Need A Summer Vacation? Pictures Allow You To Tour The Solar System For Free

The shadow of the Opportunity rover lies on the Martian surface in this picture taken on Sol 3752, on Aug. 13. The rover is on the west rim of Endeavour Crater, near the Martian equator. Its landing site was Meridani Planum. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.

Many of us in the northern hemisphere are on summer vacation right now, and others are dreaming of it. While taking off somewhere exotic requires time and money, looking at pictures around the solar system provides cheaper thrills — in stranger places!

Several spacecraft roaming our planetary neighborhood regularly send back raw images of what they’re seeing. Here are some views from them taken in the past week.

Mars: After setting an off-word driving record, the Opportunity rover is still trundling on Mars after more than 10 years of operations. One of its latest raw images, above, shows its shadow and tracks on the surface of the Red Planet. Its heading to a destination called “Marathon Valley”, which is a likely spot for clay materials, and recently observed a transit of the moon Phobos. The rover’s computer had a brief reset, but is in good health besides that.

Tracks of the Curiosity rover crisscross Mars in this picture taken on Sol 719 (Aug. 14, 2014). Credit: NASA/JPL-Caltech
Tracks of the Curiosity rover crisscross Mars in this picture taken on Sol 719 (Aug. 14, 2014). Credit: NASA/JPL-Caltech

Mars: The Curiosity rover — which recently celebrated its two-year Earth birthday on Mars — has been on the move itself. Scientists are carefully moving the rover to its next science destination, about 1/3 of a mile (500 meters) away. The challenge is the extremely rocky terrain is damaging the rover’s wheels, but NASA said a recent drive through a rocky stretch produced less wear than feared.

A lava surface in southern Elysium Planitia taken by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Credit: NASA/JPL/University of Arizona
A lava surface in southern Elysium Planitia taken by the Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). Credit: NASA/JPL/University of Arizona

Mars: These strange features spotted by the Mars Reconnaissance Orbiter are puzzling scientists. Usually the cones you see are indicative of lava features, but these are smaller than usual. “What’s really odd here is that the cones are associated with lighter areas with polygonal patterns,” stated the University of Arizona on its blog for the High Resolution Imaging Science Experiment (HiRISE). “Such polygons are commonly visible on the denser portions of lava flows, while the rougher areas have more broken-up low-density crust.”

A raw image of the Sun taken by the Solar and Heliospheric Observatory (SOHO) on Aug. 15, 2014. Credit: ESA/NASA/SOHO
A raw image of the Sun taken by the Solar and Heliospheric Observatory (SOHO) on Aug. 15, 2014. Credit: ESA/NASA/SOHO

Sun: The Solar and Heliospheric Observatory (SOHO) is one of a few sentinels keeping watch over the Sun for sunspots and other signs of solar activity. This allows scientists to make better predictions about when solar storms sweep over our planet, which is important for protecting satellites and infrastructure from the worst of these storms.

A raw image of Saturn taken by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute
A raw image of Saturn taken by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

Saturn: The Cassini spacecraft has been busily gazing at Saturn and its moons  in the past week, including looking at temperatures in the atmosphere (specifically, in the upper troposphere and tropopause) in the gas giant. Just visible in this image is a huge hexagonal storm that scientists previously said acts somewhat like the Earth’s ozone hole.

A raw view of Titan taken by the Cassini spacecraft Aug. 13, 2014. Credit: NASA/JPL/Space Science Institute
A raw view of Titan taken by the Cassini spacecraft Aug. 13, 2014. Credit: NASA/JPL/Space Science Institute

Titan: Saturn’s largest moon — which contains organic compounds that could be precursors to life’s chemistry — is undergoing some changes as summer approaches. A few days ago, scientists noted that clouds are starting to form in Titan’s northern hemisphere. While they’re not sure yet if it will herald summer, scientists added that the lack of clouds before that defied models.

A close-up view of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Aug. 7, 2014. Credit:  ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
A close-up view of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Comet 67P/Churyumov–Gerasimenko: The Rosetta spacecraft just arrived at this comet on Aug. 6, and has been sending back a few images of this small body that is speeding towards the Sun. You may recognize this particular image as part of the basis for a 3-D image that was released yesterday. Meanwhile, team members are examining dust production of the comet, which has already started as it heads to its closest Sun approach (between Earth and Mars) in about a year.

