Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

The International Space Station's robotic arm, Canadarm2, grapples the Orbital Sciences' Cygnus cargo craft named "Janice Voss" on July 16, 2014. Image Credit: NASA TV

Following a nearly three day journey, an Orbital Sciences Corp. Cygnus commercial cargo freighter carrying a ton and a half of science experiments and supplies for the six person crew was successfully installed onto the International Space Station at 8:53 a.m. EDT this morning, July 16, after a flawless arrival and being firmly grasped by station astronauts deftly maneuvering the Canadarm2 robotic arm some two hours earlier.

Cygnus was captured in open space at 6:36 a.m. EDT by Commander Steve Swanson as he maneuvered the 57-foot (17-meter) Canadarm2 from a robotics workstation inside the station’s seven windowed domed Cupola, after it was delicately flown on an approach vector using GPS and LIDAR lasers to within about 32 feet (10 meters) of the massive orbiting complex.

Swanson was assisted by ESA astronaut and fellow Expedition 40 crew member Alexander Gerst working at a hardware control panel.

“Grapple confirmed” radioed Houston Mission Control as the complex soared in low orbit above Earth at 17500 MPH.

“Cygnus is captured as the ISS flew 260 miles (400 km) over northern Libya.”

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

Cygnus by the book arrival at the million pound orbiting laboratory coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission.

This mission dubbed Orbital-2, or Orb-2, marks the second of eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The supplies are critical to keep the station flying and humming with research investigations.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The supply ship thrusters all worked perfectly normal during rendezvous and docking to station with streaming gorgeous views provided by the stations new high definition HDEV cameras.

“We now have a seventh crew member. Janice Voss is now part of Expedition 40,” radioed Swanson.

“Janice devoted her life to space and accomplished many wonderful things at NASA and Orbital Sciences, including five shuttle missions. And today, Janice’s legacy in space continues. Welcome aboard the ISS, Janice.”

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

A robotics officer at Mission Control in Houston then remotely commanded the arm to move Cygnus into place for its berthing at the Earth-facing port on the Harmony module.

Once Cygnus was in place at the ready to latch (RTF) position, NASA astronaut and Flight Engineer Reid Wiseman monitored the Common Berthing Mechanism operations and initiated the first and second stage capture of the cargo ship to insure the craft was firmly joined.

The hard mate was completed at 8:53 a.m. EDT as the complex was flying about 260 miles over the east coast of Australia. 16 bolts were driven to firmly hold Cygnus in place to the station.

“Cygnus is now bolted to the ISS while flying 260 miles about the continent of Australia,” confirmed Houston Mission Control.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Student Space Flight teams at NASA Wallops.  Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

The crew will begin work today to remove the Centerline Berthing Camera System that provided the teams with a view of berthing operations through the hatch window.

Swanson will then pressurize and outfit the vestibule area between Harmony and Cygnus. After conducting leak checks they will open the hatch to Cygnus either later today or tomorrow and begin the unloading process, including retrieving a stash of highly desired fresh food.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

“Every flight is critical,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culbertson was a NASA shuttle commander and also flew aboard the International Space Station (ISS).

“We carry a variety of types of cargo on-board, which includes food and basic supplies for the crew, and also the research.”

The cargo mission was crucial since the crew supply margin would have turned uncomfortably narrow by the Fall of 2014.

Cygnus will remain attached to the station approximately 30 days until August 15.

For the destructive and fiery return to Earth, the crew will load Cygnus with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later after undocking.

The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.

The July 13 liftoff marked the fourth successful launch of the 132 foot tall Antares in the past 15 months, Culbertson noted.

The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Ancient Snow Shaped A Martian Basin That’s Half The Size Of Brazil

Perspective view of Hellas Basin taken with the High Resolution Stereo Camera on ESA’s Mars Express in January 2014, and released in July 2014. Credit: ESA/DLR/FU Berlin

Such great heights! A mountain chain peeks in the background of this new view of Hellas Basin, based on information taken by a European spacecraft circling the Red Planet.

Beyond the pretty picture is a tale of how snow behaved on the Martian surface, according to the European Space Agency. The vast basin is about half the size of Brazil.

The wrinkled view of that crater in front is a product of snowing and freezing that took place when the Martian surface was wetter, ESA said.

