The Waters Of Mars: New Map Shows Something Unexpected

A portion of a 2014 Mars map showing the area east of Hellas basin, at midsoutherly latitudes. Credit: USGS

Where did the water on Mars come from, and where did it go? This plot (sort of) formed the basis of one of the best Doctor Who episodes of the modern era, but in all seriousness, it is also driving scientists to examine the Red Planet over and over again.

This means revisiting older information with newer data to see if everything still matches up. From time to time, it doesn’t. The latest example came when scientists at the U.S. Geological Survey created a map of the canyon systems of Waikato Vallis and Reull Vallis, which are in the midsoutherly latitudes of Mars.

They previously believed the canyons were connected, but updating the data from an understanding based on 1980s Viking data revealed a different story.

“These canyons are believed to have formed when underground water was released from plains materials to the surface, causing the ground to collapse. The water could have been stored within the plains in localized aquifers or as ice, which could have melted due to the heat from nearby volcanoes,” the U.S. Geological Survey stated.

Part of the floor of Reull Vallis, a valley east of Hellas Basin on Mars. Picture taken by Mars Global Surveyor. Credit: NASA/JPL/Malin Space Science Systems
Part of the floor of Reull Vallis, a valley east of Hellas Basin on Mars. Picture taken by Mars Global Surveyor. Credit: NASA/JPL/Malin Space Science Systems

But the newer data — looking at information from the Mars Reconnaissance Orbiter, Mars Odyssey, Mars Global Surveyor — revealed the canyons are quite separate, demarcated by a zone called Eridania Planitia in between.

“Careful estimates of the ages of the canyons and the plains reveal a sequence of events starting with the water released from Waikato Vallis, which would have been stored for a time in the plains as a shallow lake. As Reull Vallis was forming separately, the canyon breached a crater rim that was holding back the water in the lake; the lake drained gradually, which can be seen by many smaller channels incised on the floor of Reull Vallis.”

The map was co-produced by Scott Mest and David Crown, who are both of the Planetary Science Institute. You can view the entire map and related materials here.

Source: Planetary Science Institute

Voyager 1 Hears Sun Echoes Far Away, In Interstellar Space

Artist's concept of Voyager 1 in interstellar space. Credit: NASA/JPL-Caltech

Wow! Even from interstellar space, the plucky Voyager 1 can still listen in to activities from our Sun. Whenever the Sun has a large amount of activity, the waves of energy it sends out bashes into the charged gas particles or plasma surrounding the NASA spacecraft, which has been sailing away from Earth since 1977.

There have been three events so far from our Sun (which is in solar maximum), with each one confirming scientists’ findings that interstellar space is where the spacecraft is, NASA said.

“Normally, interstellar space is like a quiet lake,” stated Voyager project scientist Ed Stone of the California Institute of Technology. “But when our sun has a burst, it sends a shock wave outward that reaches Voyager about a year later. The wave causes the plasma surrounding the spacecraft to sing.”

“The tsunami wave rings the plasma like a bell,” added Stone. “While the plasma wave instrument lets us measure the frequency of this ringing, the cosmic ray instrument reveals what struck the bell — the shock wave from the Sun.”

The discovery of this wave front confirms the previous assertion that Voyager 1 is indeed in interstellar space, NASA added. Winds from the sun push against the plasma at the edge of interstellar space, making it denser (40 times denser than what was measured before Voyager reached the milestone in 2012, in fact.)

NASA’s announcement in 2013 that Voyager 1 is in interstellar space was accompanied by intense discussion about whether it is in or out of the Solar System (it still hasn’t reached the shell of the Oort Cloud that hosts comets, a milestone that won’t be possible for 300 years). Prior to the announcement, several scientific papers had also weighed in on Voyager 1’s status, with some saying it was interstellar space and some not.

Source: NASA

Calling All Space Tweeps! In Honor of STS-135, Share Your Fave Shuttle Pics

Atlantis sits on the launch pad in July 2011 ahead of the final launch of the space shuttle program, STS-135. Credit: NASA/Bill Ingalls

Has it been three years already? The last mission of the space shuttle program launched on this day in 2011. We’ve included some of the most beautiful NASA images from the final flight of Atlantis.

But we’re also interested in publishing photos from Universe Today readers! If you attended STS-135 or any other launch of the space shuttle program, we’d like to hear from you. More details below the jump.

The mission’s major goal was to heft a multipurpose logistics module into space, as well as a bunch of spare parts that would be difficult to ship after the space shuttle retired. But it also served as a point of remembrance for the thousands of workers who constructed and maintained the shuttle, and the millions of people who watched its flights.

