Where Exactly Is Pluto? Pinpoint Precision Needed For New Horizons Mission

Artist's conception of the Pluto system from the surface of one of its moons. Credit: NASA, ESA and G. Bacon (STScI)

When you have a spacecraft that takes the better part of a decade to get to its destination, it’s really, really important to make sure you have an accurate fix on where it’s supposed to be. That’s true of the Rosetta spacecraft (which reached its comet today) and also for New Horizons, which will make a flyby past Pluto in 2015.

To make sure New Horizons doesn’t miss its big date, astronomers are using the Atacama Large Millimeter/submillimeter Array (ALMA) to figure out its location and orbit around the Sun. You’d think that we’d know where Pluto is after decades of observations, but because it’s so far away we’ve only tracked it through one-third of its 248-year orbit.

“With these limited observational data, our knowledge of Pluto’s position could be wrong by several thousand kilometers, which compromises our ability to calculate efficient targeting maneuvers for the New Horizons spacecraft,” stated Hal Weaver, a New Horizons project scientist at Johns Hopkins University Applied Physics Laboratory in Maryland.

Pluto’s moon Charon moves around the dwarf planet in this animated image based on the data from the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: B. Saxton (NRAO/AUI/NSF)

As ALMA is a radio/submillimeter telescope, the array picked up Pluto and its largest moon, Charon, by looking at the radio emission from their surfaces. They examined the objects in November 2013, in April 2014 and twice in July. More observations are expected in October.

“By taking multiple observations at different dates, we allow Earth to move along its orbit, offering different vantage points in relation to the Sun,” stated Ed Fomalont, an astronomer with the National Radio Astronomy Observatory who is assigned to ALMA’s operations support facility in Chile. “Astronomers can then better determine Pluto’s distance and orbit.”

New Horizons will reach Pluto in July 2015, and Universe Today is planning a series of articles about the dwarf planet. We’ll need your support to get it done, though. Check out the details here.

Source: National Radio Astronomy Observatory

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM - Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com

ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM – Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com
Watch ESA’s Live Webcast here on Aug. 6 starting at 4 AM EDT/ 8 AM GMT[/caption]

After a decade long chase of 6.4 billion kilometers (4 Billion miles) through interplanetary space the European Space Agency’s (ESA) Rosetta spacecraft is now on final approach for its historic rendezvous with its target comet 67P scheduled for Wednesday morning, Aug. 6. some half a billion kilometers from the Sun. See online webcast below.

Rosetta arrives at Comet 67P/Churyumov-Gerasimenko in less than 12 hours and is currently less than 200 kilometers away.

You can watch a live streaming webcast of Rosetta’s Aug. 6 orbital arrival here, starting at 10:00 a.m. CEST/8 a.m. GMT/4 a.m. EDT/1 a.m. PDT via a transmission from ESA’s spacecraft operations centre in Darmstadt, Germany.

Rosetta is the first mission in history to rendezvous with a comet and enter orbit around it. The probe will then escort comet 67P as it loops around the Sun, as well as deploy the piggybacked Philae lander to its uneven surface.

Orbit entry takes place after the probe initiates the last of 10 orbit correction maneuvers (OCM’s) on Aug. 6 starting at 11:00 CEST/09:00 GMT.

The thruster firing, dubbed the Close Approach Trajectory – Insertion (CATI) burn, is scheduled to last about 6 minutes 26 seconds. Engineers transmitted the commands last night, Aug. 4.

CATI will place the 1.3 Billion Euro Rosetta into an initial orbit at a distance of about 100 kilometers (62 miles).

Since the one way signal time is 22 min 29 sec, it will take that long before engineers can confirm the success of the CATI thruster firing.

As engineers at ESOC mission control carefully navigate Rosetta ever closer, the probe has been capturing spectacular imagery showing rocks, gravel and tiny crater like features on its craggily surface with alternating smooth and rough terrain and deposits of water ice.

See above and below our collages (created by Marco Di Lorenzo & Ken Kremer) of navcam camera approach images of the comet’s two lobed nucleus captured over the past week and a half. Another shows an OSIRIS camera image of the expanding coma cloud of water and dust.

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

The up close imagery revealed that the mysterious comet looks like a ‘rubber ducky’ and is comprised of two lobes merged at a bright band at the narrow neck in between.

Rosetta’s navcam camera has been commanded to capture daily images of the comet that rotates around once every 12.4 hours.

After orbital insertion on Aug. 6, Rosetta will initially be travelling in a series of 100 kilometer-long (62 mile-long) triangular arcs in front of the comet while firing thrusters at each apex. Further engine firings will gradually lower Rosetta’s altitude about Comet 67P until the spacecraft is captured by the comet’s gravity.

ESA’s Rosetta Spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2 and 3 from distances of 1026 km, 500 km and 300 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM   Collage/Processing: Ken Kremer/Marco Di Lorenzo
ESA’s Rosetta Spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2 and 3 from distances of 1026 km, 500 km and 300 km. Not to scale. Credit: ESA/Rosetta/NAVCAM Collage/Processing: Ken Kremer/Marco Di Lorenzo

Rosetta will continue in orbit at comet 67P for a 17 month long study.