Cygnus Commercial Cargo Ship ‘Janice Voss’ Finishes Resupply Mission and Departs Space Station

Cygnus Orb-2 spacecraft ‘Janice Voss’ bids farewell to the ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. It's set to reenter the atmosphere on Aug. 17. Credit: NASA TV

The Cygnus commercial cargo ship ‘Janice Voss’ built by Orbital Sciences finished it’s month-long resupply mission and bid farewell to the International Space Station (ISS) this morning, Friday, Aug. 15, after station astronauts released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.

The on time release and departure took place as the massive orbiting lab complex was soaring 260 miles (400 km) above the west coast of Africa over the coastline of Namibia.

Expedition 40 Flight Engineer and ESA astronaut Alexander Gerst was in charge of commanding the vessels actual release from the snares on the end effector firmly grasping Cygnus at the terminus of the 58-foot (17-meter) long Canadian robotic arm.

Gerst was working at the robotics work station inside the seven windowed cupola, backed by fellow station crew member and NASA astronaut Reid Wiseman.

About two minutes later, Cygnus fired its thrusters to depart the million pound station and head toward a destructive fiery reentry into the Earth’s atmosphere over the Pacific Ocean on Sunday, Aug. 17.

Ground controllers at Mission Control, Houston had paved the way for Cygnus release earlier this morning when they unberthed the cargo ship from the Earth-facing port of the Harmony module at about 5:14 a.m. EDT.

Cygnus Orb-2 spacecraft ‘Janice Voss’ unberthed from ISS at 5:14 a.m.  EDT, Friday, Aug. 15, 2014. Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ unberthed from ISS at 5:14 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

This mission dubbed Orbital-2, or Orb-2, marks the second of at least eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module named ‘SS Janice Voss’ during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

The supplies are critical to keep the station flying and humming with research investigations.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

The “Dove” flock of nanosatellites will be deployed from the Kibo laboratory module’s airlock beginning next week. “They will collect continuous Earth imagery documenting natural and man-made conditions of the environment to improve disaster relief and increase agricultural yields” says NASA.

Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m.  EDT, Friday, Aug. 15, 2014.  Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

Cygnus arrived at the station after a three day chase. It was captured in open space on July 16, 2014 at 6:36 a.m. EDT by Commander Steve Swanson working at a robotics workstation in the cupola.

The by the book arrival coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission by Neil Armstrong, Buzz Aldrin and Michael Collins.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, Rosetta, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

How A Comet-Chasing Spacecraft ‘Likely’ Brought Interstellar Dust Back To Earth

Artist's impression of the Stardust spacecraft. Credit: NASA/JPL-Caltech

If the scientists are right, a NASA spacecraft brought stuff from outside the solar system back to Earth. The Stardust spacecraft, which was originally tasked with chasing after Comet Wild 2, brought our planet seven grains that look fluffier than expected.

While the scientists say that more tests are needed to determine these particles originated from outside the solar system, they are confident enough to publish a paper on the findings today.

“They are very precious particles,” stated Andrew Westphal, a physicist at the University of California, Berkeley’s space sciences laboratory who led 65 co-authors who created a paper on the research.

What’s more, the findings came with a big assist from volunteers who participated in a crowdsourced project to look at dust tracks in Stardust’s aerogel detector.

The Stardust spacecraft was launched in February 1999 to gather samples of Comet Wild 2 and return them to our planet. Stardust also attempted to collect interstellar dust twice in 2000 and 2002 for 195 days. Its mission was extended in 2011 to look at Comet Tempel-1, the comet that Deep Impact crashed into.

The sample return capsule, however, separated from the spacecraft in January 2006 as planned while Stardust flew by our planet, landing safely on Earth. Comet samples and interstellar samples were stored separately. Scientists then began the work of seeing what the spacecraft had picked up.

An electron scanning microscope image of an interstellar dust impact on the Stardust spacecraft. The crater is 280 nanometers across. Residue from the dust particle is barely visible in the center. Credit: Rhonda Stroud, Naval Research Laboratory
An electron scanning microscope image of an interstellar dust impact on the Stardust spacecraft. The crater is 280 nanometers across. Residue from the dust particle is barely visible in the center. Credit: Rhonda Stroud, Naval Research Laboratory

Here’s where the volunteers came in. These people, who called themselves “Dusters”, participated in a project called Stardust@home that put more than a million images online for people to examine.

