Gallery: 5 Exotic Places NASA’s Next-Generation Rocket Could Help Explore

Looking to the future of space exploration, NASA and TopCoder have launched the "High Performance Fast Computing Challenge" to improve the performance of their Pleiades supercomputer. Credit: NASA/MSFC

TORONTO, CANADA – Could NASA’s new rocket bring a probe to sample the geysers of Saturn’s moon Enceladus, or ferry human explorers to the surface of Mars? Representatives of contractor Boeing think so.

They’ve put together some ideas for sending their Space Launch System to these far-flung destinations, which they presented at the International Astronautical Congress today (Oct. 1).

Bear in mind that the SLS hasn’t yet flown — it’s slated for 2018 if funding lasts and the schedule holds — and the destinations below are just in the conceptual stage. The gallery below summarizes some of the destinations SLS could visit. For more information, check out this brochure by Boeing.

Enceladus

Artist's conception of the Cassini spacecraft flying amid geysers on Enceladus, a moon of Saturn. Credit: Karl Kofoed / NASA
Artist’s conception of the Cassini spacecraft flying amid geysers on Enceladus, a moon of Saturn. Credit: Karl Kofoed / NASA

The icy moon of Saturn is known as a hotspot for geysers; earlier this year, scientists found 101 gushers using data from the prolific Cassini probe. Using the SLS could bring a satellite there in four years, as opposed to about seven with rockets on the market today, according to Boeing. It also could carry a heavier spacecraft.

Europa

Artist's conception of Europa's surface, backdropped by planet Jupiter. Credit: NASA/JPL-Caltech
Artist’s conception of Europa’s surface, backdropped by planet Jupiter. Credit: NASA/JPL-Caltech

Europa is known to have a subterranean ocean, and it also is capable of spewing water plumes — as researchers using the Hubble Space Telescope discovered earlier this year. The SLS could get to Europa a lot faster than a launch with an Atlas, according to Boeing — it would only take two years to fly there directly as opposed to more than six years with the Atlas, which would need to fly by Venus first to pick up some speed.

Trojan asteroids

Artist's diagram of Jupiter and some Trojan asteroids nearby the gas giant. Credit: NASA/JPL-Caltech
Artist’s diagram of Jupiter and some Trojan asteroids nearby the gas giant. Credit: NASA/JPL-Caltech

Trailing before and after Jupiter are more than a million asteroids that are called Trojans. This means any probe in the area would have no lack of targets to study, providing it had enough fuel on board. A mission profile from Boeing suggests the SLS could bring a spacecraft out there that could swing by a target at least half a dozen times.

Mars

Artist's impression of astronauts exploring Mars. Credit: NASA/Pat Rawlings, SAIC
Artist’s impression of astronauts exploring Mars. Credit: NASA/Pat Rawlings, SAIC

One of the largest challenges of getting to Mars is figuring out how to send all the life-support equipment and food that humans require — on top of the humans themselves! Since SLS is a heavy-lift rocket, Boeing is trying to position its rocket as the ideal one to get humans to Mars. But it remains to be seen what concept works best to get people out there.

The Moon

Artist's impression of astronauts on the moon. This image was used to illustrate a landing concept of NASA's now defunct Constellation program. Credit: John Frassanito and Associates / NASA
Artist’s impression of astronauts on the moon. This image was used to illustrate a landing concept of NASA’s now defunct Constellation program. Credit: John Frassanito and Associates / NASA

Boeing has an idea to bring a lander down to the Moon that could then lift off multiple times in search of other destinations. Such a concept would require a hefty amount of fuel and equipment. If it works, Boeing says the SLS could assist with plans for lunar mining and other exploration ideas.

India’s MOM Snaps Spectacular Portrait of New Home – the Red Planet

ISRO's Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74500 km on Sept. 28, 2014. Credit: ISRO

MOM is truly something special.

For her latest eye popping feat, India’s Mars Orbiter Mission (MOM) has snapped the first global portrait of her new Home – the Red Planet.

MOM is India’s first interplanetary voyager and took the stupendous new image on Sept. 28, barely four days after her historic arrival on Sept. 23/24 following the successful Mars Orbital Insertion (MOI) braking maneuver.

The MOM orbiter was designed and developed by the Indian Space Research Organization (ISRO), India’s space agency, which released the image on Sept. 29.