Where were you during that flight? What pictures did you take? Let us know in the comments and if you’d like to see your images published in a future Universe Today story, share your photos in our Flickr group. The photos must belong to you and be free to share. While this story focuses on STS-135, pictures from any shuttle launch or event are welcome. Let us know which one it was!

To kick off the memories, I’ll talk about where I was during the launch: I was on my way to a wedding in Toronto, Canada — five hours away from my hometown of Ottawa. I managed to pull into a parking lot just a few minutes before the launch sequence started.

I tried and tried to get a steady signal for video, but my phone was having none of it, so I instead “watched” the launch on Twitter. Luckily for me, friends were tweeting and sending text updates from watching television or in person, so I didn’t miss a thing. Then a couple of days later, my best friend and I both watched the NASA launch video together for the first time.

The flag of Atlantis flies from the Mobile Launcher Platform that brought Atlantis to the launch pad, May 31, 2011. Below the flag are crowds of people who attended the rollout. Credit: NASA/Bill Ingalls
The flag of Atlantis flies from the Mobile Launcher Platform that brought Atlantis to the launch pad, May 31, 2011. Below the flag are crowds of people who attended the rollout. Credit: NASA/Bill Ingalls
Randy Meyers (left) and Mitchell Bromwell of United Space Alliance, the primary industry partner for space shuttle operations, show off an American flag to crowds of people gathered for the rollout of STS-135 Atlantis on May 31, 2011. Credit: NASA/Bill Ingalls
Randy Meyers (left) and Mitchell Bromwell of United Space Alliance, the primary industry partner for space shuttle operations, show off an American flag to crowds of people gathered for the rollout of STS-135 Atlantis on May 31, 2011. Credit: NASA/Bill Ingalls
The STS-135 crew admires the shuttle Atlantis just prior to launching July 8, 2011. From left, Rex Walheim, Doug Hurley, Sandy Magnus and Chris Ferguson. Credit: NASA/Bill Ingalls
The STS-135 crew admires the shuttle Atlantis just prior to launching July 8, 2011. From left, Rex Walheim, Doug Hurley, Sandy Magnus and Chris Ferguson. Credit: NASA/Bill Ingalls
Atlantis lifts off on the last launch of the shuttle program, STS-135, on July 8, 2011. Credit: NASA/Bill Ingalls
Atlantis lifts off on the last launch of the shuttle program, STS-135, on July 8, 2011. Credit: NASA/Bill Ingalls
Space shuttle Atlantis gets ready to dock with the International Space Station on July 10, 2011 during STS-135, the last mission of the space shuttle program. It is backdropped by the Bahamas. Credit: NASA
Space shuttle Atlantis gets ready to dock with the International Space Station on July 10, 2011 during STS-135, the last mission of the space shuttle program. It is backdropped by the Bahamas. Credit: NASA
NASA astronaut Ron Garan (who was on Expedition 28 while Atlantis was docked to the International Space Station for STS-135) adjusts his tethers early in a spacewalk July 12, 2011. Credit: NASA
NASA astronaut Ron Garan (who was on Expedition 28 while Atlantis was docked to the International Space Station for STS-135) adjusts his tethers early in a spacewalk July 12, 2011. Credit: NASA
The crew members of STS-135 and Expedition 28 share a meal and a selfie on July 14, 2011, marking one of the last times a shuttle crew and International Space Station crew ate together. Credit: NASA
The crew members of STS-135 and Expedition 28 share a meal and a selfie on July 14, 2011, marking one of the last times a shuttle crew and International Space Station crew ate together. Credit: NASA
NASA astronaut Chris Ferguson, who commanded STS-135, signs a decal for his mission (the last space shuttle mission) in the Quest airlock of the International Space Station. Next to it is the crew patch for Expedition 28. Credit: NASA
NASA astronaut Chris Ferguson, who commanded STS-135, signs a decal for his mission (the last space shuttle mission) in the Quest airlock of the International Space Station. Next to it is the crew patch for Expedition 28. Credit: NASA
Space shuttle Atlantis flies home in this image captured from the International Space Station. Atlantis was completing STS-135, the last mission of the shuttle program. Credit:
Space shuttle Atlantis flies home in this image captured from the International Space Station. Atlantis was completing STS-135, the last mission of the shuttle program. Credit:
Atlantis touches down in the last moments of STS-135 on July 21, 2011, marking the end of the shuttle program's flights. Credit: NASA/Bill Ingalls
Atlantis touches down in the last moments of STS-135 on July 21, 2011, marking the end of the shuttle program’s flights. Credit: NASA/Bill Ingalls
The view from under Atlantis, looking forward, after it landed at the Kennedy Space Center in Florida July 21, 2011, closing out the shuttle program with STS-135. Credit: NASA/Bill Ingalls
The view from under Atlantis, looking forward, after it landed at the Kennedy Space Center in Florida July 21, 2011, closing out the shuttle program with STS-135. Credit: NASA/Bill Ingalls
Atlantis is placed into its permanent home -- an exhibit at the Kennedy Space Center -- which opened in 2013. Credit: NASA
Atlantis is placed into its permanent home — an exhibit at the Kennedy Space Center — which opened in 2013. Credit: NASA