In November 2014, Rosetta will attempt another historic first when it deploys the piggybacked Philae science lander from an altitude of just about 2.5 kilometers above the comet for the first ever attempt to land on a comet’s nucleus. The lander will fire harpoons to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface.

Together, Rosetta and Philae will investigate how the pristine frozen comet composed of ice and rock is transformed by the warmth of the Sun. They will also search for organic molecules, nucleic acids and amino acids, the building blocks for life as we know it.

Rosetta was launched on 2 March 2004 on an Ariane 5 G+ rocket from Europe’s spaceport in Kourou, French Guiana.

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

NAVCAM image taken on 3 August 2014 from a distance of about 300 km from comet 67P/Churyumov-Gerasimenko. The Sun is towards the bottom of the image in this orientation. Credits: ESA/Rosetta/NAVCAM

Europe’s Rosetta comet hunter achieved another milestone today, Aug 4, swooping in closer to its long sought destination than the International Space Station (ISS) is to Earth – and its revealing the most exquisitely sharp and detailed view yet of the never before visited icy wanderer soaring half a billion kilometers from the Sun.

The absolutely delightful photo above is the latest navcam taken of Comet 67P/Churyumov-Gerasimenko by Rosetta’s navcam camera on Aug. 3 from a distance of 300 kilometers and shows rocks, gravel and tiny crater like features on its craggily surface of smooth and rough terrain with deposits of water ice.

Rosetta will make history as Earth’s first probe ever to rendezvous with and enter orbit around a comet.

Now barely a day away from rendezvous, the European Space Agency’s (ESA) robotic Rosetta spacecraft has closed to a distance of less than 300 kilometers away from Comet 67P and the crucial orbital insertion engine firing.

By comparison, the ISS and its six person crew orbits Earth at an altitude of some 400 kilometers (about 250 miles).

And its getter even closer! – Essentially to what we would call ‘the edge of space’ on Earth; 100 kilometers or 62 miles.

ESA’s Rosetta Spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2 and 3 from distances of 1026 km, 500 km and 300 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM   Collage/Processing: Ken Kremer/Marco Di Lorenzo
ESA’s Rosetta Spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2 and 3 from distances of 1026 km, 500 km and 300 km. Not to scale. Credit: ESA/Rosetta/NAVCAM Collage/Processing: Ken Kremer/Marco Di Lorenzo

Having successfully completed the penultimate orbit correction maneuver on Aug. 3, the engineering team at mission control at the European Space Operations Centre (ESOC), in Darmstadt, Germany is making final preparations for the probes crucial last orbital insertion burn set for Wednesday, Aug. 6.

The Aug. 3 thruster firing known as the Close Approach Trajectory – pre-Insertion (CATP) burn lasted some 13 minutes and 12 seconds and reduced the spacecraft speed as planned by about 3.2 m/s.

“All looks good,” says Rosetta Spacecraft Operations Manager Sylvain Lodiot, according to an ESA operations tweet.

The final thruster firing upcoming soon on Aug. 6 is known as the Close Approach Trajectory – Insertion (CATI) burn.

The CATI orbit insertion firing will slow Rosetta to essentially the same speed as comet 67P and place it in an initial orbit at a distance of about 100 kilometers (62 miles).

The CATP and CATI trajectory firings have the combined effect of slowing Rosetta’s speed by some 3.5 m/s with respect to the comet which is traveling at 55,000 kilometers per hour (kph).

After a ten year chase of 6.4 billion kilometers (4 Billion miles) through interplanetary space and slingshots past Earth and Mars, the 1.3 Billion Euro spacecraft is at last ready to arrive at Comet 67P for a mission expected to last some 17 months.

The Navcam camera has been commanded to capture daily images of the comet that rotates around once every 12.4 hours.

See below our mosaic of navcam camera approach images of the nucleus captured of the mysterious two lobed comet, merged at a bright band in between as well as an OSIRIS camera image of the expanding coma cloud of water and dust..

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

After orbital inertion on Aug. 6, Rosetta will initially be travelling in a series of 100 kilometer-long triangular arcs while firings thrusters at each apex. Further engine firings will gradually lower Rosetta’s altitude about Comet 67P until the spacecraft is captured by the comet’s gravity.

Here is an ESA video showing Rosetta’s movements around the comet after arrival

Video caption: ESA’s Rosetta spacecraft will reach comet 67P/Churyumov-Gerasimenko in August 2014. After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. Credit: ESA

After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. From this close orbit, detailed mapping will allow scientists to determine the landing site for the mission’s Philae lander. Immediately prior to the deployment of Philae in November, Rosetta will come to within just 2.5 km of the comet’s nucleus.  This animation is not to scale; Rosetta’s solar arrays span 32 m, and the comet is approximately 4 km wide.  Credit: ESA–C. Carreau
After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. From this close orbit, detailed mapping will allow scientists to determine the landing site for the mission’s Philae lander. Immediately prior to the deployment of Philae in November, Rosetta will come to within just 2.5 km of the comet’s nucleus. This animation is not to scale; Rosetta’s solar arrays span 32 m, and the comet is approximately 4 km wide. Credit: ESA–C. Carreau

In November 2014, Rosetta will attempt another historic first when it deploys the piggybacked Philae science lander from an altitude of just about 2.5 kilometers above the comet for the first ever attempt to land on a comet’s nucleus. The lander will fire harpoons to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface.