Even more impressive is that MOM’s Martian portrait shows a dramatic view of a huge dust storm swirling over a large patch of the planet’s Northern Hemisphere against the blackness of space. Luckily, NASA’s Opportunity and Curiosity surface rovers are nowhere nearby.

“Something’s brewing here!” ISRO tweeted.

The southern polar ice cap is also clearly visible.

It was taken by the probe’s on-board Mars Color Camera from a very high altitude of 74,500 kilometers.

ISRO's Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. . Credit: ISRO
ISRO’s Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. Credit: ISRO

When MOM met Mars, the thrusters placed the probe into a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of the orbit with respect to the equatorial plane of Mars is 150 degrees, as intended, ISRO reported.

So the Red Planet portrait was captured nearly at apoapsis.

This is the third MOM image released by ISRO thus far, and my personal favorite. And its very reminiscent of whole globe Mars shots taken by Hubble.

MOM’s goal is to study Mars’ atmosphere, surface environments, morphology, and mineralogy with a 15 kg (33 lb) suite of five indigenously built science instruments. It will also sniff for methane, a potential marker for biological activity.

The $73 million mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

With MOM’s arrival, India became the newest member of an elite club of only four entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Russian Space Station Extension? Don’t Count On It Yet, NASA Head Says

The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA

TORONTO, CANADA – NASA isn’t “reading too much” into a report that the Russians will spend $8 billion on the International Space Station through 2025, the head of the agency says. That date is five years past the international agreements to operate the space station.

The Russian announcement comes at a pivotal time for NASA, which is looking to extend operations on the station to at least 2024. Other space agency heads have not yet signed on. Russia is the major partner for NASA on the station, given it operates several modules and sends astronauts to and from Earth on Soyuz spacecraft.

When deputy prime minister Dmitry Rogozin made the funding announcement, said NASA administrator Charles Bolden, Rogozin was speaking of a budget request that is before the State Duma. The Duma is Russia’s lower house of government.

“I am told that’s why he said that,” Bolden said at a press conference yesterday (Sept. 29) for the International Astronomical Congress, citing a conversation he had with Bill Gerstenmaier, NASA’s human exploration associate administrator. “You shouldn’t read too much into that.”

Canadarm2, the huge robotic arm on the International Space Station holds astronaut Stephen Robinson during the STS-114 mission. Credit: NASA
Canadarm2, the huge robotic arm on the International Space Station, holds astronaut Stephen Robinson during the STS-114 mission. Credit: NASA

Other member agencies of the space station gave noncommittal responses when asked if they would sign on to an extension.

“The [European] member states will be invited to give their views on what [to do] after 2020,” said Jean-Jacques Dordain, who heads the European Space Agency. He added that any extension would require a financial commitment, as an agreement without money is “only principles.”

Similarly, Canadian Space Agency chief Walter Natynczyk said the money allocated to his agency will bring them through to 2020, but “we will have a look at the entire value proposition when we put a case before the government of Canada.”

The Russian agreement with NASA came under scrutiny earlier this year as tensions erupted in Ukraine while Russian soldiers were in the country. This year, Ukrainian Crimea was annexed to Russia to the condemnation of several countries, including the United States.

While Bolden has said relations with the Russians for the space station are still healthy, NASA suspended most science ties with the country in April. In response, Rogozin wrote a frustrated tweet saying NASA should try to send its astronauts into space using a trampoline.

 

 

 

Assembly Completed on Powerful Delta IV Rocket Boosting Maiden Orion Capsule Test Flight

A United Launch Alliance technician monitors the core booster elements of a Delta IV Heavy rocket after being integrated in preparation for Exploration Flight Test-1 at Space Launch Complex 37 on Cape Canaveral Air Force Station. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – Assembly of the powerful Delta IV rocket boosting the pathfinder version of NASA’s Orion crew capsule on its maiden test flight in December has been completed.

Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.

The state-of-the-art Orion spacecraft is scheduled to launch on its inaugural uncrewed mission, dubbed Exploration Flight Test-1 (EFT-1), in December 2014 atop the Delta IV Heavy rocket. It replaces NASA’s now retired space shuttle orbiters.

The triple barreled Delta IV Heavy is currently the most powerful rocket in America’s fleet following the retirement of the NASA’s Space Shuttle program.