A map of the Hellas basin in the southern hemisphere of Mars, as well as the rocky Hellespontus Montes. Image taken by the High Resolution Stereo Camera on ESA’s Mars Express. Credit: NASA MGS MOLA Science Team/Freie Universitaet Berlin
A map of the Hellas basin in the southern hemisphere of Mars, as well as the rocky Hellespontus Montes. Image taken by the High Resolution Stereo Camera on ESA’s Mars Express. Credit: NASA MGS MOLA Science Team/Freie Universitaet Berlin

“During this period, snow fell and covered the surface and later moved downhill into the crater. Once inside the crater, the snow became trapped and soon covered by surface dust, before compacting to form ice. The number of concentric lines indicates many cycles of this process and it is possible that craters like these may still be rich in ice hidden beneath just tens of metres of surface debris.”

Additionally, the high hill chain in the back (called Hellespontus Montes) is a remnant of how Hellas basin was formed, the agency said.

“This feature is a product of the final stages of the formation of the vast Hellas impact basin itself, most likely as the basin walls – which were first pushed outwards by the extraordinary forces at work during the formation of the basin – later collapsed and sank inwards to create the observed stair-stepped shape.”

The image was taken by ESA’s Mars Express spacecraft, which is just one of several robotic emissaries circling the Red Planet.

Source: European Space Agency

Feel The Heat! New Mars Map Shows Differences Between Bedrock And Sand

An impact crater on Mars called Graterri, which is only 4.3 miles (6.9 km) in diameter, shines in a global heat map of the Red Planet produced in 2014. Credit: NASA/JPL-Caltech/Arizona State University

For years, NASA’s Mars Odyssey has been working on some night moves. It’s been taking pictures of the Red Planet during nighttime — more than 20,000 in all — to see how the planet’s heat signature looks while the sun is down.

The result is the highest-resolution map ever of the thermal properties of Mars, which you can see here. Why is this important? Researchers say it helps tell the story about things such as if an area is shrouded with dust, where bare bedrock is, and whether sediments in a crater are packed tight or floating freely.

“Darker areas in the map are cooler at night, have a lower thermal inertia and likely contain fine particles, such as dust, silt or fine sand,” stated Robin Fergason at the USGS Astrogeology Science Center in Arizona, who led the map’s creation. Brighter areas are warmer, likely yielding regions of bedrock, crust or coarse sand.

The map from Odyssey’s Thermal Emission Imaging System (THEMIS) is also used for a more practical purpose: deciding where to set down NASA’s next Mars mission.

After assisting in landing site selection for the Curiosity mission, the THEMIS data will be used to figure out where the Mars 2020 rover will be placed, Arizona State University stated.

You can check out more recent THEMIS images (updated daily) on this website.

Source: Arizona State University

Cygnus Cargo Craft Closing In for Space Station Berthing on July 16 – Watch Live

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com

The Cygnus commercial cargo craft is rapidly closing in on the International Space Station (ISS) for an expected berthing on Wednesday morning, July 16, following a spectacular lunchtime blastoff from the Virginia shore on Sunday, July 13, carrying over one and a half tons of supplies and science experiments for the six man crew.

During a three day orbital chase, mission controllers are executing a series of carefully choreographed thruster firings to maneuver the private Orbital Sciences Cygnus ever closer to the space station.

You can watch the final rendezvous and berthing sequence live on NASA TV on Wednesday starting at 5:15 a.m.

Watch the streaming NASA TV webcast here at – http://www.nasa.gov/nasatv

All systems “green” reported Orbital Sciences as of about 6 p.m. Tuesday evening, July 15.

In this photo posted to Twitter by Flight Engineer Alexander Gerst, he and Commander Steve Swanson (foreground) use the robotics workstation in the International Space Station's cupola.  Image Credit: NASA
In this photo posted to Twitter by Flight Engineer Alexander Gerst, he and Commander Steve Swanson (foreground) use the robotics workstation in the International Space Station’s cupola.
Image Credit: NASA

Cygnus orbit was 415 x 409 km and some 4 kilometers below and 270 kilometers behind the ISS. It is closing in at 23 km/hour using its 32 thrusters.