Antares Commercial Rocket Cleared for July 11 Space Station Blastoff Following Engine Re-Inspection

Orbital Sciences Antares rocket and Cygnus cargo spacecraft are set to blast off on July 11, 2014 on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the International Space Station (ISS). The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer - kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – The long delayed liftoff of an Orbital Sciences Corp. commercial Antares rocket on a cargo mission bound for the International Space Station (ISS) has been cleared for blastoff this Friday, July 11, from the Eastern shore of Virginia, following a thorough re-inspection of the two Russian built and US modified AJ26 engines that power the rocket’s first stage after the test failure of a different engine in May.

The critically important Aerojet Rocketdyne AJ26 engine re-inspection was mandated following the significant failure of another AJ26 engine during acceptance testing on May 22 at NASA’s Stennis Space Center in Mississippi to investigate any concerns and insure against an in flight failure.

NASA and Orbital Sciences are now targeting the Antares launch carrying the privately developed Cygnus resupply freighter on the Orb-2 mission from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility, Virginia, on July 11 at 1:40 p.m. (EDT).

Universe Today was granted a visit to the Orbital Sciences Antares rocket integration facility at NASA Wallops recently as the engine re-inspection work was winding down. See my Antares/Cygnus Orb-2 rocket photos herein.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

Aerojet engineers re-inspected the engines while they were still mated to the bottom of the Antares rocket and found them to be satisfactory for fight. No swap out was required.

The Cygnus cargo logistics spacecraft was then mated to the rocket on July 3 and will be rolled out to the Wallops launch pad on Wednesday morning at 8:30 a.m., July 9.

Late stow items including time sensitive science experiments will be packed aboard on Tuesday, July 8.

The launch window on July 11 opens at 1:40 p.m. for a duration of 5 minutes.

NASA will broadcast the Antares launch live on NASA TV – http://www.nasa.gov/nasatv

In the event of a delay for any reason the next available launch opportunity is July 12 at 1:14 p.m.

Until the first stage engine failure, this Antares rocket had been slated to blastoff on June 10 with the Cygnus cargo freighter on the Orb-2 mission which is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

1st and 2nd stage of Orbital Sciences Antares rocket set for blast off on July 11, 2014 on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
1st and 2nd stage of Orbital Sciences Antares rocket set for blast off on July 11, 2014 on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The AJ26 rocket engine that failed in May was extensively damaged about halfway through the planned test aimed at qualifying the engine for an Antares flight scheduled for early next year.

“There was a test failure at Stennis on May 22,” Orbital Sciences spokesman Barry Beneski told Universe Today at that time. “Engineers are examining data to determine the cause of the failure.”

The failure occurred approximately 30 seconds into the planned 54-second test.

“It terminated prematurely, resulting in extensive damage to the engine,” Orbital said in a statement in May.

The pressurized Cygnus spacecraft will deliver 1,657 kg of cargo to the ISS including science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Cygnus will remain berthed at the station for 40 days.

For the return to Earth it will be loaded with approximately 1,346 kg of material for disposal upon atmospheric reentry.

The two stage Antares rocket stands 133 feet tall.

It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.

ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Flight time to the ISS is approximately 3 days. An on time launch will result in Cygnus arrival at the ISS on July 15.

Station commander Steven Swanson of NASA and Flight Engineer Alexander Gerst of the European Space Agency (ESA) will grapple and berth Cygnus using the stations 57 foot-long robotic arm onto the Earth-facing port of the station’s Harmony module.

The Antares first stage is powered by a pair of liquid oxygen and kerosene fueled AJ26-62 engines that deliver a combined 734,000 pounds (3265 kilonewtons) of sea level thrust.

To date the AJ26 engines have performed flawlessly through a total of three Antares launches from NASA’s Wallops Flight Facility in Virginia starting in April 2013.

