Sending a Spacecraft to Another Star Will Require a Million Lasers Working Together

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

In 2016, Russian-American billionaire Yuri Milner founded Breakthrough Initiatives, a non-profit organization dedicated to investigating some of the most enduring mysteries of the Universe. Chief among their scientific efforts is Breakthrough Starshot, a proof-of-concept prototype that combines a lightsail, a nanocraft, and directed energy (aka. laser) propulsion to create a spacecraft capable of reaching the nearest star (Alpha Centauri) in our lifetimes.

Naturally, this presents all sorts of technical and engineering challenges, not the least of which is the amount of power needed to accelerate the spacecraft to relativistic speeds (a fraction of the speed of light). Luckily, scientists from the Australian National University (ANU) recently came up with a design for a directed-energy array made up of millions of individual lasers positioned across the Earth’s surface.

Continue reading “Sending a Spacecraft to Another Star Will Require a Million Lasers Working Together”

“Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space

Simulated Hyperspace Travel
We're not at Hyperspace yet, but the next gen of interstellar space craft might be traveling at a good fraction of the speed of light c. - SpaceEngine by Author

May the 4th be With You!

Blasting out of Mos Eisley Space Port, the Millennium Falcon carries our adventurers off Tatooine bringing Luke Skywalker across the threshold into space. With Imperial Star Destroyers closing, Luke bemoans Han Solo’s delay in jumping to Hyperspace. It takes time to make these calculations through the Falcon’s “Navicomputer.” Han explains that otherwise they could “fly right through a star” or “bounce too close to a supernova.” (probably the same effect of each – also are supernovas bouncy?)

Celestial calculations are needed to figure out where you’re going. In Star Wars these are done by ship computers, or later by trusty astromech droids like R2-D2. But, for the first time, simulations have been conducted of an uncrewed ship’s ability to autonavigate through interstellar space. While not at Hyperspace speeds, the simulations do account for velocities at up to half the speed of light. Created by Coryn A.L. Bailer-Jones of the Max Plank Institute for Astronomy, these simulations may be our first step to creating our own “Navicomputers” (or R2-D2s if they have a personality).

The most distant object we’ve ever sent into space, Voyager1, was launched in 1977 (same year as the release of Star Wars). It took 4 decades to leave the solar system. The next generation of interstellar craft may be far faster but also need their own way to navigate
c. NASA
Continue reading ““Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space”

The Space Court Foundation Presents: “Women of Color in Space”

In the coming generations, humanity’s presence in space is expected to grow considerably. With everything from space tourism, the commercialization of Low Earth Orbit (LEO), asteroid mining, and maybe even settlements on the Moon and Mars in mind, there appears to be no limit to what we hope to accomplish. Another interesting thing about the modern space age is the way it is becoming more open and accessible, with more people and nations able to take part.

Unlike the Space Race, where two nations dominated the playing field and astronauts corps were almost exclusively made up of white men, space exploration today is more representative. However, there are still many challenges and barriers for women and people of color in space exploration and the related STEAM fields, not all of which are visible. Addressing these requires that we become better at listening to those who deal with them.

To this end, the Space Court Foundation (SCF) is launching a new series titled “Women of Color in Space.” As part of their mission to foster a conversation about space law and the future of space exploration today, this series interviews women of color who have made it their mission to advance space exploration and fulfill the promise of making space “the province of all of humanity.”

Continue reading “The Space Court Foundation Presents: “Women of Color in Space””

Plasma Thruster Could Dramatically Cut Down Flight Times to the Outer Solar System

Proposed Theoretical Propulsion Plasma Rocket c. NASA Public Doman

I just finished the most recent season of The Expanse – my current favourite Sci-Fi series. Unlike most of my other go-to Sci-Fi, The Expanse’s narrative is (thus far) mainly contained to our own Solar System. In Star Trek, ships fly about the galaxy at Faster-Than-Light speeds giving mention to the many light years (or parsecs *cough* Star Wars) travelled to say nothing of sublight journeys within solar systems themselves. The distances between stars is huge. But, for current-day Earthling technology, our Solar System itself is still overwhelmingly enormous. It takes years to get anywhere.

In The Expanse, ships use a fictional sublight propulsion called The Epstein Drive to travel quickly through the Solar System at significant fractions of light speed. We’re not nearly there yet, but we are getting closer with the announcement of a new theoretical sublight propulsion. It won’t be an Epstein drive, but it may come to be known as the Ebrahimi Drive – an engine inspired by fusion reactors and the incredible power of solar Coronal Mass Ejections.

Fatima Ebrahimi in her Office c, Elle Starkman
Continue reading “Plasma Thruster Could Dramatically Cut Down Flight Times to the Outer Solar System”

Emirates Mars Mission Arrives at the Red Planet Today!

