No science data is missing after the Opportunity Mars rover had a brief “amnesia” event last week, NASA said in an update posted yesterday (Sept. 23). The hiccup occurred a few days after the rover had a reformat to correct ongoing memory problems that were stopping it from doing its mission.
The latest incident happened when the rover “woke up” for a day of work. It was unable to mount its Flash memory, which can store information even when the rover is shut off for the night.
An investigation is ongoing, NASA said, but the rover was performing normally as it scooted towards a small crater called Ulysses last week.
The journey to Ulysses is taking place over “difficult terrain”, NASA said, but as of Sept. 16 the rover was making progress. It made several drives in the five days before then, including a 98-foot (30-meter) sojourn the day after the memory problem.
Opportunity has spent more than 10 years roaming the Red Planet (it was originally designed to last 90 days). As of Sept. 16, it has driven 25.32 miles (40.75 kilometers) — almost as long as a marathon.
Its medium-range science goal right now is to arrive at Marathon Valley, a location that could have clay minerals in it. Clays are often formed in water-soaked environments, meaning this location could add to the list of ancient water-related finds that spacecraft have found on Mars.
Artists concept of India’s Mars Orbiter Mission (MOM) successfully achieving Mars orbit on Sept. 23 EDT/Sept. 24 IST. Credit: ISRO
Story updated[/caption]
Space history was made today when India’s car sized Mars Orbiter Mission (MOM) successfully fired its braking rockets and arrived in Mars orbit today (Sept. 23 EST/Sept. 24 IST) on the nation’s first attempt to explore the Red Planet. Indeed MOM is India’s maiden interplanetary voyager and “created history.”
India thereby joins an elite club of only three other entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).
Wild applause erupted with beaming smiles from ear to ear at India’s Bangalore mission control center after signals confirming a successful full duration firing of the crafts engines for 24 minutes and 13 seconds for the crucial Mars Orbital Insertion (MOI) maneuver that placed MOM into orbit, were received precisely as planned at 10:30 p.m. EDT (Sept 23) or 8:00 IST (Sept. 24).
Traveling at the speed of light it took nearly 12.5 minutes for the good news signals to arrive on Earth from Mars across the vast expanse of some 140 million miles (225 million kilometers) of interplanetary space.
MOM’s Red Planet arrival was webcast live worldwide by the Indian Space Research Organization (ISRO), India’s space agency which designed and developed the orbiter.
ISRO’s website also gave a play by play in real time, announcing the results of critical spacecraft actions along the arrival timeline just moments after they became known.
“India has successfully reached Mars!” declared Indian prime minister Narendra Modi, who watched the events unfold from mission control at ISRO’s Telemetry, Tracking and Command Network (ISTRAC) in Bangalore.
“History has been created today. We have dared to reach out into the unknown and have achieved the near-impossible. I congratulate all ISRO scientists as well as all my fellow Indians on this historic occasion.”
Modi gave a stirring and passionate speech to the team, the nation and a global audience outlining the benefits and importance of India’s space program. He implored the team to strive for even greater space exploration challenges, sounding very much like US President John F. Kennedy over 50 years ago!
“We have gone beyond the boundaries of human enterprise and imagination,” Modi stated. “We have accurately navigated our spacecraft through a route known to very few. And we have done it from a distance so large that it took even a command signal from Earth to reach it more than it takes sunlight to reach us.”
The do-or-die MOI breaking maneuver slowed MOM’s velocity by 1099 m/s (2457 mph) vs. an expected 1098.7 m/s – using the combined thrust of the 440 Newton Liquid Apogee Motor (LAM) main engine and eight smaller 22 newton liquid fueled engines.
The entire MOI maneuver took place fully autonomously under the spacecrafts preprogrammed sole control due to the long communications lag time and also during a partial communications blackout when the probe was traveling behind Mars and the signal was blocked.
MOM’s goal is to study Mars surface features, morphology, mineralogy and the Martian atmosphere with five indigenous scientific instruments. Among other goals it will sniff for methane as a potential marker for biological activity.
MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21.
Modi noted that more than half of all missions to Mars have failed.
“We have prevailed. We have succeeded on our first attempt. We put together the spacecraft in record time, in a mere three years from first studying its feasibility,” Modi elaborated.
“These are accomplishments that will go down in history. Innovation by its very nature involves risk. It is a leap into the dark .. . and the unknown. Space is indeed the biggest unknown out there.”