They measure 3.3 meters (10.9 feet) in height and weigh 1590 kg (3,500 lb.).

The AJ26 engines were originally known as the NK-33 and built during the 1960s and 1970s in the Soviet Union for their manned moon landing program.

Aerojet extensively modified, checked and tested the NK-33 engines now designated as the AJ26-62 to qualify them for use in the first stage Antares core, which is manufactured in Dnipropetrovsk, Ukraine by the Yuznoye Design Bureau and based on the Zenit launch vehicle.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The July mission marks the second operational Antares/Cygnus flight.

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.

Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA, and more about SpaceX, Boeing, commercial space, NASA’s Mars missions and more at Ken’s upcoming presentations.

July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Antares Orb-2 launch viewing map for July 11, 2014 liftoff from NASA Wallops, VA. Credit: NASA
Antares Orb-2 launch viewing map for July 11, 2014 liftoff from NASA Wallops, VA. Credit: NASA

Sketches of Saturn: Ringed Planet Dances In Raw Cassini Images

A hexagonal storm on Saturn rages in this image taken July 2, 2014. Credit: NASA/JPL/Space Science Institute

We space people are very lucky to get glimpses of Saturn (and other planets!) regularly through the raw images feature on a few spacecraft websites. This allows anyone to get a hold of the pictures as they come back from afar, allowing you to view them or alter them to try and see what they’re all about.

In an era where we are so used to high-definition pictures, examining these blurry, black-and-white shots feels novel. It makes the spacecraft seem like it is action somehow: catching a glimpse of a ringed planet as it swings by, for example.

Enclosed here are some of the latest gifts from the Cassini spacecraft, which is celebrating 10 years in Saturn’s system.

Part of Saturn's rings are visible in this July 2, 2014 image from the cassini spacecraft. Credit: NASA/JPL/Space Science Institute
Part of Saturn’s rings are visible in this July 2, 2014 image from the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute
Gazing at Saturn's rings. Picture taken by the Cassini spacecraft June 30, 2014. Credit: NASA/JPL/Space Science Institute
Gazing at Saturn’s rings. Picture taken by the Cassini spacecraft June 30, 2014. Credit: NASA/JPL/Space Science Institute
A dark shadow falls across Saturn and its rings in this raw image taken by the Cassini spacecraft July 2, 2014. Credit: NASA/JPL/Space Science Institute
A dark shadow falls across Saturn and its rings in this raw image taken by the Cassini spacecraft July 2, 2014. Credit: NASA/JPL/Space Science Institute
Eerie shadows play across Saturn in this Cassini image taken in June 2014. Credit: NASA/JPL/Space Science Institute
Eerie shadows play across Saturn in this Cassini image taken in June 2014. Credit: NASA/JPL/Space Science Institute

New Horizons Enters ‘Pluto-Space!’ To Celebrate, Here Are Pictures Of The Dwarf Planet

New Horizons
Artist's impression of the New Horizons spacecraft. Image Credit: NASA

After almost nine years on the road, New Horizons is in what NASA calls “Pluto-space”! Earlier today (July 7), the spacecraft Twitter account announced New Horizons is now 29.8 Earth-sun distances (astronomical units) away from the Sun, putting it within the boundaries of Pluto’s eccentric orbit — exciting, since Pluto is the primary science target.

“Didn’t get the word? We’re farther out than Pluto’s minimum distance to the Sun. We’re in ‘Pluto-space’ now!” tweeted the New Horizons account. We’ve included some of the best Pluto pictures below, to date, to celebrate.

And while many are focused on the Pluto encounter itself, NASA is already planning for what to do next for the spacecraft. In mid-June, we  reported that the Hubble Space Telescope was doing a test search for icy Kuiper Belt objects that New Horizons could possibly fly to next.

That test search was successful enough, with two objects found, that Hubble is now doing a full-blown investigation, according to an announcement last week. Hubble will begin that work in July and conclude observations in August. New Horizons is expected to fly by Pluto and its moons in July 2015.