Cygnus roared to orbit during the flawless July 13 blastoff of the Orbital Sciences Corp. Antares rocket at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The two stage rocket ascended very slowly after ignition with a mounting sound and deafening crescendo that reverberated across the local Virginia viewing area. It put on a spectacular sky show before disappearing into the clouds after about 40 seconds or so.

The 13 story Antares lofted the Cygnus christened “Janet Voss” in honor of the late shuttle astronaut bound for the space station and packed with a wide range of science experiments and essential supplies.

ISS Expedition 40 crew members Commander Steve Swanson of NASA and Alexander Gerst of the European Space Agency conducted a last minute practice session today at the robotics work station inside the domed cupola.

They used the Robotics Onboard Trainer, or ROBoT, to practice techniques for capturing Cygnus with Canadarm2, said NASA.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

They are expected to capture the private cargo freighter at approximately 6:39 a.m. (EDT) using the stations 57-foot (17-meter) Canadarm2 robotic arm.

Live coverage will then pause as the crew makes final preparations.

NASA will resume the live webcast at 8:30 a.m. EDT for the berthing of Cygnus.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port during Orb-1 mission in January 2014. Credit: NASA TV

Mission Control in Houston will command the arm to move Cygnus into place for its installation at the Earth-facing port on the Harmony module expected to take place some 15 minutes later at around 8:45 a.m.

The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

The wide ranging science cargo and experiments includes a flock of 29 nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Vine Video Of Auroras From Space Is Too Hypnotizing For Words

Screenshot of a Vine video from space taken by Expedition 40 astronaut Reid Wiseman in July 2014. Credit: Reid Wiseman/Vine

Looks like NASA’s Reid Wiseman is at it again. The prolific social-media-posting astronaut on the International Space Station just put up this Vine video showing auroras shining over Australia. Hard to believe this was captured from Earth orbit.

It seems the astronaut is quite fascinated by these lights, which are produced when particles from the sun move along magnetic field lines around our planet and “excite” molecules high in the atmosphere. Previously, Wiseman posted another Vine video of auroras while constellation Orion rose in the background.

Wiseman is also among those crew members posting pictures of Tropical Storm Arthur and participating in friendly head shave-offs for the World Cup (Wiseman was among those who lost.) And he’s a pretty adept photographer, too.

You can follow the many updates from space on Reid Wiseman’s Twitter feed. He’s just one of six crew members with Expedition 40.

 

Rosetta’s Lander Facing An Unexpected Comet Shape: A Double Nucleus

A view from the Rosetta spacecraft on July 11, 2014 showing what appears to be double lobes in the nucleus of Comet 67P/Churyumov-Gerasimenko. Screenshot from YouTube. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

A view of Comet 67P/Churyumov-Gerasimenko’s nucleus, appearing to show a double binary. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

It appears that Rosetta’s comet has a double nucleus. A video from the spacecraft speeding towards Comet 67P/Churyumov-Gerasimenko shows what looks two lobes touching each other, which could send a small wrinkle in the plans to land Philae on the comet’s surface later this year.

Edit, July 17: As the original video was removed off of YouTube, we have now replaced it with a GIF of the comet from here.

Citing a French space agency webpage that is now unavailable, the Planetary Society’s Emily Lakdawalla said she can hardly wait to see more views of the comet.

“The nucleus of the comet is clearly a contact binary — two smaller (and unequally sized object) in close contact,” she wrote, adding the nucleus measures 4 kilometers by 3.5 kilometers (2.5 miles by 2.17 miles).

It has a rotational period of about 12.4 hours.

“Philippe Lamy is quoted as estimating that the two components would have come into contact at a relative speed of about 3 meters per second in order to stick together in this way … This unusual shape could present a navigational challenge for the Philae lander team.

“The CNES release quotes Philae navigator Eric Jurado,” she continued, “as saying that ‘navigation around such a body should not be much more complex than around a nucleus of irregular spherical type, but landing the Philae probe [scheduled for November 11], however, could be more difficult, as this form restricts potential landing zones.’ ”

A view from the Rosetta spacecraft on July 11, 2014 showing what appears to be double lobes in the nucleus of Comet 67P/Churyumov-Gerasimenko. Screenshot from YouTube. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
A view from the Rosetta spacecraft on July 11, 2014 showing what appears to be double lobes in the nucleus of Comet 67P/Churyumov-Gerasimenko. Screenshot from YouTube. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Only a handful of spacecraft have ever got up close to a comet (see the picture gallery of the others here). While a contact binary may be a surprise to scientists, the irregular shape spotted from afar was something that we’ve seen before in other comets.