Together, Rosetta and Philae will investigate how the pristine frozen comet composed of ice and rock is transformed by the warmth of the Sun. They will also search for organic molecules, nucleic acids and amino acids, the building blocks for life as we know it.

Rosetta was launched on 2 March 2004 on an Ariane 5 G+ rocket from Europe’s spaceport in Kourou, French Guiana.

You can watch Rosetta’s Aug. 6 orbital arrival live from 10:45-11:45 CEST via a livestream transmission from ESA’s spacecraft operations centre in Darmstadt, Germany.

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

NAVCAM camera image taken on 2 August 2014 from a distance of about 500 kilometers from comet 67P/Churyumov-Gerasimenko. Credits: ESA/Rosetta/NAVCAM
NAVCAM camera image taken on 2 August 2014 from a distance of about 500 kilometers from comet 67P/Churyumov-Gerasimenko. Credits: ESA/Rosetta/NAVCAM

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

NAVCAM camera image taken on 2 August 2014 from a distance of about 500 kilometers from comet 67P/Churyumov-Gerasimenko. Credits: ESA/Rosetta/NAVCAM

The Rosetta comet chaser is currently less than 500 kilometers (300 miles) from its target destination, Comet 67P/Churyumov-Gerasimenko following today’s (Aug. 3) successful completion of the spacecraft’s critically important penultimate trajectory burn, just three days before its history making arrival at the comet on Aug. 6.

The European Space Agency’s (ESA) 1.3 Billion euro Rosetta spacecraft is now under three days away from becoming Earth’s first probe ever to rendezvous with and enter orbit around a comet after a decade long hunt of 6.4 billion kilometers (4 Billion miles) through interplanetary space. The gap is narrowing with each passing second.

The last trajectory firing is set for Aug. 6. Altogether the final pair of trajectory burns will reduce the spacecrafts speed by some 3.5 meters per second (m/s) with respect to the comet which is traveling at 55,000 kilometers per hour (kph).

The probes latest Navcam camera image shot on Aug. 2, 2014 from a distance of about 500 kilometers from comet 67P/Churyumov-Gerasimenko shows exquisite detail of the rubber ducky shaped body tumbling end over end. See above.

See below our mosaic of navcam camera approach images of the nucleus captured over the past week and a half of the mysterious two lobed comet, merged at a bright band in between.

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail.
Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

In November 2014, the Rosetta mothership will attempt another historic first when it deploys the Philae science lander from an altitude of just 1 or 2 kilometers for the first ever attempt to land on a comet’s nucleus. The lander will fire harpoons to anchor itself to the 4 kilometer wide (2.5 mile) comet’s surface.

Together, Rosetta and Philae will investigate how the pristine frozen comet composed of ice and rock is transformed by the warmth of the Sun. They will also search for organic molecules, nucleic acids and amino acids, the building blocks for life as we know it.

Did life on Earth begin with the help of comet seeding? That’s a question the Rosetta science team seeks to help answer.

Today’s early morning thruster firing, officially known as the Close Approach Trajectory – pre-Insertion (CATP) burn, began as scheduled at 11:00 CEST (09:00 GMT) and was due to last for about 13 minutes and 12 seconds and bleed off some 3.2 m/s of spacecraft speed.

Although it ended a few seconds early, ESA reports that the CATP burn went well as engineers monitored the spacecraft communications at the European Space Operations Centre (ESOC), in Darmstadt, Germany via the agency’s 35 meter deep-space tracking station in New Norcia, Australia.

“All looks good,” says Rosetta Spacecraft Operations Manager Sylvain Lodiot, according to an ESA operations tweet.

CATP is part of the final series of ten orbit correction maneuvers (OCM’s) that culminates with the final thruster firing slated for Aug. 6 dubbed the Close Approach Trajectory – Insertion (CATI) burn.

“The CATI burn will reduce the relative velocity to about 1 m/s,” says Lodiot. That’s about equivalent to human walking speed.

The CATI orbit insertion firing will slow Rosetta to essentially the same speed as a comet and place it in orbit at an initial stand-off distance of about 100 kilometers (62 miles).

Rosetta will initially be travelling in a series of 100 kilometer-long triangular arcs while firings thrusters at each apex. Further engine firings will gradually lower Rosetta’s altitude about Comet 67P until the spacecraft is captured by the comet’s gravity.

After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. From this close orbit, detailed mapping will allow scientists to determine the landing site for the mission’s Philae lander. Immediately prior to the deployment of Philae in November, Rosetta will come to within just 2.5 km of the comet’s nucleus.  This animation is not to scale; Rosetta’s solar arrays span 32 m, and the comet is approximately 4 km wide.  Credit: ESA–C. Carreau
After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. From this close orbit, detailed mapping will allow scientists to determine the landing site for the mission’s Philae lander. Immediately prior to the deployment of Philae in November, Rosetta will come to within just 2.5 km of the comet’s nucleus. This animation is not to scale; Rosetta’s solar arrays span 32 m, and the comet is approximately 4 km wide. Credit: ESA–C. Carreau

“All systems on the spacecraft are performing well and the entire team is looking forward to a smooth arrival,” says Lodiot.