Engineers from the rocket’s manufacturer – United Launch Alliance (ULA) – took a major step forward towards Orion’s first flight when they completed the integration of the three primary core elements of the rockets first stage with the single engine upper stage.

These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) the will launch NASA’s maiden Orion on the EFT-1 mission in December 2014.   Credit: Ken Kremer/kenkremer.com
These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014. Credit: Ken Kremer/kenkremer.com

All of the rocket integration work and preflight processing took place inside ULA’s Horizontal Integration Facility (HIF), at Cape Canaveral Air Force Station in Florida.

Universe Today recently visited the Delta IV booster during an up close tour inside the HIF facility last week where the rocket was unveiled to the media in a horizontally stacked configuration. See my Delta IV photos herein.

The HIF building is located at Space Launch Complex 37 (SLC-37), on Cape Canaveral, a short distance away from the launch pad where the Orion EFT-1 mission will lift off on Dec. 4.

“The day-to-day processing is performed by ULA,” said Merri Anne Stowe of NASA’s Fleet Systems Integration Branch of the Launch Services Program (LSP), in a NASA statement.

“NASA’s role is to keep a watchful eye on everything and be there to help if any issues come up.”

The first stage is comprised of a trio of three Delta IV Common Booster Cores (CBCs).

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.

This past spring I visited the HIF after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville.

The first CBC booster was attached to the center booster in June. The second one was attached in early August, according to ULA.

“After the three core stages went through their initial inspections and processing, the struts were attached, connecting the booster stages with the center core,” Stowe said. “All of this takes place horizontally.”

The Delta IV cryogenic second stage testing and attachment was completed in August and September. It measures 45 feet in length and 17 feet in diameter. It is equipped with a single RL10-B-2 engine, that also burns liquid hydrogen and liquid oxygen propellant and generates 25,000 pounds of thrust.

“The hardware for Exploration Flight Test-1 is coming together well,” Stowe noted in a NASA statement.

“We haven’t had to deal with any serious problems. All of the advance planning appears to be paying off.”

This same Delta IV upper stage will be used in the Block 1 version of NASA’s new heavy lift rocket, the Space Launch System (SLS).

Be sure to read my recent article detailing the ribbon cutting ceremony opening the manufacture of the SLS core stage at NASA’s Michoud Assembly Facility in New Orleans, LA. The SLS will be the most powerful rocket ever built by humans, exceeding that of the iconic Saturn V rocket that sent humans to walk on the surface of the Moon.

Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014.  Credit: Ken Kremer – kenkremer.com
Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014. Credit: Ken Kremer – kenkremer.com

The Delta IV rocket will be rolled out to the SLC-37 Cape Canaveral launch pad this week.
Assembly of the Orion EFT-1 capsule and stacking atop the service module was also completed in September at the Kennedy Space Center (KSC).

I was also on hand at KSC when the Orion crew module/service module (CM/SM) stack was rolled out on Sept. 11, 2014, on a 36-wheel transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building.

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

It was moved about 1 mile to its next stop on the way to SLC-37 – the KSC fueling facility named the Payload Hazardous Servicing Facility (PHFS). Read my Orion move story here.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014.  Credit: Ken Kremer - kenkremer.com
NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer – kenkremer.com
Space journalists including Ken Kremer/Universe Today pose with the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Space journalists including Ken Kremer/Universe Today pose with the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

MOM Eyes the Limb of Mars after History Creating Arrival

ISRO's Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. . Credit: ISRO

India’s maiden interplanetary voyager, the Mars Orbiter Mission (MOM) has transmitted a breathtaking new image eyeing the limb of Mars and its atmosphere against the blackness of space.

The beautiful Martian image is only MOM’s second since successfully braking into orbit during the ‘history creating’ insertion maneuver days ago on Sept. 23/24.

The MOM orbiter was designed and developed by the Indian Space Research Organization (ISRO), India’s space agency, which released the image on Sept 25, about a day after MOM arrived.

The limb image was taken using MOM’s Mars Color Camera (MCC) from an altitude of 8449 kilometers and shows more of an ‘Orange Planet’ rather than a ‘Red Planet.’

“A shot of Martian atmosphere. I’m getting better at it. No pressure,” tweeted ISRO at MOM’s newly established twitter account after entering orbit.

The image has a spatial resolution of 439 meters and is centered around Lat: 20.01N and Lon:31.54E.