“Irregular, elongated, and structured shapes are not uncommon for small bodies such as asteroids and comets,” stated the Max Planck Institute for Solar System Research in a release last week. “Of the five cometary nuclei that have been visited by spacecraft in close flybys so far, all are far from spherical.”

Makes us all eager to see what Rosetta finds out as it draws closer to the comet, for its rendezvous in August. The spacecraft will remain with the comet as 67P/Churyumov-Gerasimenko makes its closest approach to the Sun in 2015.

Some astronomers are already having fun imagining the possibilities of the new shape, such as the University of California, Berkeley’s Alex Parker.

The Search for Alien Life Could Get A Boost From NASA’s Next-Generation Rocket

Artist's conception of NASA's Space Launch System with Orion crewed deep space capsule. Credit: NASA

In three years, NASA is planning to light the fuse on a huge rocket designed to bring humans further out into the solar system.

We usually talk about SLS here in the context of the astronauts it will carry inside the Orion spacecraft, which will have its own test flight later in 2014. But today, NASA advertised a possible other use for the rocket: trying to find life beyond Earth.

At a symposium in Washington on the search for life, NASA associate administrator John Grunsfeld said SLS could serve two major functions: launching bigger telescopes, and sending a mission on an express route to Jupiter’s moon Europa.

The James Webb Space Telescope, with a mirror of 6.5 meters (21 feet), will in part search for exoplanets after its launch in 2018. Next-generation telescopes of 10 to 20 meters (33 to 66 feet) could pick out more, if SLS could bring them up into space.

“This will be a multi-generational search,” said Sara Seager, a planetary scientist and physicist at the Massachusetts Institute of Technology. She added that the big challenge is trying to distinguish a planet like Earth from the light of its parent star; the difference between the two is a magnitude of 10 billion. “Our Earth is actually extremely hard to find,” she said.

Much like our solar system, Kepler-62 is home to two habitable zone worlds. The small shining object seen to the right of Kepler-62f is Kepler-62e. Orbiting on the inner edge of the habitable zone, Kepler-62e is roughly 60 percent larger than Earth. Image credit: NASA Ames/JPL-Caltech.
Much like our solar system, Kepler-62 is home to two habitable zone worlds. The small shining object seen to the right of Kepler-62f is Kepler-62e. Orbiting on the inner edge of the habitable zone, Kepler-62e is roughly 60 percent larger than Earth. Image credit: NASA Ames/JPL-Caltech.

While the symposium was not talking much about life in the solar system, Europa is considered one of the top candidates due to the presence of a possible subsurface ocean beneath its ice. NASA is now seeking ideas for a mission to this moon, following news that water plumes were spotted spewing from the moon’s icy south pole. A mission to Europa would take seven years with the technology currently in NASA’s hands, but the SLS would be powerful enough to speed up the trip to only three years, Grunsfeld said.

And that’s not all that SLS could do. If it does bring astronauts deeper in space as NASA hopes it will, this opens up a range of destinations for them to go to. Usually NASA talks about this in terms of its human asteroid mission, an idea it has been working on and pitching for the past year to a skeptical, budget-conscious Congress.

But in passing, John Mather (NASA’s senior project scientist for Webb) said it’s possible astronauts could be sent to maintain the telescope. Webb is supposed to be parked in a Lagrange point (gravitationally stable location) in the exact opposite direction of the sun, almost a million miles away. It’s a big contrast to the Hubble Space Telescope, which was conveniently parked in low Earth orbit for astronauts to fix every so often with the space shuttle.

An Artist's Conception of the James Webb Space Telescope. Credit: ESA.
An Artist’s Conception of the James Webb Space Telescope. Credit: ESA.

While NASA works on the funding and design for larger telescope mirrors, Webb is one of the two new space telescopes it is focusing on in the search for life. Webb’s infrared eyes will be able to peer at solar systems being born, once it is launched in 2018. Complementary to that will be the Transiting Exoplanet Survey Satellite, which will fly in 2017 and examine planets that pass in front of their parent stars to find elements in their atmospheres.