It will study and map the wanderer composed of primordial ice, rock, dust and more and search for a suitable landing site for Philae.

The one-way signal time from Earth to Rosetta and Comet 67P is currently 22 minutes and 27 seconds as both loop around the Sun at a distance of some 555 million kilometres away from the Sun at this time. The short period comet is located between the orbits of Jupiter and Mars.

Rosetta will escort Comet 67P as they journey together inwards around the sun and then travel back out towards Jupiter’s orbit and investigate the physical properties and chemical composition of the comets nucleus and coma of ice and dust for some 17 months.

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with negative OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA    Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with negative OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Collage/Processing: Marco Di Lorenzo/Ken Kremer

Rosetta was launched on 2 March 2004 on an Ariane 5 G+ rocket from Europe’s spaceport in Kourou, French Guiana.

You can watch Rosetta’s Aug. 6 orbital arrival live from 10:45-11:45 CEST via a livestream transmission from ESA’s spacecraft operations centre in Darmstadt, Germany.

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

Ranger 7 Takes 1st Image of the Moon by a US Spacecraft 50 Years Ago – July 31, 1964

Ranger 7 took this image, the first picture of the Moon by a U.S. spacecraft, on 31 July 1964 at 13:09 UT (9:09 AM EDT) about 17 minutes before impacting the lunar surface. Credit: NASA/JPL-Caltech

As we remember the 45th anniversary of Earth’s historic 1st manned lunar landing last week by America’s Apollo 11 crew of Neil Armstrong and Buzz Aldrin on July 20, 1969, it’s likewise well worth recalling NASA’s pioneering and historic unmanned robotic mission Ranger 7 – that led the way to the Moon almost exactly 5 years earlier and that paved the path for the eventual 1st human footsteps on another celestial body.

Indeed the first critical robotic step to the manned landings was successfully taken when NASA’s unmanned Ranger 7 probe captured the first image of the Moon by a U.S. spacecraft 50 Years ago on July 31, 1964.

Ranger 7 took the milestone maiden picture of the Moon by an American spacecraft, on 31 July 1964, shown above, at 13:09 GMT (9:09 AM EDT) about 17 minutes before impacting the lunar surface on a suicide dive.

The history making image was taken at an altitude of 2110 kilometers and is centered at 13 S, 10 W and covers about 360 kilometers from top to bottom. The large Alphonsus crater is at center right and 108 km in diameter. Ptolemaeus crater is above and Arzachel is below.

Ranger 7 impacted out of view of the lead image, off to the left of the upper left corner.

“It looks as though this particular shot has been indeed a textbook operation,” William H. Pickering, the director of JPL during the mission, said at the time.

Guericke Crater as seen by Ranger 7. Ranger 7 B-camera image of Guericke crater (11.5 S, 14.1 W, diameter 63 km) taken from a distance of 1335 km. The dark flat floor of Mare Nubium dominates most of the image, which was taken 8.5 minutes before Ranger 7 impacted the Moon on 31 July 1964. The frame is about 230 km across and north is at 12:30. The impact site is off the frame to the left. Credit:  NASA/JPL-Caltech
Guericke Crater as seen by Ranger 7
Ranger 7 B-camera image of Guericke crater (11.5 S, 14.1 W, diameter 63 km) taken from a distance of 1335 km. The dark flat floor of Mare Nubium dominates most of the image, which was taken 8.5 minutes before Ranger 7 impacted the Moon on 31 July 1964. The frame is about 230 km across and north is at 12:30. The impact site is off the frame to the left. Credit: NASA/JPL-Caltech

The purpose of NASA’s robotic Ranger program was to take high-quality pictures of the Moon and transmit them back to Earth in real time before being decimated on impact.

NASA Ranger 7 spacecraft. Credit:  NASA/JPL-Caltech
NASA Ranger 7 spacecraft. Credit: NASA/JPL-Caltech

The priceless pictures would be used for science investigations as well as to search for suitable landing sites for NASA’s then planned Apollo manned Moon landers.

It’s hard to conceive now, but 5 decades ago at the dawn of the Space Age no one knew what the surface of the Moon was really like. There were vigorous debates back then on whether it was even hard or soft. Was it firm? Would a landed spacecraft or human astronaut sink?

Last Ranger 7 images taken before impact on the Moon.  They were taken by the number 1 and 3 P-channel cameras at 0.39 and 0.19 s before impact from an altitude of 1070 and 519 meters, respectively. The pictures are cut off because the spacecraft impacted the surface before completing the transmission. The top image was taken by the P3 camera and the bottom image by P1. The P3 image is about 25 m across. North is at 12:30 for both images. The impact occurred on 31 July 1964 at 13:25:48.82 UT. Credit: Credit:  NASA/JPL-Caltech
Last Ranger 7 images taken before impact on the Moon. They were taken by the number 1 and 3 P-channel cameras at 0.39 and 0.19 s before impact from an altitude of 1070 and 519 meters, respectively. The pictures are cut off because the spacecraft impacted the surface before completing the transmission. The top image was taken by the P3 camera and the bottom image by P1. The P3 image is about 25 m across. North is at 12:30 for both images. The impact occurred on 31 July 1964 at 13:25:48.82 UT. Credit: NASA/JPL-Caltech

Altogether the probe took 4,308 excellent quality pictures during its final 17 minutes before crashing into the Moon at 13:26 GMT (9:26 p.m. EDT) in an area between Mare Nubium and Oceanus Procellarum at a spot subsequently named Mare Cognitum at 10.63 S latitude, 20.60 W longitude.