Pluto's surface as viewed from the Hubble Space Telescope in several pictures taken in 2002 and 2003. Though the telescope is a powerful tool, the dwarf planet is so small that it is difficult to resolve its surface. Astronomers noted a bright spot (180 degrees) with an unusual abundance of carbon monoxide frost. Credit: NASA
Pluto’s surface as viewed from the Hubble Space Telescope in several pictures taken in 2002 and 2003. Though the telescope is a powerful tool, the dwarf planet is so small that it is difficult to resolve its surface. Astronomers noted a bright spot (180 degrees) with an unusual abundance of carbon monoxide frost. Credit: NASA
Pluto and its moons, most of which were discovered while New Horizons was in development and en route. Charon was found in 1978, Nix and Hydra in 2005, Kerberos in 2011 and Styz in 2012. The New Horizons mission launched in 2007. Picture taken by the Hubble Space Telescope. Credit: NASA
Pluto and its moons, most of which were discovered while New Horizons was in development and en route. Charon was found in 1978, Nix and Hydra in 2005, Kerberos in 2011 and Styx in 2012. The New Horizons mission launched in 2006. Picture taken by the Hubble Space Telescope. Credit: NASA
Pluto and moons Charon, Hydra and Nix (left) compared to the dwarf planet Eris and its moon Dysmonia (right). This picture was taken before Kerberos and Styx were discovered in 2011 and 2012, respectively. Credit: International Astronomical Union
Pluto and moons Charon, Hydra and Nix (left) compared to the dwarf planet Eris and its moon Dysnomia (right). This picture was taken before Kerberos and Styx were discovered in 2011 and 2012, respectively. Credit: International Astronomical Union
Pluto appears as a faint white dot (see arrow) in this image taken by New Horizons in September 2006, nine months after launch. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluto appears as a faint white dot (see arrow) in this image taken by New Horizons in September 2006, nine months after launch. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluto and Charon are visible in this 2013 image from New Horizons' LOng Range Reconnaissance Imager (LORRI). It was the first image from the spacecraft showing Charon separated from Pluto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluto and Charon are visible in this 2013 image from New Horizons’ LOng Range Reconnaissance Imager (LORRI). It was the first image from the spacecraft showing Charon separated from Pluto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Spectacular Southern Lights, Shooting Stars, Sahara Snapshots and more from ESA’s Alexander Gerst aboard ISS

“Saw a beautiful Southern Light last night. I so wish you could see this with your own eyes!” Image taken from the International Space Station (ISS) on 5 July 2014. Credit: ESA/Alexander Gerst

Spectacular snapshots of the Southern Lights, Shooting Stars, the Sahara Desert and much more are streaming back from space to Earth courtesy of Alexander Gerst, ESA’s German astronaut currently serving aboard the International Space Station (ISS).

See a gallery of Alex’s stunning space-based views (sagenhafte Weltraum bilder) collected herein – starting with the auroral fireworks seen from space – above. It coincides with the Earth-based fireworks of America’s 4th of July Independence Day weekend celebrations and spectacular Noctilucent Clouds (NLCs) wafting over the Northern Hemisphere. NLC gallery here.

“Saw a beautiful Southern Light last night. I so wish you could see this with your own eyes!” Alex tweeted in English.

Gerst is posting his Earth & space imagery from the ISS on a variety of social media including Twitter, Facebook, Google+ and his ESA astronaut blog bilingually in English and German.

Another new snapshot of Earth’s “beautiful Southern Lights”  taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst
Another new snapshot of Earth’s “beautiful Southern Lights” taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst

“Habe gestern ein wunderschönes Südlicht gesehen. Ich wünschte ihr könntet das mit eigenen Augen sehen!” Alex tweeted in German.

Check out Alexander Gerst’s stunning 1st timelapse video from the ISS:

Video Caption: ESA astronaut Alexander Gerst’s first timelapse from the International Space Station features the first shooting star that he saw from above. Made by stitching together over 250 images this short clip shows the beauty of our world and the space around it. Published on July 5, 2014. Credit: ESA/Alexander Gerst

Gerst launched to the ISS on his rookie space flight on May 28, 2014 aboard a Russian Soyuz capsule along with Russian cosmonaut Maxim Suraev and NASA astronaut Reid Wiseman.

ISS Expedition 40 patch
ISS Expedition 40 patch

The trio are members of Expeditions 40 and 41 and joined three more station flyers already aboard – cosmonauts Alexander Skvortsov & Oleg Artemyev and astronaut Steve Swanson – to bring the station crew complement to six.

Alex will spend six months on the ISS for ESA’s Blue Dot mission. He is Germany’s third astronaut to visit the ISS. He is trained as a geophysicist and a volcanologist.

Gerst also has practiced and honed another talent – space barber! He shaved the heads of his two American crew mates – to match his bald head – after winning a friendly wager with them when Germany beat the US in a 2014 FIFA World Cup match on June 26.

Here’s several of Alexander Gerst’s newest views of the Sahara Desert and more.

