a selfie Oct. 7 with its target, 67P/Churyumov–Gerasimenko, from an altitude of about 9.9 miles (16 kilometers). Credit: ESA/Rosetta/Philae/CIVA

The Philae spacecraft has a tough job ahead of it on November 12: it is slated to make the first landing on a comet’s surface. Riding piggyback on the Rosetta spacecraft, all indications are it is in good health and ready for the job; the team has even been taking the time for Philae to image spacecraft “selfies” with its target, Comet 67P/Churyumov–Gerasimenko, in the background.

And Rosetta will also be working hard, as the animation above shows us with the various maneuvers the spacecraft will be required to send Philae to the surface. Read more about these orbital changes below, as well as details of a contest to name the comet’s landing site.

As you can see in the animation, Rosetta starts in a 19 kilometer (11.8 mile) orbit, then moves down to the 10 km (6.2 mile) mapping orbit that it is right now.

Rosetta then does some maneuvers to get ready to send Philae to the surface, including a trajectory change about 2-3 hours before Philae’s landing. Rosetta will be about 22.5 km (14 miles) from the comet during the  pre-separation phase. Then, the latter part of the animation shows Rosetta moving around to orbits ranging between 20 km and 50 km (12.4 miles and 18.6 miles) through December.

Meanwhile, here’s another way that certain people can get involved in the mission: the European Space Agency has a naming contest for the prime landing site!

“The rules are simple: any name can be proposed, but it must not be the name of a person,” ESA stated. “The name must be accompanied by a short description (up to 200 words) explaining why this would make the ideal name for such an historic location.”

Full contest rules and details are available here. Hurry as the deadline is Oct. 22!

Zap! Saturn Moon’s Electron Beam Beaned Cassini Spacecraft From Charged Surface

A false-color view of Saturn's moon Hyperion taken during a Cassini flyby in September 2005. Credit: NASA/JPL-Caltech/Space Science Institute

Ever taken a balloon and rubbed it against your hair? That’s an example of electrostatic charging, which you see as the balloon briefly attracts strands of hair against your head. Turns out a similar process is taking place on Saturn’s moon Hyperion. More astounding, it wasn’t until recently that scientists saw a curious effect on the Cassini spacecraft in 2005.

As the machine whizzed by the small moon, Cassini was blanketed in electrons from Hyperion’s electrostatically charged surface. It’s the first time scientists have seen static electricity in effect on any airless body outside of the Moon.

The charge comes partly from massive Saturn’s magnetic field, which hits Hyperion’s spongy surface constantly with electrons and ions. The Sun also plays a role, sending ultraviolet light that also strikes the moon’s surface. Scientists found out this happens while studying old data on the Cassini spacecraft, when they discovered “something unexpected” during a close flyby of Hyperion in September 2005.

NASA's Cassini spacecraft obtained this unprocessed image of Saturn's moon Hyperion on Aug. 25, 2011. Image credit: NASA/JPL-Caltech/Space Science Institute
NASA’s Cassini spacecraft obtained this unprocessed image of Saturn’s moon Hyperion on Aug. 25, 2011. Image credit: NASA/JPL-Caltech/Space Science Institute

Specifically, the spacecraft — which is still in operation today — was briefly connected through magnetism to Hyperion’s surface, receiving a surge of electrons. Cassini emerged from the encounter unharmed, even though team members estimate that it received the equivalent of a 200-volt shock from the moon. Charging events can hurt spacecraft, making this a valuable thing to know about for future missions.

“Our observations show that this is also an important effect at outer planet moons and that we need to take this into account when studying how these moons interact with their environment,” stated Geraint Jones of Mullard Space Science Laboratory (MSSL), University College London. He is a member of the Cassini Plasma Spectrometer (CAPS) team and one of the study’s supervisors.

CAPS is not in operation any more, since the instrument was turned off due to drawing excess current in 2012. But perhaps some of its past data, and observations from other Cassini instruments, can help unveil evidence of charging on other moons.

The tumbling motion of elongated Eros creates a changing brightness. (via transitofvenus.nl)
The tumbling motion of elongated Eros creates a changing brightness. (via transitofvenus.nl)

Previous research concerning some of Saturn’s moons, and the asteroid Eros, suggests that charged dust can move across the surface and perhaps even be able to sail into space against the force of gravity.

Several other instruments were used to gather data for this analysis, including Cassini’s magnetometer, magnetospheric imaging instrument, and radio and plasma wave science instrument.