The final image from Ranger 7 shown herein had a resolution of 0.5 meter/pixel.

Ranger 7 was launched atop an Atlas Agena B rocket on 28 July 1964 from what was then known as Cape Kennedy and smashed into our nearest neighbor after 68.6 hours of flight at a velocity of 2.62 km/s (1.62 miles per second).

The 365.7 kilogram (806 lb) vehicle was 4.5 m wide and stood 3.6 m (11 ft) tall and was the Block 3 version of the Ranger spacecraft. It was powered by a pair of 1.5 m long solar panels and was equipped with a science payload of six television vidicon cameras transmitting data via the pointable high gain antennae mounted at the base.

Ranger 7 was the first successful mission in the Ranger series. The flight was entirely successful and was followed by Ranger’s 8 and 9. They were built by NASA’s Jet Propulsion Laboratory, Pasadena, California.

Here’s a short 1964 documentary chronicling Ranger 7 titled “Lunar Bridgehead” that truly harkens back to the 1950s and 1960s and sci fi movies of the time. No wonder since that’s when it was produced.

Video Caption. This 1964 documentary titled “Lunar Bridgehead produced by NASA’s Jet Propulsion Laboratory, Pasadena, California, chronicles the moments leading up to and following the Ranger 7 mission’s lunar impact 50 years ago. Credit: NASA/JPL-Caltech

During the 1960’s NASA implemented an ambitions three pronged strategy of robotic missions – including Ranger, Lunar Orbiter and Surveyor – that imaged the Moon and studied it’s physical and chemical properties and supported and enabled the Apollo program and led directly to Neil Armstrong stepping onto the alien lunar landscape.

Three members of the Ranger 7 television experiment team stand near a scale model and lunar globe at NASA’s Jet Propulsion Laboratory (JPL). From left: Ewen Whitaker, Dr. Gerard Kuiper, and Ray Heacock. Kuiper was the director of the Lunar and Planetary Laboratory (LPL) at the University of Arizona. Whitaker was a research associate at LPL. Heacock was the Lunar and Planetary Instruments section chief at JPL.  Credit:  NASA/JPL-Caltech
Three members of the Ranger 7 television experiment team stand near a scale model and lunar globe at NASA’s Jet Propulsion Laboratory (JPL). From left: Ewen Whitaker, Dr. Gerard Kuiper, and Ray Heacock. Kuiper was the director of the Lunar and Planetary Laboratory (LPL) at the University of Arizona. Whitaker was a research associate at LPL. Heacock was the Lunar and Planetary Instruments section chief at JPL. Credit: NASA/JPL-Caltech

Read more about pathfinding space missions in my earlier space history story about Mariner 10 – the first space probe to ever carry out a planetary gravity assist maneuver used to alter its speed and trajectory – in order to reach another celestial body – here.

Read my 45th Apollo 11 anniversary articles here:

Apollo 11 Splashdown 45 Years Ago on July 24, 1969 Concludes 1st Moon Landing Mission – Gallery

Historic Human Spaceflight Facility at Kennedy Renamed in Honor of Neil Armstrong – 1st Man on the Moon

Apollo 11 Moon Landing 45 Years Ago on July 20, 1969: Relive the Moment! – With an Image Gallery and Watch the Restored EVA Here

Book Review: Neil Armstrong – A Life of Flight by Jay Barbree

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Liftoff of Ranger 7 on July 28, 1964 from Cape Kennedy at Launch Complex 12.  Credit: NASA
Liftoff of Ranger 7 on July 28, 1964 from Cape Kennedy at Launch Complex 12. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 11 mission. Credit: NASA

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 to July 31, 2014, with OSIRIS wide angle camera image at left of comet’s coma on July 25 from a distance of around 3000 km. On July 31 Rosetta had approached to within 1327 km. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Collage/Processing: Marco Di Lorenzo/Ken Kremer – kenkremer.com
Story updated[/caption]

The European Space Agency’s (ESA) Rosetta spacecraft is at last rapidly closing in on its target destination, Comet 67P/Churyumov-Gerasimenko, after a decade long chase of 6.4 billion kilometers through interplanetary space. See imagery above and below.

As of today, Friday, August 1, ESA reports that Rosetta has approached the ‘rubber ducky looking’ comet to within a distance of less than 1153 kilometers. That distance narrows with each passing moment as the speeding robotic probe moves closer and closer to the comet while looping around the sun at about 55,000 kilometers per hour (kph).

Rosetta is now just 5 days away from becoming Earth’s first probe ever to rendezvous and enter orbit around a comet.

See above our image collage of Rosetta nearing final approach with the spacecrafts most recent daily Navcam camera images, all taken within the past week starting on July 25 and including up to the most recently release image snapped on July 31. The navcam images are all to scale to give the sense of the spacecraft approaching the comet and revealing ever greater detail as it grows in apparent size in the cameras field of view. The navcam images were also taken at about the same time of day each day.