“Even from space, the Sahara looks dry! Sogar vom Weltraum aus, sieht die Sahara trocken aus!” Taken from the ISS on 6 July 2014. Credit: ESA/Alexander Gerst
“Even from space, the Sahara looks dry! Sogar vom Weltraum aus, sieht die Sahara trocken aus!” Taken from the ISS on 6 July 2014. Credit: ESA/Alexander Gerst
“Harsh land. Windswept valleys in northern Africa. Hartes Land. Windgefraeste Taeler in Nordafrika.” Taken from the ISS on 6 July 2014. Credit: ESA/Alexander Gerst
“Harsh land. Windswept valleys in northern Africa. Hartes Land. Windgefraeste Taeler in Nordafrika.” Taken from the ISS on 6 July 2014. Credit: ESA/Alexander Gerst
“Sometimes our atmosphere looks incredibly complex and three-dimensional, sometimes you don't even see it. Manchmal schaut unsere Atmosphäre unglaublich Komplex und dreidimensional aus, manchmal fast unsichtbar.”  Taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst
“Sometimes our atmosphere looks incredibly complex and three-dimensional, sometimes you don’t even see it. Manchmal schaut unsere Atmosphäre unglaublich Komplex und dreidimensional aus, manchmal fast unsichtbar.” Taken from the ISS on 5 July 2014. Credit: ESA/Alexander Gerst
Antarctic aurora.  The Antarctic aurora, photographed by ESA astronaut Alexander Gerst and posted on social media with the comment: "Antarctic Aurora fleeing from  sunrise. I have rarely seen something more magical in my life!" Credits: ESA/NASA/Alexander Gerst
Antarctic aurora. The Antarctic aurora, photographed by ESA astronaut Alexander Gerst and posted on social media with the comment: “Antarctic Aurora fleeing from sunrise. I have rarely seen something more magical in my life!” Credits: ESA/NASA/Alexander Gerst

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA, and more about SpaceX, Boeing, commercial space, NASA’s Mars missions and more at Ken’s upcoming presentations.

July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Mars One Soliciting Your Research Ideas for 2018 Robotic Red Planet Lander

Mars One proposes Phoenix-like lander for first privately funded mission to the Red Planet slated to blastoff in 2018. This film solar array experiment would provide additional power. Credit: Mars One

Would you like to send your great idea for a research experiment to Mars and are searching for a method of transport?

The Mars One non-profit foundation that’s seeking settlers for a one-way trip to establish a permanent human colony on the Red Planet starting in the mid-2020’s, is now soliciting science and marketing proposals in a worldwide competition for their unmanned forerunner mission – the 2018 Mars One technology demonstration lander.

The Dutch-based Mars One team announced this week that they are seeking requests for proposals for seven payloads that would launch in August 2018 on humanities first ever privately financed robotic Red Planet lander.

Mars One hopes that the 2018 lander experiments will set the stage for liftoff of the first human colonists in 2024. Crews of four will depart every two years.

Artist's conception of Mars One human settlement. Credit: Mars One/Brian Versteeg
Artist’s conception of Mars One human settlement. Credit: Mars One/Brian Versteeg

The 2018 lander structure would be based on NASA’s highly successful 2007 Phoenix Mars lander – built by Lockheed Martin – which discovered and dug into water ice buried just inches beneath the topsoil in the northern polar regions of the Red Planet.

Mars One has contracted with Lockheed Martin to build the new 2018 lander.

Lockheed is also currently assembling another Phoenix-like lander for NASA named InSight which is scheduled to blast off for Mars in 2016.

The payloads being offered fall under three categories; four science demonstration payloads, a single university science experiment, and two payload spaces up for sale to the highest bidder for science or marketing or “anything in between.”

The science payload competition is open to anyone including universities, research bodies, and companies from around the world.

“Previously, the only payloads that have landed on Mars are those which NASA has selected,” said Bas Lansdorp, Co-founder & CEO of Mars One, in a statement. “We want to open up the opportunity to the entire world to participate in our mission to Mars by sending a certain payload to the surface of Mars.”

The four science demonstration payloads will test some of the technologies critical for establishing the future human settlement. They include soil acquisition experiments to extract water from the Martian soil into a useable form to test technologies for future human colonists; a thin film solar panel to demonstrate power production; and a camera system working in combination with a Mars-synchronous communications satellite to take a ‘real time’ look on Mars.