The usual cautions apply when talking about this article: NASA is talking about several missions under development, and it is unclear yet what the success of SLS or any of these will be until they are battle-tested in space.

But what this discussion does show is the agency is trying to find many purposes for its next-generation rocket, and working to align it to astrophysics goals as well as its desire to send humans further out in the solar system.

Mountains, Gandalf! Red Planet Pictures Show Mars In The Eyes Of The Rovers

An image of distant mountains taken by Curiosity's navcam on July 11, 2014, Sol 685 of the mission. The rover is in Gale Crater (near the equator of Mars) making a trek to Mount Sharp (the unofficial name for Aeolis Mons). Credit: NASA/JPL-Caltech

Fancy a little Mars in your daily life? You need go no further than the excellent raw image archive that NASA generously provides on its website, showing the view from the Opportunity and Curiosity rovers as they make their way on the surface.

Opportunity is rolling along in its eleventh year of operations, busily exploring the west rim of Endeavour Crater. Below the jump is a stunning stitch-together of some of its latest images from space tweep Stu Atkinson, who runs a lovely blog called Road to Endeavour about the rover’s adventures. NASA also has an official blog that was last updated July 1.

The Curiosity rover is in Gale Crater near the Martian equator, heading towards Mount Sharp as NASA picks paths that are the softest for its damaged wheels. Panorama maker Andrew Bodrov recently put together a new 360-degree view of Curiosity’s mastcam, which encompasses 137 images taken on Sol 673. You can see that below the jump as well.

Panorama based on pictures taken by the Opportunity rover in July 2014. Credit: Panorama by Stu Atkinson, photos by NASA/JPL-Caltech/Cornell Univ./Arizona State Univ
Panorama based on pictures taken by the Opportunity rover in July 2014. Credit: Panorama by Stu Atkinson, photos by NASA/JPL-Caltech/Cornell Univ./Arizona State Univ


Mars Panorama – Curiosity rover: Martian solar day 673 in out-of-this-world

Below are a couple of more raw views from the Curiosity rover taken on Sol 685.

A view of one of Curiosity's wheels taken by the rover's navcam on July 11, 2014 (Sol 685). Credit: NASA/JPL-Caltech
A view of one of Curiosity’s wheels taken by the rover’s navcam on July 11, 2014 (Sol 685). Credit: NASA/JPL-Caltech
Martian dunes dominate the scene in this picture taken by the Curiosity rover's navcam on July 11, 2014 (Sol 685). The rover is in Gale Crater, an equatorial region, on its way to Aeolis Mons (Mount Sharp). Credit: NASA/JPL-Caltech
Martian dunes dominate the scene in this picture taken by the Curiosity rover’s navcam on July 11, 2014 (Sol 685). The rover is in Gale Crater, an equatorial region, on its way to Aeolis Mons (Mount Sharp). Credit: NASA/JPL-Caltech

And across Mars, some views from Opportunity on Sol 3721 of the mission. The rover is facing the elimination of its funding in 2015, although in budget discussions from February NASA said it does have a route for it to get money (if Congress approves).

A view from NASA's Curiosity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA’s Opportunity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA's Curiosity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA’s Opportunity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA's Opportunity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA’s Opportunity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Commercial Antares/Cygnus Rocket Loaded with Science for July 13 Virginia Launch – Watch Live

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Following further weather delays this week Orbital Sciences Corp. commercial Antares rocket is at last set to soar to space at lunchtime Sunday, July 13, from a beachside launch pad in Virginia carrying a private Cygnus cargo freighter loaded with a diverse array of science experiments including a flock of nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

The privately developed Antares rocket is on a critical cargo resupply mission – named Orb-2 – bound for the International Space Station (ISS) and now targeting liftoff at 12:52 p.m. on July 13 from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island on Virginia’s Eastern shore.

Read my complete Antares launch viewing guide here – “How to See the Antares/Cygnus July 13 Blastoff”

Severe thunderstorms up and down the US East coast forced two consecutive postponements this week from the Atlantic Ocean region launch pad at NASA’s Wallops Flight Facility, VA, from July 11 to July 13.

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer – kenkremer.com

“Orbital’s launch team has made great progress in preparing the rocket for the Orb-2 mission, which will be the fourth flight of Antares in the past 15 months,” Orbital said in a statement.