MOM’s goal is to study Mars atmosphere , surface environments, morphology, and mineralogy with a 15 kg (33 lb) suite of five indigenously built science instruments. It will also sniff for methane, a potential marker for biological activity.

“The view is nice up here,” ISRO tweeted.

MOM’s first image taken shortly after orbital arrival showed a heavily cratered region of the Red Planet taken by the MCC tri-color camera from a slightly lower altitude of 7300 kilometers with a spatial resolution of 376 meters.

ISRO's Mars Orbiter Mission captures its first image of Mars from a height of 7300 km. Credit: ISRO
ISRO’s Mars Orbiter Mission captures its first image of Mars from a height of 7300 km. Credit: ISRO

Following MOM’s successful Mars Orbital Insertion (MOI) maneuver, India became the newest member of an elite club of only four entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).

Read my complete MOM meets Mars arrival story – here.

MOM is now circling Mars in a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of orbit with respect to the equatorial plane of Mars is 150 degree, as intended, ISRO reports.

The $73 million mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

What Is This Bizarre Ball That The Curiosity Rover Found On Mars?

A "ball" of material on Mars taken by the Curiosity rover on Sol 746. Credit: NASA/JPL-Caltech/MSSS

It seems too round to be true — the Curiosity rover has found a ball-shaped object among the craggy rocks in its picture. This image was taken on Sol 746 of the rover’s mission on Mars, which so far has extended over two Earth years.

No, it’s not the leftover of a Martian baseball game and nor is it aliens. In fact, according to Discovery News (who is quoting NASA) it’s a kind of rock that shows evidence of water in the ancient past.

Ian O’Neill writes:

According to MSL scientists based at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., the ball isn’t as big as it looks — it’s approximately one centimeter wide. Their explanation is that it is most likely something known as a “concretion.” Other examples of concretions have been found on the Martian surface before — take, for example, the tiny haematite concretions, or “blueberries”, observed by Mars rover Opportunity in 2004 — and they were created during sedimentary rock formation when Mars was abundant in liquid water many millions of years ago.

Curiosity is now at the base of Mount Sharp (Aeolis Mons) — its main science goal — and scientists are hoping to find more signs of habitable environments as the rover slowly prepares for the climb up the slope. Mission managers will need to be careful as the rover has battered wheels from rougher terrain than expected.

The rover already has found other evidence of water in its landing site of Gale Crater, such as this ancient lakebed that could have supported life.

India’s Bargain Mars Spacecraft Cost Less Than Many Space Movies

Artist's impression of India’s Mars Orbiter Mission (MOM). Credit: ISRO

India achieved a remarkable feat earlier this week — the nation became only one of a handful of countries to successfully send a probe to Mars. The $75 million mission has been hailed as an achievement by NASA and other space experts from around the world.

Just how remarkable is this bargain mission? As a tweet from travel writer Jon Tindale pointed out, MOM cost less than the 2000 Gary Sinise movie Mission To Mars. (Note that we came up with a different dollar figure below.)

Just for fun, we’ve compared MOM to several space movies below. All dollar figures are adjusted for inflation from budgets listed in the Internet Movie Database.

Avatar: $263 million ($237 million in 2009 dollars)

Wall-E: $199 million ($180 million in 2008 dollars)

The Fifth Element: $138 million ($93 million in 1997 dollars)

Mission to Mars: $124 million ($90 million in 2000 dollars)

Elysium: $117 million ($115 million in 2013 dollars)

Star Trek: The Motion Picture: $115 million ($35 million in 1979 dollars)

Gravity: $102 million ($100 million in 2013 dollars)

Apollo 13: $101.5 million ($62 million in 1995 dollars)

Dune (1984): $92 million ($40 million in 1984 dollars)

Close Encounters of the Third Kind: $76 million ($19.4 million in 1977 dollars)

2001: A Space Odyssey: $72 million ($10.5 million in 1968 dollars)

Mars Orbiter Mission: $70 million (2014 dollars)

The Right Stuff: $65 million ($27 million in 1983 dollars)

Serenity: $49 million ($40 million in 2005 dollars)

Star Wars (1977): $43 million ($11 million in 1977 dollars)

Outland: $42 million ($16 million in 1981 dollars)

Alien: $36 million ($11 million in 1979 dollars)

War of the Worlds (1953): $18 million ($2 million in 1953 dollars)

Silent Running: $6.2 million ($1.1 million in 1972 dollars)

Moon: $5.5 million ($5 million in 2009 dollars)

Apollo 18: $5.3 million ($5 million in 2011 dollars)

Cute Video Shows The Many Ways The Planets And Moons Can Kill You

A still from the Cyanide & Happiness animation "Don't Go To Space." Credit: Cyanide & Happiness / YouTube

While we’re huge advocates here for space exploration, there certainly is an inherent danger to leaving the Earth. In a humorous way, this new video from the comic Cyanide & Happiness shows why you want to be cautious when exploring space.