“Through your brilliance and hard work [at ISRO] you have made a habit of accomplishing the impossible.”
“The success of our space program is a shining symbol of what we are capable of as a nation. Our space program is an example of achievement which inspires us all .. and future generations … to strive for excellence ourselves.”
“Space technology translates to space applications here on Earth … to improve the life of our citizens.”
“Let us set ourselves even more challenging goals and strive even harder to achieve them. Let us push our boundaries. And then push some more, and push some more!” said Modi jubilantly.
MOM now joins Earth’s newly fortified armada of seven spacecraft currently operating on Mars surface or in orbit – including MAVEN, Mars Odyssey (MO), Mars Reconnaissance Orbiter MRO), Mars Express (MEX), Curiosity and Opportunity.
“MOM and MAVEN will keep each other company in orbit,” said Modi.
Today, MOM concluded her over 10 month interplanetary voyage of some 442 million miles (712 million km) from Earth to the Red Planet.
“Congratulations to the MOM team on behalf of the entire MAVEN team! Here’s to exciting science from the two latest missions to join the Mars fleet!”, wrote Bruce Jakosky, MAVEN Principal Investigator, in a post on the ISRO MOM facebook page.
MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV).
The flight path of the approximately $73 Million probe was being continuously monitored by the Indian Deep Space Network (IDSN) and NASA JPL’s Deep Space Network (DSN) to maintain its course.
“The events related to Mars Orbit Insertion progressed satisfactorily and the spacecraft performance was normal. The Spacecraft is now circling Mars in an orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of orbit with respect to the equatorial plane of Mars is 150 degree, as intended. In this orbit, the spacecraft takes 72 hours 51 minutes 51 seconds to go round the Mars once,” according to an ISRO statement.
MOM is expected to investigate the Red Planet for at least six months.
Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.
The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.
Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Don’t panic! NASA has been creating some great posters for their missions and Expedition crews to the International Space Stations, and this newest one will warm the heart of any Douglas Adams fan. As we all know, 42 is the Answer to the Ultimate Question of Life, the Universe and Everything. Right now, the first half of the Expedition 42 crew has a targeted launch date of Nov. 23, 2014.
Featuring (from left to right):
Terry Virts and Anton Shkaplerov as Zaphod Beeblebrox
Aleksandr Samokutyayev as Humma Kavula
Barry “Butch” Wilmore as Arthur Dent
Elena Serova as Ford Prefect
Samantha Cristoforetti as Trillian
Guest star: Robonaut, as Marvin the Paranoid Android
Samantha Cristoforetti posted this image on her Flickr page and said the family of Douglas Adams gave the crew permission to do the photo-shoot for this poster, and added that the Point-of-View gun is not Photoshopped, but a real creation.
While any image from the Apollo program is stunning, some of the more iconic ones are used over and over again while equally amazing pictures remain relatively unknown.
In the same spirit, we’ve posted some Apollo images below from the Lunar and Planetary Institute, which maintains a catalog of NASA shots (including some in high-resolution) on its website. We also recommend the 1999 Michael Light book Full Moon, which has dozens of lesser-known Apollo shots of high quality.
Two days out from her history making date with destiny, India’s Mars Orbiter Mission (MOM) successfully completed a crucial test firing of the spacecraft’s main liquid engine to confirm its operational readiness for the critical Mars Orbital Insertion (MOI) engine firing on Wednesday morning Sept. 24 IST (Tuesday evening Sept. 23 EDT).
Engineers at the Indian Space Research Organization (ISRO) which designed and developed MOM successfully fired the probes 440 Newton Liquid Apogee Motor (LAM) earlier today, Sept. 22, 2014, for a duration of 3.968 seconds at 1430 hrs IST (Indian Standard Time), according to today’s announcement from ISRO.
“We had a perfect burn for four seconds as programmed. MOM will now go-ahead with the nominal plan for Mars Orbital Insertion,” said ISRO.
MOM counts as India’s first interplanetary voyager and the nation’s first manmade object to orbit the 4th rock from our Sun – if all goes well.
The LAM was last fired over nine months ago on December 01, 2013 to inject MOM into a ten month long interplanetary Trans Mars Trajectory.
Today’s operation verified that LAM is fully operational to perform the do-or-die MOI braking burn on Sept. 24 targeted for 07:17:32 hrs IST (Sept. 23, 9:47:32 p.m. EDT) that will place the probe into a highly elliptical 377 km x 80,000 km orbit around the Red Planet.