The highest resolution navcam image yet of the two lobed comet – merged at a bright band – was taken on July 31 from a distance of 1327 kilometers and published within the past few hours by ESA today, Aug 1. It shows the best view yet of the surface features of the mysterious bright necked wanderer composed of primordial ice, rock, dust and more.

The Navcam collage is combined with an OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) wide angle camera view of the comet and its asymmetric coma of ice and dust snapped on July 25 from a distance of around 3000 km, and with an exposure time of 300 seconds. The OSIRIS image covers an area of about 150 x 150 km (90 mi x 90 mi). The images have been contrast enhanced to bring out more detail.

Scientists speculate that the comets bright neck region could be caused by differences in material or grain size or topological effects.

Rosetta’s history making orbital feat is slated for Aug. 6 following the final short duration orbit insertion burns on Aug. 3 and Aug. 6 to place Rosetta into orbit at an altitude of about 100 kilometers (62 miles) where it will study and map the 4 kilometer wide comet for some 17 months.

The comet rotates around once every 12.4 hours.

Crop from the 31 July processed image of comet 67P/Churyumov-Gerasimenko, to focus on the comet nucleus. Credits: ESA/Rosetta/NAVCAM
Crop from the 31 July processed image of comet 67P/Churyumov-Gerasimenko, to focus on the comet nucleus. Credits: ESA/Rosetta/NAVCAM

“If any glitches in space or on ground had delayed the most recent burns, orbital mechanics dictate that we’d only have had a matter of a few days to fix the problem, re-plan the burn and carry it out, otherwise we run the risk of missing the comet,” says Trevor Morley, a flight dynamics specialist at ESOC.

In November 2014 the Rosetta mothership will deploy the Philae science lander for the first ever attempt to land on a comet’s nucleus using harpoons to anchor itself to the surface while the comet is rotating.

As Rosetta edges closer on its final lap, engineers at mission control at the European Space Operations Centre (ESOC), in Darmstadt, Germany have commanded the probes navigation camera (navcam) to capture daily images while the other science instruments also collect measurements analyzing the comets physical characteristics and chemical composition in detail.

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This image collage from Rosetta combines Navcam camera images taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant).  Top row shows images as seen by spacecraft. Bottom row shows images rotated to same orientation.  Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM. Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This image collage from Rosetta combines Navcam camera images taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant). Top row shows images as seen by spacecraft. Bottom row shows images rotated to same orientation. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM. Collage/Processing: Marco Di Lorenzo/Ken Kremer

The probe has already discovered that the comet’s surface temperature is surprisingly warm at –70ºC, which is some 20–30ºC warmer than predicted. This indicates the surface is too hot to be covered in ice and must instead have a dark, dusty crust, says ESA.

Comet 67P/Churyumov-Gerasimenko is a short period comet some 555 million kilometres from the Sun at this time, about three times further away than Earth and located between the orbits of Jupiter and Mars.

You can watch the Aug. 6 orbital arrival live via a livestream transmission from ESA’s spacecraft operations centre in Darmstadt, Germany.

While you were reading this the gap between the comet and Rosetta closed to less than 1000 kilometers!

The coma of Rosetta's target comet as seen with the OSIRIS wide-angle camera. The image spans 150 km and was taken on 25 July 2014 with an exposure time of 330 seconds. The greyscale relates to the particle density in the coma, with highest density close to the nucleus, becoming more diffuse further away. The hazy circular structure on the right is an artefact. The nucleus is also overexposured. The specks and the streaks in the background are attributed to background stars and cosmic rays.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The coma of Rosetta’s target comet as seen with the OSIRIS wide-angle camera. The image spans 150 km and was taken on 25 July 2014 with an exposure time of 330 seconds. The greyscale relates to the particle density in the coma, with highest density close to the nucleus, becoming more diffuse further away. The hazy circular structure on the right is an artefact. The nucleus is also overexposured. The specks and the streaks in the background are attributed to background stars and cosmic rays. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with negative OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA    Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with negative OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Collage/Processing: Marco Di Lorenzo/Ken Kremer
Birthday cakes at @ESA_Rosetta Flight Dynamics are taking strange binary shapes these days... #ESOC. Credit:  ESA
Birthday cakes at @ESA_Rosetta Flight Dynamics are taking strange binary shapes these days… #ESOC. Credit: ESA

‘Explore Mars’ Group Wants To Build Instrument Seeking Subsurface Red Planet Life

Artist's concept of the proposed "ExoLance" instrument that Explore Mars would have burrow beneath the Red Planet's surface for life. Credit: ExoLance/Indiegogo/YouTube (screenshot)

Not-for-profit group Explore Mars has a new IndieGoGo campaign that could see an instrument, ExoLance, head to the Red Planet to burrow for subsurface life. The first stage will be to raise money to build the prototype and then test it, within 12-14 months of finishing the fundraising.

No launch date for this mission has been announced, but the group says that will be determined after testing is finished and a launch provider can be found.

“Explore Mars has devised a simple system capable of being delivered to the Martian surface to detect microorganisms living on or under the surface,” the campaign page states.

“ExoLance leverages a delivery system that was originally designed for military purposes.  As each small, lightweight penetrator probe (“arrow”) impacts the surface, it leaves behind a radio transmitter at the surface to communicate with an orbiter, and then kinetically burrows to emplace a life-detection experiment one  to two meters below the surface.  ExoLance combines the experiments of the 1970s Viking landers and the Curiosity rover with bunker-busting weapons technology.”