Three particles, dubbed “Orion”, “Hylabrook” and “Sorok”, were found in the aerogel detectors after volunteers discovered their tracks. (Many more tracks were discovered, but only a handful led to dust. Also, 100 tracks and about half of the 132 aerogel panels still need to be analyzed.)

Four more particles were tracked down in aluminum foils between the aerogel tiles. That wasn’t originally where they were supposed to be collectors, but despite their “splatted” and melted appearance there was enough left for scientists to analyze. (About 95% of the foils still need to be examined.)

One of the two largest specks found in the Stardust spacecraft that are suspected interstellar dust. This containned olivine, spinel, magnesium and iron. Credit: Westphal et al. 2014, Science/AAAS
One of the two largest specks found in the Stardust spacecraft that are suspected interstellar dust. This containned olivine, spinel, magnesium and iron. Credit: Westphal et al. 2014, Science/AAAS

So what did the scientists see? They describe the particles as fluffy, sometimes appearing to come from a mix of particles. The largest ones included crystalline material called olivine (a magnesium-iron-silicate). More testing is planned to see what their abundances of different types of oxygen are, which could help better understand where they came from.

Additionally, three of the foil particles had sulfur compounds, which is controversial because some astronomers believe that isn’t possible in interstellar dust particles.

The research was published in the journal Science. Twelve more papers on Stardust will be published in Meteoritics & Planetary Science.

Sources: University of California – Berkeley

Earth Nightlights (and Nightlife!) Shine In Stellar Shots From Space Station

A Soyuz spacecraft on the International Space Station (front) above the lights of Europe. Picture taken during Expedition 40. Credit: Reid Wiseman/Twitter

A lot of action happens on Earth at night! Just ask NASA’s Reid Wiseman, a prolific picture-tweeter who recently uploaded a series of images of night lights shining all around the world.

From his perch on the International Space Station, Wiseman sent pictures showing borders from space, that glowing punch in the desert landscape that is Dubai, and clouds rolling in over the bright lights of Los Angeles. Check out some samples below the jump.

Spacecraft Stormchasing: Titan Clouds Swirl As Saturn Moon Approaches Northern Summer

Clouds swirl near Titan's north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute

Swoosh! At long last, and later than models predicted, clouds are starting to appear on Titan’s nothern hemisphere. The region is just starting to enter a seven-year-long summer, and scientists say this could be an indication of coming summer storms there.

This moon of Saturn is of particular interest to astrobiologists because it has hydrocarbons (like ethane and methane), which are organic molecules that are possible precursors to the chemistry that made life possible. But what is also neat about Titan is it has its own weather system and liquid cycle — which makes it closer to Earth than to our own, nearly atmosphere-less Moon.

“The lack of northern cloud activity up til now has surprised those studying Titan’s atmospheric circulation,” wrote Carolyn Porco, the imaging lead for Cassini, in a message distributed to journalists.

“Today’s reports of clouds, seen a few weeks ago, and other recent indicators of seasonal change, are exciting for what they imply about Titan’s meteorology and the cycling of organic compounds between northern and southern hemispheres on this unusual moon, the only one in our solar system covered in liquid organics.”

Clouds swirl near Titan's north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute
Clouds swirl near Titan’s north pole in this annotated still image from the Cassini mission. Credit: NASA/JPL-Caltech/Space Science Institute

The pictures were taken by the Cassini spacecraft, which has been orbiting Saturn and its moons since 2004. The satellite arrived at the system in time to see clouds forming in the southern hemisphere, but the moon has been nearly bereft of clouds since a large storm occurred in 2010.

This particular cloud system occurred over Ligeia Mare, which is near Titan’s north pole, and included gentle wind speeds of about seven to 10 miles per hour (11 to 16 kilometers per hour.)

The sequence takes place between July 20 and 22, with most of the pictures separated by about 1-2 hours (although there is a 17.5-hour jump between frames 2 and 3.)

Sources: NASA Jet Propulsion Laboratory and Cassini Imaging Central Laboratory for Operations (CICLOPS)

Europe’s Last ATV Cargo Ship Docks Safely At Space Station

The European Space Agency cargo ship Georges Lemaître, the last automated transfer vehicle, docked safely at the International Space Station Aug. 12, 2014. Credit: NASA/Twitter

It took two weeks to get there, but all indications is it was worth the wait. The final automated transfer vehicle of the European Space Agency successfully docked with the International Space Station today (Aug. 12) at 9:30 a.m. EDT (1:30 p.m. UTC) — right on time.