“However, severe weather in the Wallops area has repeatedly interrupted the team’s normal operational schedule leading up to the launch. As a result, these activities have taken longer than expected. Orbital has decided to postpone the Orb-2 mission by an additional day in order to maintain normal launch operations processing.”

The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

A flock of 28 nanosatellites from Planet Labs of San Francisco are aboard to take pictures of Earth.

Close-up view of Cygnus spacecraft atop Antares rocket on Orb 2 mission launching on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer - kenkremer.com
Close-up view of Cygnus spacecraft atop Antares rocket on Orb 2 mission launching on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. Credit: Ken Kremer – kenkremer.com

After deployment from the Japanese JEM module they will form “the largest constellation of imaging satellites in Earth orbit,” said Robbie Schingler, Co-Founder of PlanetLabs.

“The individual satellites will take images that will be combined into a whole Earth mosaic,” Schingler told me in an interview at Wallops.

15 student experiments on the “Charlie Brown” mission are aboard and hosted by the Student Spaceflight Experiment Program, an initiative of the National Center for Earth and Space Science Education (NCESSE) and NanoRacks.

“The student experiments were chosen from over 1000 proposals from Grades 5 to 12,” said Jeff Goldstein, NCESSE director.

They will investigate plant, lettuce, raddish and mold growth and seed germination in zero-G, penecilium growth, corrosion inhibitors, oxidation in space and microencapsulation experiments.

The TechEdSat-4 is a small cubesat built by NASA’s Ames Research Center in California that will investigate technology to return small samples to Earth from the space station.

NASA will broadcast the Antares launch live on NASA TV starting at 12 Noon – http://www.nasa.gov/nasatv

The weather prognosis is very favorable with a 90% chance of acceptable weather at launch time during the 5 minute window.

The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

NASA will broadcast the Antares launch live on NASA TV starting at 12 Noon – http://www.nasa.gov/nasatv

Depending on local weather conditions, portions of the daylight liftoff could be visible to millions of spectators along the US Eastern seaboard stretching from South Carolina to Massachusetts.

Here’s a viewing map:

Orbital 2 Launch from NASA Wallops Island, VA on July 12, 2014- Time of First Sighting Map   This map shows the rough time at which you can first expect to see Antares after it is launched on July 12, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you'll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon more than a minute.   Credit: Orbital Sciences
Orbital 2 Launch from NASA Wallops Island, VA on July 13, 2014- Time of First Sighting Map This map shows the rough time at which you can first expect to see Antares after it is launched on July 13, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you’ll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon more than a minute. Credit: Orbital Sciences

The best viewing will be in the mid-Atlantic region closest to Wallops Island.

Locally at Wallops you’ll get a magnificent view and hear the rockets thunder at either the NASA Wallops Visitor Center or the Chincoteague National Wildlife Refuge/Assateague National Seashore.

For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter

NASA will have special “countdown speakers” set up at the NASA Wallops Visitor Center, Chincoteague National Wildlife Refuge/Assateague National Seashore and Ocean City inlet.

ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The July mission marks the second operational Antares/Cygnus flight.

The two stage Antares rocket stands 132 feet tall. It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.

Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about NASA’s Mars missions and Orbital Sciences Antares ISS launch on July 13 from NASA Wallops, VA in July and more about SpaceX, Boeing and commercial space and more at Ken’s upcoming presentations.

July 11/12/13: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Contest: Get Your Video On The International Space Station

A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA

If you’re starting your career, good with a video and love space, here’s your big chance to showcase your work in an exclusive screening location — the International Space Station! A new Lunar and Planetary Institute-led contest is inviting people to send in their videos to talk about how space helps out humanity. More details below the jump.

“Through the international Humans in Space Art Challenge, we invite you to explore ‘How will humans use space science, and technology to benefit humanity?’ and to express your answer creatively in a video three minutes long or less,” reads the description of the challenge.

“Video artwork can be of any style, featuring original animation, sketches, music, live action drama, poetry, dance, Rube Goldberg machines, apps, etc. … Individuals or teams of participants should include one clear reference to the International Space Station in their videos and can use space station footage if desired.”

The contest is open to “college students and early career professionals”, according to the webpage. The due date for the challenge is Nov. 15, 2014. Full requirements and contact information for the contest organizers are available on this page.