The project aims to raise $250,000, but there will be milestone goals available all the way up to $1 million.

 

NASA Announces Science Instruments for Mars 2020 Rover Expedition to the Red Planet

An artist concept image of where seven carefully-selected instruments will be located on NASA’s Mars 2020 rover. The instruments will conduct unprecedented science and exploration technology investigations on the Red Planet as never before. Image Credit: NASA

NASA announced the winners of the high stakes science instrument competition to fly aboard the Mars 2020 rover at a briefing held today, Thursday, July 31, at the agency’s headquarters in Washington, D.C.

The 2020 rover’s instruments goals are to search for signs of organic molecules and past life and help pave the way for future human explorers.

Seven carefully-selected payloads were chosen from a total of 58 proposals received in January 2014 from science teams worldwide, which is twice the usual number for instrument competitions and demonstrates the extraordinary interest in Mars by the science community.

The 2020 rover architecture is based on NASA’s hugely successful Mars Science Laboratory (MSL) Curiosity rover which safely touched down a one ton mass on Mars on Aug. 5, 2012 using the nail-biting and never before used skycrane rocket assisted descent system.

The seven instruments will conduct unprecedented science and technology investigations on the Red Planet that’s aimed for the first time at simultaneously advancing both NASA’s unmanned robotic exploration searching for extraterrestrial life and plans for human missions to Mars in the 2030’s.

Planning for NASA's 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Image Credit:   NASA/JPL-Caltech
Planning for NASA’s 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Image Credit: NASA/JPL-Caltech

The instruments will have the capability to detect low levels of organic molecules that are essential precursors to life.

A technology demonstration experiment will use Mars natural resources to generate oxygen from atmospheric carbon dioxide that can be used as rocket fuel or for human explorers. This will save enormous costs by enabling astronauts to ‘live off the land’ rather than having to bring everything needed for survival from Earth.

NASA said that the development cost for the chosen instruments is approximately $130 million out of a total cost of $1.9 Billion.

This overall cost is less than Curiosity’s approximate $2.4 Billion cost since the team is rebuilding the rover and landing architecture – sort of an MSL 2 so to speak – developed for Curiosity and also using several left over MSL flight spares.

Curiosity’s panoramic view departing Mount Remarkable and ‘The Kimberley Waypoint’ where rover conducted 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 630, May 15, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo
Mars 2020 builds on the architecture developed for Curiosity.
Curiosity’s panoramic view departing Mount Remarkable and ‘The Kimberley Waypoint’ where rover conducted 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 630, May 15, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo

The Mars 2020 rover will also have a sample cacher with the ability to store core samples collected by the rover’s drill for later retrieval and return to Earth at an as yet unspecified time.

“The Mars 2020 rover, with these new advanced scientific instruments, including those from our international partners, holds the promise to unlock more mysteries of Mars’ past as revealed in the geological record,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate in Washington.

“This mission will further our search for life in the universe and also offer opportunities to advance new capabilities in exploration technology.”

NASA’s Mars 2020 rover will explore the Red Planet like never before.  Credit: NASA
NASA’s Mars 2020 rover will explore the Red Planet like never before. Credit: NASA
Here’s a list of the 7 selected science payload proposals. They are in some ways more advanced versions form Curiosity and in other ways completely new:

Mastcam-Z, an advanced camera system with panoramic and stereoscopic imaging capability with the ability to zoom. The instrument also will determine mineralogy of the Martian surface and assist with rover operations. The principal investigator is James Bell, Arizona State University in Phoenix.

SuperCam, an instrument that can provide imaging, chemical composition analysis, and mineralogy. The instrument will also be able to detect the presence of organic compounds in rocks and regolith from a distance. The principal investigator is Roger Wiens, Los Alamos National Laboratory, Los Alamos, New Mexico. This instrument also has a significant contribution from the Centre National d’Etudes Spatiales,Institut de Recherche en Astrophysique et Planetologie (CNES/IRAP) France.

Planetary Instrument for X-ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer that will also contain an imager with high resolution to determine the fine scale elemental composition of Martian surface materials. PIXL will provide capabilities that permit more detailed detection and analysis of chemical elements than ever before. The principal investigator is Abigail Allwood, NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC), a spectrometer that will provide fine-scale imaging and uses an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds. SHERLOC will be the first UV Raman spectrometer to fly to the surface of Mars and will provide complementary measurements with other instruments in the payload. The principal investigator is Luther Beegle, JPL.

The Mars Oxygen ISRU Experiment (MOXIE), an exploration technology investigation that will produce oxygen from Martian atmospheric carbon dioxide. The principal investigator is Michael Hecht, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Mars Environmental Dynamics Analyzer (MEDA), a set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity and dust size and shape. The principal investigator is Jose Rodriguez-Manfredi, Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Spain.

The Radar Imager for Mars’ Subsurface Exploration (RIMFAX), a ground-penetrating radar that will provide centimeter-scale resolution of the geologic structure of the subsurface. The principal investigator is Svein-Erik Hamran, Forsvarets Forskning Institute, Norway.