3 Footpads of Phoenix Mars Lander atop Martian Ice.  Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars InSight mission will build a new Phoenix-like lander from scratch to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute
3 Footpads of Phoenix Mars Lander atop Martian Ice
Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars One 2018 mission will build a new Phoenix-like lander from scratch to test technologies for extracting water into a useable form for future human colonists. NASA’s InSight 2016 mission will build a new Phoenix-like lander to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute

The single University competition payload is open to universities worldwide and “can include scientific experiments, technology demonstrations or any other exciting idea.” Click here for – submission information.

Furthermore two of the payloads are for sale “to the highest bidder” says Mars One in a statement and request for proposals document.

The payloads for sale “can take the form of scientific experiments, technology demonstrations, marketing and publicity campaigns, or any other suggested payload,” says Mars One.

“We are opening our doors to the scientific community in order to source the best ideas from around the world,” said Arno Wielders, co-founder and chief technical officer of Mars One.

Image shows color MOLA relief with US lander landing sites (Image credit NASA/JPL-Caltech/Arizona State University). Yellow box indicates Mars One Precursor landing regions under consideration.
Image shows color MOLA relief with US lander landing sites (Image credit NASA/JPL-Caltech/Arizona State University). Yellow box indicates Mars One Precursor landing regions under consideration.

“The ideas that are adopted will not only be used on the lander in 2018, but will quite possibly provide the foundation for the first human colony on Mars. For anyone motivated by human exploration, there can be no greater honor than contributing to a manned mission to Mars.”

Click here for the Mars One 2018 Lander ‘Request for Proposals.’

Over 200,000 Earthlings applied to Mars One to become future human colonists. That list has recently been narrowed to 705.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

…………….

Learn more about NASA’s Mars missions and Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA in July and more about SpaceX, Boeing and commercial space and more at Ken’s upcoming presentations.

July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

NASA’s Carbon Observatory Blasts off on Workhorse Delta II to Measure Carbon Dioxide Greenhouse Gas and Watch Earth Breathe

The Orbiting Carbon Observatory-2, NASA's first mission dedicated to studying carbon dioxide in Earth's atmosphere, lifts off from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014 on a Delta II rocket. The two-year mission will help scientists unravel key mysteries about carbon dioxide. Credit: NASA/Bill Ingalls

The Orbiting Carbon Observatory-2, NASA’s first mission dedicated to studying carbon dioxide in Earth’s atmosphere, lifts off from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014 on a Delta II rocket. The two-year mission will help scientists unravel key mysteries about carbon dioxide. Credit: NASA/Bill Ingalls
Story updated[/caption]

Following a nearly three-year long hiatus, the workhorse Delta II rocket successfully launched NASA’s first spacecraft dedicated to watching Earth breathe by studying Earth’s atmospheric carbon dioxide (CO2) – the leading human-produced greenhouse gas and the principal human-produced driver of climate change.

The Orbiting Carbon Observatory-2 (OCO-2) raced to orbit earlier this morning, during a spectacular nighttime blastoff at 2:56 a.m. PDT (5:56 a.m. EDT), Tuesday, July 2, 2014, from Vandenberg Air Force Base, California, atop a United Launch Alliance Delta II rocket.

The flawless launch marked the ‘return to flight’ of the venerable Delta II and was broadcast live on NASA TV.

Blastoff of NASA’s Orbiting Carbon Observatory-2 dedicated to studying carbon dioxide in Earth's atmosphere, from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014. Credit: Robert Fisher/America/Space
Blastoff of NASA’s Orbiting Carbon Observatory-2 dedicated to studying carbon dioxide in Earth’s atmosphere, from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014. Credit: Robert Fisher/America/Space

A camera mounted on the Delta II’s second stage captured a breathtaking live view of the OCO-2 spacecraft during separation from the upper stage, which propelled it into an initial 429-mile (690-kilometer) orbit.

The life giving solar arrays were unfurled soon thereafter and NASA reports that the observatory is in excellent health.

“Climate change is the challenge of our generation,” said NASA Administrator Charles Bolden in a statement.

“With OCO-2 and our existing fleet of satellites, NASA is uniquely qualified to take on the challenge of documenting and understanding these changes, predicting the ramifications, and sharing information about these changes for the benefit of society.”

NASA's Orbiting Carbon Observatory-2, or OCO-2, inside the payload fairing in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket, scheduled for 5:56 a.m. EDT on July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate.   Credit: NASA/30th Space Wing USAF
NASA’s Orbiting Carbon Observatory-2, or OCO-2, inside the payload fairing in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket, which occurred at 5:56 a.m. EDT on July 2. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Credit: NASA/30th Space Wing USAF

Over the next three weeks the OCO-2 probe will undergo a thorough checkout and calibration process. It will also be maneuvered into a 438-mile (705-kilometer) altitude, near-polar orbit where it will become the lead science probe at the head of the international Afternoon Constellation, or “A-Train,” of Earth-observing satellites.