The cargo vehicle has about seven tons of stuff on board, ranging from science experiments to fresh food. The astronauts always enjoy it when fruit and other new food arrives in these shipments, given so many of their meals are freeze-dried.

Also on board was a new rendezvous system manufactured by Canadian company Neptec, which is testing out new ways of docking for future cargo vehicles. And when it’s time for Georges Lemaître to leave the station around January 2015, sensors inside will monitor its planned destruction to make future cargo vehicles better equipped to survive re-entry.

Georges Lemaître left Earth July 29 from French Guiana, as did its four predecessors. The series of ATVs started in March 2008 when Jules Verne departed to resupply the Expedition 16 crew. The other vehicles were called Johannes Kepler, Edoardo Amaldi and Albert Einstein.

The new vehicle will be opened up on Wednesday. It will be a busy week for cargo vehicles at the station, as the privately constructed Cygnus spacecraft (from Orbital Sciences) is expected to leave the station on Friday at 6:40 a.m. EDT (10:40 a.m. UTC). Both Alexander Gerst (ESA) and Reid Wiseman (NASA) will release Cygnus using Canadarm2, a robotic arm on station.

Coma Dust Collection Science starts for Rosetta at Comet 67P/Churyumov-Gerasimenko

Rosetta NAVCAM image taken on 10 August 2014 from a distance of about 110 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credit: ESA/Rosetta/NAVCAM

With the historic arrival of the European Space Agency’s (ESA) Rosetta spacecraft at destination Comet 67P/Churyumov-Gerasimenko flawlessly accomplished on August 6, 2014 after a decade long journey, ground breaking up close science at this bizarre world has begun while the team diligently and simultaneously searches for a landing site for the attached Philae comet lander.

Rosetta started collecting cometary dust from the coma encircling the comet’s nucleus with the onboard COSIMA instrument on Sunday, August 10, 2014 as the spacecraft orbits around and ahead of the icy wanderer from a distance of approximately 100 kilometers (62 miles). See coma image below.

Hopes are high that unprecedented science discoveries await at this alien world described as a “Scientific Disneyland,” by Mark McCaughrean, senior scientific adviser to ESA’s Science Directorate, during ESA’s live arrival day webcast. “It’s just astonishing.”

COSIMA stands for Cometary Secondary Ion Mass Analyser and is one of Rosetta’s suite of 11 state-of-the-art science instruments with a combined mass of 165 kg.

Its purpose is to conduct the first “in situ” analysis of the grains of dust particles emitted from the comets nucleus and determine their physical and chemical characteristics, including whether they are organic or inorganic – in essence what is cometary dust material made of and how it differs from the surface composition.

COSIMA will collect the coma dust using 24 specially designed ‘target holders’ – the first of which was opened to study the comets environment on Aug. 10. Since the comet is not especially active right now, the team plans to keep the target holder open for at least a month and check the progress of any particle collections on a weekly basis.

COSISCOPE image of the first target taken on 19 July 2014 (before the exposure, on 10 August, for cometary dust collection). The 1x1 cm target consists of a gold plate covered with a thin layer (30 µm) of gold nanoparticles (“gold black”). Illumination is by two LEDs, from the right side in this case. The bright dots on the vertical strip on the right side are used for target identification and for defining the coordinate system. Credits: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S
COSISCOPE image of the first target taken on 19 July 2014 (before the exposure, on 10 August, for cometary dust collection). The 1×1 cm target consists of a gold plate covered with a thin layer (30 µm) of gold nanoparticles (“gold black”). Illumination is by two LEDs, from the right side in this case. The bright dots on the vertical strip on the right side are used for target identification and for defining the coordinate system. Credits: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S

In fact the team says the coma environment “is still comparable to a high-quality cleanroom”at this time.

But everyone expects that to change radically as Rosetta continues escorting Comet 67P as it loops around the sun, getting closer and warming the surface every day and until reaching perihelion in August 2015.

COSIMA is managed by the Max Planck Institute for Solar System Research (Max-Planck-Institut für Sonnensystemforschung ) in Katlenburg-Lindau, Germany, with Principal Investigator Martin Hilchenbach.

There are also substantial contributions from the Institut d’Astrophysique Spatiale in France, Finnish Meteorological Institute, Osterreichisches Forschungszentrum Seibersdorf and more.

The target holders measure about one square centimeter and were developed by the Universität der Bundeswehr in Germany.