You can watch all the action live on ISRO’s website during the streaming webcast starting at 6:45 IST (9:15 p.m. EDT): http://www.isro.org/
The burn was also marks the spacecraft’s final Trajectory Correction Maneuver known as TCM-4 and changed its velocity by 2.18 meters/second.
“The trajectory has been corrected,” said ISRO.
The $69 Million probe is being continuously monitored by the Indian Deep Space Network (IDSN) and NASA JPL’s Deep Space Network (DSN) to maintain its course.
ISRO space engineers are taking care to precisely navigate MOM to keep it on course during its long heliocentric trajectory from Earth to Mars through a series of in flight Trajectory Correction Maneuvers (TCMs).
The last TCM was successfully performed on June 11 by firing the spacecraft’s 22 Newton thrusters for a duration of 16 seconds. TCM-1 was conducted on December 11, 2013 by firing the 22 Newton Thrusters for 40.5 seconds.
Engineers determined that a TCM planned for August was not needed.
On “D-Day” as ISRO calls it, the LAM and the eight smaller 22 Newton liquid fueled engines are scheduled to fire for a duration of about 24 minutes.
The MOI braking burn will be carried out fully autonomously since MOM will be eclipsed by Mars due to the Sun-Earth-Mars geometry about five minutes prior to initiation of the engine firing.
Round trip radio signals communicating with MOM now take some 21 minutes.
The 1,350 kilogram (2,980 pound) probe has been streaking through space for over ten months.
MOM follows hot on the heels of NASA’s MAVEN spacecraft which successfully achieved Red Planet orbit less than a day ago on Sunday, Sept. 22, 2014.
“We wish a successful MOI for MOM,” said Bruce Jakosky, MAVEN principal investigator with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder (CU/LASP) at MAVEN’s post MOI briefing earlier today.
MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nation’s indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.
Watch this cool animation showing the interplanetary path of MOM and MAVEN from Earth to Mars sent to me be an appreciative reader – Sankaranarayanan K V:
Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.
The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri-color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.
Both MAVEN’s and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars’ climate into its cold, desiccated state of today.
If all goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).
Stay tuned here for Ken’s continuing MOM, MAVEN, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.
138 million miles and 10 months journey from planet Earth, MAVEN moved into its new home around the planet Mars this evening. Flight controllers at Lockheed Martin Space Systems in Littleton, Colorado anxiously monitored the spacecraft’s progress as onboard computers successfully eased the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft into Mars orbit at 10:24 p.m. Eastern Daylight Time.
Shortly before orbital insertion, six small thrusters were fired to steady the spacecraft so it would enter orbit in the correct orientation. This was followed by a 33-minute burn to slow it down enough for Mars’ gravity to capture the craft into an elliptical orbit with a period of 35 hours. Because it takes radio signals traveling at the speed of light 12 minutes to cross the gap between Mars and Earth, the entire orbital sequence was executed by onboard computers. There’s no chance to change course or make corrections, so the software has to work flawlessly. It did. The burn, as they said was “nominal”, science-speak for came off without a hitch.
“This was a very big day for MAVEN,” said David Mitchell, MAVEN project manager from NASA’s Goddard Space Flight Center, Greenbelt, Maryland. “We’re very excited to join the constellation of spacecraft in orbit at Mars and on the surface of the Red Planet. Congratulations to the team for a job well done today.”
Over the next six weeks, controllers will test MAVEN’s instruments and shape its orbit into a long ellipse with a period of 4.5 hours and a low point of just 93 miles (150 km), close enough to get a taste of the planet’s upper atmosphere. MAVEN’s one-Earth-year long primary mission will study the composition and structure of Mars’ atmosphere and how it’s affected by the sun and solar wind. At least 2,000 Astronomers want to determine how the planet evolved from a more temperate climate to the current dry, frigid desert.
Vast quantities of water once flowed over the dusty red rocks of Mars as evidenced by ancient riverbeds, outflow channels carved by powerful floods, and rocks rounded by the action of water. For liquid water to flow on its surface without vaporizing straight into space, the planet must have had a much denser atmosphere at one time.
Mars’ atmospheric pressure is now less than 1% that of Earth’s. As for the water, what’s left today appears locked up as ice in the polar caps and subsurface ice. So where did it go all the air go? Not into making rocks apparently. On Earth, much of the carbon dioxide from volcanic outgassing in the planet’s youth dissolved in water and combined with rocks to form carbon-bearing rocks called carbonates. So far, carbonates appear to be rare on Mars. Little has been seen from orbit and in situ with the rovers.