Artist's impression of the UAE's Hope satellite in space. Credit and ©: UAE Space Agency

On July 19th, 2020, the Emirates Mars Mission (EMM) – aka. Al Amal (“Hope” in Arabic) – launched from the Tanegashima Space Center in Japan on its way to Mars. This mission, the first interplanetary effort to be mounted by an Arab nation, is being carried out by the Mohammed bin Rashid Space Centre (MBRSC) in the United Arab Emirates (UAE) in collaboration with a number of research institutions internationally.

Continue reading “Emirates Mars Mission Arrives at the Red Planet Today!”

Every Challenge Astronauts Will Face on a Flight to Mars

Nuclear-powered transit habitat
An artist's conception shows a Mars transit habitat with a nuclear propulsion system. Credit: NASA

In 1972, the Space Race officially ended as NASA sent one last crew of astronauts to the surface of the Moon (Apollo 17). This was the brass ring that both the US and the Soviets were reaching for, the “Moonshot” that would determine who had supremacy in space. In the current age of renewed space exploration, the next great leap will clearly involve sending astronauts to Mars.

This will present many challenges that will need to be addressed in advance, many of which have to do with simply getting the astronauts there in one piece! These challenges were the subject of a presentation made by two Indian researchers at the SciTech Forum 2020, an annual event hosted by the International Academy of Astronautics (IAA), RUDN University, and the American Astronomical Society (AAS).

Continue reading “Every Challenge Astronauts Will Face on a Flight to Mars”

The UK is Considering Nuclear Propulsion in Space

Credit: Rolls-Royce

If human beings intend to become an interplanetary species (or interstellar, for that matter), then we are going to need new propulsion methods that combine a significant level of thrust with fuel-efficiency. One option that NASA has been exploring for decades is spacecraft that rely on nuclear power, which can take the form of nuclear-electric or nuclear-thermal propulsion (NEP/NTP).

In the current era of space exploration, other space agencies are looking into this technology as well. For instance, the UK Space Agency recently signed a contract with the British automotive engineering firm Rolls-Royce. As per their duties, Rolls-Royce will investigate applications for nuclear power and propulsion. Given the company’s record of mechanical, electrical, and nuclear power solutions

Continue reading “The UK is Considering Nuclear Propulsion in Space”

Gateway Foundation Gives a Detailed Update on its Voyager Station Concept

Credit: Gateway Foundation

In 2012, the Gateway Foundation was founded with the purpose of building the world’s first rotating space station in orbit – known as The Gateway. This is no easy task and must be preceded by establishing the necessary infrastructure in orbit and the creation of a series of smaller structures to test the concept. This includes the Voyager Class station, a rotating structure designed to produce varying levels of artificial gravity.

In recent months, the Orbital Assembly Corporation (OAC) – founed in 2018 by the Gateway team – began working on a crucial component, known as the DSTAR. These and other updates about their Voyager Class station were the subjects of a recent video featuring Foundation and OAC CEO John Blincow. According to Blincow, he and his colleagues will be performing a demonstration and making a big announcement in the coming weeks!

Continue reading “Gateway Foundation Gives a Detailed Update on its Voyager Station Concept”

A Robot Made of Ice Could Adapt and Repair Itself on Other Worlds

This illustration of Jupiter's moon Europa shows how the icy surface may glow on its nightside, the side facing away from the Sun. Variations in the glow and the color of the glow itself could reveal information about the composition of ice on Europa's surface. Credit: NASA/JPL-Caltech

Some of the most tantalizing targets in space exploration are frozen ice worlds. Take Jupiter’s moon Europa for instance. Its warm salty subsurface ocean is buried under a moon-wide sheet of ice. What’s the best way to explore it?

Maybe an ice robot could play a role.

Continue reading “A Robot Made of Ice Could Adapt and Repair Itself on Other Worlds”

Winning Urban Farming Ideas for Mars!

Credit: Mars City Design

If humans plan to go to live and work beyond Earth someday, they will need technologies that allow for sustainable living in alien environments. This is especially true of Mars, which is extremely cold, dry, and subject to more radiation than we are used to. On top of that, it also takes six to nine months to send spacecraft there, and that’s every two years when Earth and Mars are closest to each other in their orbits.

As such, settling on the Red Planet will require some serious creativity!

This is the purpose of Mars City Design (the Mars City®), an innovation and design platform founded by architect and filmmaker Vera Mulyani. Every year since its inception, this organization has hosted the Mars City Design Challenges, where students from around the world come together with industry experts to produce architectural designs for living on Mars (what Mulyani calls “Marchitecture”).

Continue reading “Winning Urban Farming Ideas for Mars!”