Each of these targets measures one square centimeter and is comprised of a gold plate covered with a thin 30 µm layer of gold nanoparticles (“gold black”) which the team says should “decelerate and capture cometary dust particles impacting with velocities of ~100 m/s.”

The target will be illuminated by a pair of LED’s to find the dust particles. The particles will be analyzed by COSIMA’s built in mass spectrometer after being located on the target holder by the French supplied COSISCOPE microscopic camera and ionized by a beam of indium ions.

Photo of the COSIMA (Cometary Secondary Ion Mass Analyser) instrument on Rosetta.  Credit: Max Planck Institute for Solar System Research/ESA
Photo of the COSIMA (Cometary Secondary Ion Mass Analyser) instrument on Rosetta. Credit: Max Planck Institute for Solar System Research/ESA

The team expects any grains found on the first target to be analyzed by mid-September 2014.

“COSIMA uses the method of Secondary Ion Mass Spectrometry. They will be fired at with a beam of Indium ions. This will spark individual ions (we say secondary ions) from their surfaces, which will then be analysed with COSIMA’s mass spectrometer,” according to a description from the COSIMA team.

The mass spec has the capability to analyze the elemental composition in an atomic mass range of 1 to 4000 atomic mass units, determine isotopic abundances of some key elements, characterize organic components and functional groups, and conduct mineralic and petrographic characterization of the inorganic phases, all of which will inform as as never before about solar system chemistry.

Comets are leftover remnants from the formation of the solar system. Scientists believe they delivered a vast quantity of water to Earth. They may have also seeded Earth with organic molecules – the building blocks of life as we know it.

Any finding of organic molecules and their identification by COSIMA will be a major discovery for Rosetta and ESA and inform us about the origin of life on Earth.

Data obtained so far from Rosetta’s VIRTIS instrument indicates the comets surface is too hot to be covered in ice and must instead have a dark, dusty crust.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…….

Read my Rosetta series here:

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

Photo Gallery: Step Right Up And Tour Rosetta’s Comet! Where Shall We Land?

A picture of Comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/NAVCAM

What’s one of the first things you do when arriving at a new destination? Likely it would be scoping out the local neighborhood. Getting a sense of its terrain and the good things to do around there.

That’s part of what Rosetta’s team is working on since arriving at its comet early in the morning of Aug. 6 (Eastern time). While only a few pictures have been beamed back to the public so far of Comet 67P/Churyumov-Gerasimenko, the glimpses of its surface are tantalizing. Which is important, because a little spacecraft is on its way there.

As the team busily calibrates its instruments and snaps pictures of the surface, one of their first tasks will be to pick a landing site for Philae, the machine that is scheduled to leave Rosetta and actually touch softly down on the surface in November. This is the first time such a soft-landing has been attempted, and it’s been a long decade of waiting for the scientists who sent the two spacecraft on their way.

Picking a spot will be difficult for the team, they explained last week. The gravity is light and the terrain is not only difficult to navigate, but also hard to choose from. Would you prefer a crater or a cliff? That will be what science investigators will examine in the coming months.

As they do that, check out the latest pictures of the comet in the gallery below.

A view of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft on Aug. 9, 2014. Credit: ESA/Rosetta/NAVCAM
A view of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft on Aug. 9, 2014. Credit: ESA/Rosetta/NAVCAM
A dark hollow beckons in this picture of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft Aug. 5, 2014. Credit:  ESA/Rosetta/NAVCAM
A dark hollow beckons in this picture of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft Aug. 5, 2014. Credit: ESA/Rosetta/NAVCAM
The Rosetta spacecraft captured the "rubbe duckie" shape of Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014. Credit: ESA/Rosetta/NAVCAM
The Rosetta spacecraft captured the “rubbe duckie” shape of Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014. Credit: ESA/Rosetta/NAVCAM
The mottled surface of Comet 67P/Churyumov-Gerasimenko beckons in this picure taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/NAVCAM
The mottled surface of Comet 67P/Churyumov-Gerasimenko beckons in this picure taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/NAVCAM

Pictures: Punishing Mars Plateau For Curiosity Rover And Damaged Wheels

NASA's Curiosity rover looks across a rock field in this raw picture from Mars taken Aug. 8, 2014. Credit: NASA/JPL-Caltech

This picture alone illustrates the challenge NASA has as it slowly moves the Curiosity rover across Mars to its mountainous destination. You can see rocks surrounding the rover on Sol 713 (on Aug. 8), which is a challenge because of the ongoing wear and tear on Curiosity’s aluminum wheels.