During the year-long mission, MAVEN will dip in and out of the atmosphere some 2,000 times or more to measure what and how much Mars is losing to space. Without the protection of a global magnetic field like the Earth’s, it’s thought that the solar wind eats away at the Martian atmosphere by ionizing (knocking off electrons) its atoms and molecules. Once ionized, the atoms swirl up the magnetic field embedded in the wind and are carried away from the planet.
Scientists will coordinate with the Curiosity rover, which can determine the atmospheric makeup at ground level. Although MAVEN won’t be taking pictures, its three packages of instruments will be working daily to fill gaps in the story of how Mars became the Red Planet and we the Blue.
For more on the ongoing progress of MAVEN later tonight and tomorrow, stop by NASA TV online. You can also stay in touch by following the hashtags #MAVEN and #JourneytoMars on social media channels including Twitter, Instagram and Facebook. Twitter updates will be posted throughout on the agency’s official accounts @NASA, @MAVEN2Mars and @NASASocial.
SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission.
Credit: Ken Kremer – kenkremer.com
Story/launch date/headline updated[/caption]
KENNEDY SPACE CENTER, FL – SpaceX is on the cusp of launching the company’s fourth commercial resupply Dragon spacecraft mission to the International Space Station (ISS) shortly after midnight, Saturday, Sept. 20, 2014, continuing a rapid fire launch pace and carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.
Final preparations for the launch are underway right now at the Cape Canaveral launch pad with the stowage of sensitive late load items including a specially designed rodent habitat housing 20 mice.
Update 20 Sept: Poor weather scrubs launch to Sept. 21 at 1:52 a.m.
Fueling of the two stage rocket with liquid oxygen and kerosene propellants commences in the evening prior to launch.
If all goes well, Saturday’s launch of a SpaceX Falcon 9 rocket would be the second in less than two weeks, and the fourth over the past ten weeks. The last Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite on Sept. 7 – detailed here.
“We are ready to go,” said Hans Koenigsmann, SpaceX vice president of mission assurance, at a media briefing at the Kennedy Space Center today, Sept. 19.
Liftoff of the SpaceX Falcon 9 rocket on the CRS-4 mission bound for the ISS is targeted for an instantaneous window at 2:14 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at the moment Earth’s rotation puts Cape Canaveral in the flight path of the ISS.
You can watch NASA’s live countdown coverage which begins at 1 a.m. on NASA Television and NASA’s Launch Blog: http://www.nasa.gov/multimedia/nasatv/
The weather forecast is marginal at 50/50 with rain showers and thick clouds as the primary concerns currently impacting the launch site.
The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
The CRS-4 missions marks the start of a new era in Earth science. The truck of the Dragon is loaded Dragon with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.
RapidScat is NASA’s first research payload aimed at conducting Earth science from the stations exterior. The stations robot arm will pluck RapidScat out of the truck and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.
Dragon will also carry the first 3-D printer to space for studies by the astronaut crews over at least two years.
The science experiments and technology demonstrations alone amount too over 1644 pounds (746 kg) and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.
“This flight shows the breadth of ISS as a research platform, and we’re seeing the maturity of ISS for that,” NASA Chief Scientist Ellen Stofan said during a prelaunch news conference held today, Friday, Sept. 19 at NASA’s Kennedy Space Center.
After a two day chase, Dragon will be grappled and berth at an Earth-facing port on the stations Harmony module.
The Space CRS-4 mission marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
This week, SpaceX was also awarded a NASA contact to build a manned version of the Dragon dubbed V2 that will ferry astronauts crews to the ISS starting as soon as 2017.
NASA also awarded a second contact to Boeing to develop the CST-100 astronaut ‘space taxi’ to end the nation’s sole source reliance on Russia for astronaut launches in 2017.
Dragon V2 will launch on the same version of the Falcon 9 launching this cargo Dragon
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
NASA’s anticipated $3 billion to $4 billion annual budget for the International Space Station is “overly optimistic”, a new report from NASA’s Inspector General says.
Transportation costs will likely rise when NASA uses commercial spacecraft to access the station instead of Russian Soyuzes, the report said. Also, if international partners don’t commit to extending the station four extra years to 2024, NASA will need to pick up more of the financial burden.