You can read more about the research, which was led by Tom Nordheim, an MSSL doctoral candidate, in Geophysical Research Letters.

Source: NASA

Balloon launcher Zero2Infinity Sets Its Sights to the Stars

Zero2Infinity announced on October 15, their plans to begin micro-satellite launches to low-earth orbit by 2017. (Credit: OIIOO)

Clearly, the sky is not the limit for balloon launcher Zero2Infinity. Based in Barcelona, Spain, the company announced this week their plans to launch payloads to orbit using a balloon launch system. The Rockoon is a portmanteau, as Lewis Carroll would have said: the blend of the words rocket and balloon.

The launch system announced by the company is called Bloostar. The Rockoon system begins with a balloon launch to stratospheric altitudes followed by the igniting of a 3 stage rocket to achieve orbit. The Rockoon concept is not new. Dr. James Van Allen with support from the US Navy developed and launched the first Rockoons in 1949. Those were just sounding rockets, Bloostar will take payloads to low-earth orbit and potentially beyond.

The Zero2Infinity Bloostar launch vehicle. Three stages will use a set of liquid fuel engines clustered as concentric toroids. (Photo Credit: 0II00)
The Zero2Infinity Bloostar launch vehicle. Three stages will use a set of liquid fuel engines clustered as concentric toroids. (Photo Credit: 0II00)

The advantage of rocket launch from a balloon is that it takes the Earth’s atmosphere out as a factor in design and as a impediment to reaching orbit. The first phase of the Bloostar system takes out 99% of the Earth’s atmosphere by reaching an altitude of over 20 km (>65,000 feet). Aerodynamics is not a factor so the stages are built out rather than up. The stages of the Bloostar design are a set of concentric rings which are sequentially expended as it ascends to orbit.

Zero2Infinity is developing a liquid fuel engine that they emphasize is environmentally friendly. The first stage firing of Bloostar will last 160 seconds, reach 250 km of altitude and an inertial speed of 3.7 km/s. This is about half the velocity necessary for reach a stable low earth orbit. The second stage will fire for 230 seconds and achieve an altitude of 530 km with velocity of 5.4 km/s. The 3rd and final stage motor will fire at least twice with a coast period to achieve the final orbit. Zero2Infinity states that their Bloostar system will be capable of placing a 75kg (165 lbs) payload into a 600 km (372 mi) sun-synchronous orbit. In contrast, the International Space Station orbits at 420 km (260 mi) altitude.

The Bloostar launch phases. Zero2Infinity intends to de-orbit the final stage to minimize their contribution to the growing debris field in low-earth orbit. Their plans are to launch from a ship at sea. (Photo Credit: 0II00)
The Bloostar launch phases. Zero2Infinity intends to de-orbit the final stage to minimize their contribution to the growing debris field in low-earth orbit. Their plans are to launch from a ship at sea. (Photo Credit: 0II00)

For the developing cubesat space industry, a 75 kg payload to orbit is huge. A single cubesat 10x10x10 cm (1U) will typically weigh about 1 kg so Bloostar would be capable of launching literally a constellation of cubesats or in the other extreme, a single micro-satellite with potentially its own propulsion system to go beyond low-earth orbit.

The Rockoon concept is not unlike what Scaled Composites undertakes with a plane and rocket. Their Whiteknight planes lift the SpaceShips to 50,000 feet for takeoff whereas the Zero2Infinity balloon will loft Bloostar to 65,000 feet or higher. The increased altitude of the balloon launch reduces the atmospheric density to half of what it is at 50,000 feet and altogether about 8% of the density at sea level.

The act of building and launching a stratospheric balloon to 30 km (100,000 feet) altitude with >100 kg instrument payloads is a considerable accomplishment. This is just not the releasing of a balloon but involves plenty of logistics and telecommunications with instrumentation and also the returning of payloads safely to Earth. This is clearly half of what is necessary to reach orbit.

Bloostar is blazing new ground in Spain. The ground tests of their liquid fuel rocket engine are the first of its kinds in the country. Zero2Infinity began launching balloons in 2009. The founder and CEO, Jose Mariano Lopez-Urdiales is an aeronautical engineer educated in Spain with R&D experience involving ESA, MIT and Boeing. He has speerheaded organizations and activities in his native Spain. In 2002 he presented to the World Space Congress in Houston, the paper “The Role of Balloons in the Future Development of Space Tourism”.

References:

Zero2Infinity Press Release

Bloostar Launch Cycle