In mid-July, Curiosity crossed one of the most difficult stretches of terrain yet since NASA spotted the damage and took measures to mitigate further problems, which includes picking out the smoothest terrain possible for its rover — which just celebrated two years on the Red Planet.

“For about half of July, the rover team at NASA’s Jet Propulsion Laboratory in Pasadena, California, drove Curiosity across an area of hazardous sharp rocks on Mars called ‘Zabriskie Plateau’,”  NASA wrote in a recent press release.

A closeup of Curiosity's wheels on Mars on Aug. 9, 2014. Credit: NASA/JPL-Caltech
A closeup of Curiosity’s wheels on Mars on Aug. 9, 2014. Credit: NASA/JPL-Caltech

“Damage to Curiosity‘s aluminum wheels from driving across similar terrain last year prompted a change in route, with the plan of skirting such rock-studded terrain wherever feasible. The one-eighth mile (200 meters) across Zabriskie Plateau was one of the longest stretches without a suitable detour on the redesigned route toward the long-term science destination.”

The rover is planning to make its way up the slope of science destinations on Mount Sharp, which is about two miles (3 kilometers) away. NASA pointed out that an interim stop for the rover will take place less than a third of a mile away (500 meters).

“The wheels took some damage getting across Zabriskie Plateau, but it’s less than I expected from the amount of hard, sharp rocks embedded there,” added Jim Erickson, project manager for Curiosity at NASA’s Jet Propulsion Laboratory, in a statement.

A low view of the terrain taken by the Mars Curiosity rover in August 2014. Credit: NASA/JPL-Caltech
A low view of the terrain taken by the Mars Curiosity rover in August 2014. Credit: NASA/JPL-Caltech

“The rover drivers showed that they’re up to the task of getting around the really bad rocks. There will still be rough patches ahead. We didn’t imagine prior to landing that we would see this kind of challenge to the vehicle, but we’re handling it.”

Curiosity has driven out of its landing ellipse and will continue the trek to the mountain, stopping to perform science along the way.

NASA plans to heavily borrow from Curiosity’s design for its next rover, called Mars 2020. The science instruments for that rover were selected last week. While Curiosity was made to seek potentially habitable environments in the past or present, Mars 2020 will have the capability to search for organic materials that could indicate precursors to life.

The Mars Curiosity rover leaves tracks in the sand in this picture taken Aug. 9, 2014. Credit: NASA/JPL-Caltech
The Mars Curiosity rover leaves tracks in the sand in this picture taken Aug. 9, 2014. Credit: NASA/JPL-Caltech
A shadow of Mars Curiosity lies across the surface in this picture taken Aug. 9, 2014. Credit: NASA/JPL-Caltech
A shadow of Mars Curiosity lies across the surface in this picture taken Aug. 9, 2014. Credit: NASA/JPL-Caltech

Watch This Weekend’s Near-‘Supermoon’ Set From The Space Station

The "super moon" of August 2014 captured by Expedition 40's Oleg Artemyev on the International Space Station. Credit: OlegMKS / Twitter

With the full Moon approaching just a little bit closer than Earth to usual, a cosmonaut on the International Space Station took a few moments of his time to capture a few shots of it setting behind the Earth. Oleg Artemyev was just a shade closer to that Moon than the rest of us, and the sequence of pictures (below the jump) is stunning.

As Universe Today’s David Dickinson explained last week, the so-called “supermoon” refers to a phenomenon where the full Moon falls within 24 hours of perigee (closest approach to the Earth.) We’re in a cycle of supermoons right now, with this weekend’s the second in a three-part cycle this year.

The Moon appears about 14% bigger between its furthest and closest approaches to Earth. While the difference is subtle in the sky, it does produce higher tides on Earth (with an example being Hurricane Sandy in 2012.)

Technically the perigee happened August 10 at 6:10 p.m. UTC (2:10 p.m. EDT), but people  (including Artemyev) took several pictures of the moon a bit before and after that time. One example from our Universe Today Flickr pool is at the bottom of this post. You can see more examples on Flickr.

A nearly full supermoon rises above Bow Lake, British Columbia. Credit: Alan Dyer
A nearly full supermoon rises above Bow Lake, British Columbia in August 2014. Credit: Alan Dyer