“While ISS program officials have been seeking ways to reduce costs and consolidate resources, it is unclear whether these efforts will be sufficient to address anticipated cost increases, particularly because the program does not expect to maintain any funding reserves over the next several years,” the report reads.
In January, the Obama administration approved NASA’s request to extend the ISS until 2024. At the time, NASA said the extension would be beneficial for science and also for the companies that will send spacecraft to the station, which right now appear to be SpaceX and Boeing. (NASA has been purchasing Soyuz seats since the shuttle retired in 2011, and U.S. flights are slated to start up again in 2017.)
There are 16 nations participating in space station operations, however, and any extension may require the approval of some or all of them. Political tensions with major partner Russia (which manages much of the station) have increased since the Ukrainian invasion crisis erupted earlier this year, prompting international condemnation. NASA cut most scientific ties with Russia in April, but preserved the station — an activity the agency says is proceeding normally, despite the crisis.
Besides political ramifications, the report points to technical issues with the ISS that could make an extension difficult. Its solar arrays are degrading faster than predicted, causing power limitations, and NASA has limited capability to lift large replacements parts to the station since the shuttle’s retirement.
Even the station’s promise of science return is proving to be a challenge. ISS United States laboratory manager Center for the Advancement of Science in Space (CASIS) is facing “issues related to funding and patent licenses and data rights” that are “deterring commercial stakeholders from conducting research on the ISS,” the report notes.
The report suggests that NASA keep trying to secure commitments from the ISS partners to share station costs, and that the agency “prioritize the human health risks to long-term exploration” in terms of its scientific research. While the report praised NASA for taking its recommendations seriously, it chastised the agency for not having a list of risks to the ISS ready yet.
NASA’s spending on the ISS was $2.9 billion in fiscal 2013, with 43% of that money going to system operations and maintenance, and 34% to crew and cargo transportation. About 10% is allocated to research.
The report was signed by Paul Martin, the inspector general, and can be read in full at this link. This news report just skims the surface of what the actual report says, so we highly encourage you to read it.
NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) orbiter is oh-so-close to its destination after a 10-month journey. It’s scheduled to arrive in orbit Sunday (Sept. 21) around 9:50 p.m. EDT (1:50 a.m. UTC) if all goes well, but there are a few things that need to happen, in order, first.
One big obstacle is already out of the way. MAVEN controllers had expected to do final engine burn tweaks to put it on the right trajectory, but the mission is so on-target that it won’t be needed.
“#MAVEN orbit insertion sequence has been activated on the s/c. No additional ground intervention is needed to enter #Mars’ orbit on Sunday,” the official account tweeted yesterday (Sept. 18).
So what does the sequence entail? MAVEN will need to turn on its six thruster engines for a 33-minute braking maneuver to slow it down. This will allow the gravity of Mars to “capture” the spacecraft into an elliptical or oval-shaped orbit.
Should that all go safely, MAVEN still has a lot of work to do before being ready to capture information about the upper atmosphere of the Red Planet. All spacecraft go through a commissioning phase to ensure their instruments are working correctly and that they are in the correct orbit and orientation to do observations.
Controllers are interested in learning about the comet and its effect on the upper atmosphere, so they will stop the commissioning to make those measurements. MAVEN will also be oriented in such a way that its solar panels are protected as much as possible from the dust, although scientists now believe the risk of strikes is very low.
MAVEN is expected to work at Mars for a year, but investigators are hoping it will be for longer so that the atmosphere can be tracked through more of a solar cycle. The Sun’s activity is a major influencer on the atmosphere and the “stripping” of molecules from it over time, which could have thinned Mars’ atmosphere in the ancient past.
The spacecraft will also serve as a backup communications and data relay for the Opportunity and Curiosity rovers on the surface, which might be needed if some of the older NASA Mars spacecraft that fulfill that function experience technical difficulties.
While NASA often speaks about the power of Earth observation from the International Space Station, the picture above from one of the astronauts on board now shows something else — you can get an awesome view of the Milky Way.
With the view unobscured by the atmosphere, the picture from Expedition 41 European astronaut Alexander Gerst shows that his perch on the ISS is pretty amazing. We wonder how it compares to some of the desert or mountaintop observatories here on Earth! And there are astronomical experiments on board, such as this one that may have found dark matter.
Below we’ve handpicked some of the best recent pictures from Gerst and NASA astronaut Reid Wiseman, a crewmate, as they take in the wonder of our planet and the universe.