As the video shows you, the Moon is airless (which is especially painful if you can’t afford an expensive spacesuit), Venus will boil you alive and Jupiter will crush you under the weight of many, many Earth equivalents.

So is it safe to stay on Earth itself? Watch the video for the answer. Overall, this animation goes to show you how important mission planning is when it comes to protecting astronauts and spacecraft during long journeys through the solar system.

Multicolor Mars! Speedy NASA Spacecraft Takes Pictures Just Hours After Arrival

The first Mars observations from NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft in three ultraviolet wavelength bands. From left to right, you can see wavelengths that focus on hydrogen, oxygen and reflected sunlight. A composite image is at far right. Credit: Laboratory for Atmospheric and Space Physics /University of Colorado and NASA

Sure is fun to see the Red Planet in different colors! This is what the gases around the Red Planet’s atmosphere look like from NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, which did its first observations on Monday (Sept. 22) — just eight hours after arriving in orbit.

The goal of the spacecraft is to better understand how quickly gases are fleeing the Martian atmosphere, and here you can definitely see a difference between hydrogen (at left) and oxygen (second-to-left). Figuring out how fast the atmosphere escapes could help scientists learn why water appeared to flow freely on the Red Planet’s surface in the distant past.

The hydrogen gas is much lighter and surrounds the planet in a bigger cloud that is so huge it extends beyond the boundaries of the picture at left. The oxygen, which is heavier, is less prone to drifting away and stays closer to the planet. (All images were obtained from an altitude of 22,680 miles or 36,500 kilometers.)

An artist concept of MAVEN in orbit around Mars. (Credit: NASA's Goddard Spaceflight Center).
An artist concept of MAVEN in orbit around Mars. (Credit: NASA’s Goddard Spaceflight Center).

It is believed that the Sun’s radiation pushed hydrogen out of the Martian atmosphere in the planet’s past, thinning it over time. A thicker atmosphere would have allowed water to exist in gullies and perhaps even seas or oceans, but today the atmosphere is too thin for liquid water to survive in large quantities on the surface.

MAVEN is in a commissioning phase that will last until early November, although the spacecraft will take a time-out to do observations of Comet Siding Spring upon the object’s closest approach to the planet Oct. 19. So far, NASA does not believe the comet will pose a huge dust threat to the spacecraft, but MAVEN will be maneuvered to minimize exposure just in case.

Source: University of Colorado Boulder

Russia Plans To Spend $8B On Space Station Through 2025: Report

A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA

Amid tensions surrounding international space collaboration, Russia is planning to spend $8 billion (321 billion rubles) on the International Space Station between 2016 and 2025, according to a Russian state agency report.

Deputy prime minister Dmitry Rogozin made the announcement at the Yuri Gagarin Cosmonaut Training Center in Star City, Russia. Part of the money will go to new “automatic spacecraft” and modules, said a translated version of the Russian-language ITAR-TASS report.

There was no mention in the report about Rogozin’s anger this spring concerning sanctions against Russia levied earlier this year after his nation placed soldiers inside Ukranian Crimea, which subsequently was annexed to Russia.

As part of policy with the Obama administration, this April NASA said it would cut most space ties with Russia except for those that are deemed essential to operation of the space station. In response, Rogozin wrote a tweet pointing out the Americans’ dependence on Russian Soyuz vehicles to bring astronauts to and from the station, an arrangement that has been in place since the space shuttle retired in 2011.

Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.
Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.

“After analyzing the sanctions against our space industry, I suggest to the USA to bring their astronauts to the International Space Station using a trampoline,” Rogozin wrote in Russian at the time.

The United States wants to extend operations of the station at least four years to 2024, but has not received commitments from its international partners yet. Rogozin’s reported announcement implies Russia would use the station through at least 2024, but it’s not clear if that is the case or what form any international collaboration would take.