So the instruments are more sophisticated, upgraded hardware versions as well as new instruments to conduct geological assessments of the rover’s landing site, determine the potential habitability of the environment, and directly search for signs of ancient Martian life, according to NASA.

Creating a Returnable Cache of Martian Samples is a major objective for NASA's Mars 2020 rover.  This prototype show  hardware to cache samples of cores drilled from Martian rocks for possible future return to Earth.  The 2020 rover would be to collect and package a carefully selected set of up to 31 samples in a cache that could be returned to Earth by a later mission.  The capabilities of laboratories on Earth for detailed examination of cores drilled from Martian rocks would far exceed the capabilities of any set of instruments that could feasibly be flown to Mars.  The exact hardware design for the 2020 mission is yet to be determined.  For scale, the diameter of the core sample shown in the image is 0.4 inch (1 centimeter).  Credit: NASA/JPL-Caltech
Creating a Returnable Cache of Martian Samples is a major objective for NASA’s Mars 2020 rover. This prototype show hardware to cache samples of cores drilled from Martian rocks for possible future return to Earth. The 2020 rover would be to collect and package a carefully selected set of up to 31 samples in a cache that could be returned to Earth by a later mission. The capabilities of laboratories on Earth for detailed examination of cores drilled from Martian rocks would far exceed the capabilities of any set of instruments that could feasibly be flown to Mars. For scale, the diameter of the core sample shown in the image is 0.4 inch (1 centimeter). Credit: NASA/JPL-Caltech

“Today we take another important step on our journey to Mars,” said NASA Administrator Charles Bolden.

“While getting to and landing on Mars is hard, Curiosity was an iconic example of how our robotic scientific explorers are paving the way for humans to pioneer Mars and beyond. Mars exploration will be this generation’s legacy, and the Mars 2020 rover will be another critical step on humans’ journey to the Red Planet.”

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

If You Mine An Asteroid, Who Does The Property Belong To?

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA

There have been several proposals in recent months to visit asteroids — NASA is talking about sending astronauts to an asteroid sometime, and both Planetary Resources and Deep Space Industries have outlined distant plans to mine these space rocks for resources.

But once the stuff is extracted, who does it belong to? A bill being considered by the U.S. House of Representatives says it would belong to “the property of the entity that obtained such resources.”

In a blog on Space Politics, aerospace analyst Jeff Foust outlined a discussion on the bill at the NewSpace 2014 conference last week. There are still a few wrinkles to be worked out, with one of the most pressing being to define what the definition of an asteroid is. Also, the backers of the bill are talking with the U.S. State Department to see if it would conflict with any international treaty obligations. (Here’s a copy of the bill on the Space Politics website.)

A single radar image frame close-up view of 2014 HQ124. Credit: NASA
A single radar image frame close-up view of 2014 HQ124. Credit: NASA

The panel also noticed there is precedent for keeping and even selling samples: the visits to the Moon. Both Apollo astronauts (with the United States) and the Luna robotic missions (from the Soviet Union) returned samples of the Moon to the Earth. Some of the Apollo rocks, for example, are on display in museums. Others are stored in the NASA Lunar Sample Laboratory Facility at the Johnson Space Center in Houston.

That said, extraterrestrial property rights are difficult to define. For example, the United Nations Moon Treaty (more properly known as Agreement Governing the Activities of States on the Moon and Other Celestial Bodies) allows samples to be removed and stored for “scientific purposes”, and during these investigations they may “also use mineral and other substances of the moon in quantities appropriate for the support of their missions.” But it also adds that “the moon and its natural resources are the common heritage of mankind.”

Rocket Replay: Watch Europe’s Last Space Station Automated Transfer Vehicle Soar

Europe's last automated transfer vehicle, Georges Lemaitre, lifts off from French Guiana en route to the International Space Station July 29, 2014. Credit: ESA–S. Corvaja, 2014

The last of Europe’s five automated transfer vehicles made a flawless launch to orbit yesterday (July 30). So far, all is going well with ATV Georges Lemaître as it brings a load of cargo to the International Space Station. You can watch the launch above. The ship is not only acting as a freighter, but a testbed for technology to help with docking and re-entry.

“It is with great pride that we saw the fifth successful launch of this beautiful spacecraft,” stated Thomas Reiter, the European Space Agency’s director of human spaceflight and operations, in a press release. “But the adventure doesn’t end here. ATV knowhow and technology will fly again to space as early as 2017, powering NASA’s Orion spacecraft with the European Service Module, ushering in the next generation of space exploration.”

It will take until Aug. 12 for the ATV to make its way to the space station. On its way, the vehicle will do a flyaround to test a laser infrared imaging sensor that could help future space vehicles dock with objects that don’t have docking ports.

Then it will stick on the space station for up to six months before making a planned re-entry, full of trash. In a first for Europe, how the ship breaks up will be carefully tracked to inform the design of future space vehicles that could survive re-entry. By the way, ESA has a stunning photo gallery of the rocket’s liftoff here, but we put a couple of samples below.

The Ariane 5 rocket carrying Europe's last automated transfer vehicle blasts off from French Guiana July 29, 2014. Credit: ESA-S. Corvaja
The Ariane 5 rocket carrying Europe’s last automated transfer vehicle blasts off from French Guiana July 29, 2014. Credit: ESA-S. Corvaja