“The A-Train, the first multi-satellite, formation flying “super observatory” to record the health of Earth’s atmosphere and surface environment, collects an unprecedented quantity of nearly simultaneous climate and weather measurements,” says NASA.

Science operations begin in about 45 days.

The 999 pound (454 kilogram) observatory is the size of a phone booth.

OCO-2 is equipped with a single science instrument consisting of three high-resolution, near-infrared spec¬trometers fed by a common telescope. It will collect global measurements of atmospheric CO2 to provide scientists with a better idea of how CO2 impacts climate change and is responsible for Earth’s warming.

OCO-2 poster. Credit: ULA/NASA
OCO-2 poster. Credit: ULA/NASA

During a minimum two-year mission the $467.7 million OCO-2 will take near global measurements to locate the sources and storage places, or ‘sinks’, for atmospheric carbon dioxide, which is a critical component of the planet’s carbon cycle.

OCO-2 was built by Orbital Sciences as a replacement for the original OCO which was destroyed during the failed launch of a Taurus XL rocket from Vandenberg back in February 2009 when the payload fairing failed to open properly and the spacecraft plunged into the ocean.

The OCO-2 mission will provide a global picture of the human and natural sources of carbon dioxide, as well as their “sinks,” the natural ocean and land processes by which carbon dioxide is pulled out of Earth’s atmosphere and stored, according to NASA.

“This challenging mission is both timely and important,” said Michael Freilich, director of the Earth Science Division of NASA’s Science Mission Directorate in Washington.

“OCO-2 will produce exquisitely precise measurements of atmospheric carbon dioxide concentrations near Earth’s surface, laying the foundation for informed policy decisions on how to adapt to and reduce future climate change.”

It will record around 100,000 precise individual CO2 measurements around the worlds entire sunlit hemisphere every day and help determine its source and fate in an effort to understand how human activities impact climate change and how we can mitigate its effects.

At the dawn of the Industrial Revolution, there were about 280 parts per million (ppm) of carbon dioxide in Earth’s atmosphere. As of today the CO2 level has risen to about 400 parts per million.

“Scientists currently don’t know exactly where and how Earth’s oceans and plants have absorbed more than half the carbon dioxide that human activities have emitted into our atmosphere since the beginning of the industrial era,” said David Crisp, OCO-2 science team leader at NASA’s Jet Propulsion Laboratory in Pasadena, California, in a statement.

“Because of this, we cannot predict precisely how these processes will operate in the future as climate changes. For society to better manage carbon dioxide levels in our atmosphere, we need to be able to measure the natural source and sink processes.”

OCO-2 is the second of NASA’s five new Earth science missions planned to launch in 2014 and is designed to operate for at least two years during its primary mission. It follows the successful blastoff of the joint NASA/JAXA Global Precipitation Measurement (GPM) Core Observatory satellite on Feb 27.

Prelaunch view of NASA’s Orbiting Carbon Observatory-2 and United Launch Alliance Delta II rocket unveiled at  Space Launch Complex 2 at Vandenberg Air Force Base in California. Credit: Robert Fisher/America/Space
Prelaunch view of NASA’s Orbiting Carbon Observatory-2 and United Launch Alliance Delta II rocket unveiled at Space Launch Complex 2 at Vandenberg Air Force Base in California. Credit: Robert Fisher/America/Space

The two stage Delta II 7320-10 launch vehicle is 8 ft in diameter and approximately 128 ft tall and was equipped with a trio of first stage strap on solid rocket motors. This marked the 152nd Delta II launch overall and the 51st for NASA since 1989.

The last time a Delta II rocket flew was nearly three years ago in October 2011 from Vandenberg for the Suomi National Polar-Orbiting Partnership (NPP) weather satellite.

The final Delta II launch from Cape Canaveral on Sept. 10, 2011 boosted NASA’s twin GRAIL gravity mapping probes to the Moon.

The next Delta II launch later this year from Vandenberg involves NASA’s Soil Moisture Active Passive (SMAP) mission and counts as another of NASA’s five Earth science missions launching in 2014.

Stay tuned here for Ken’s continuing OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Trekking Mars – Curiosity Roves Outside Landing Ellipse!

Curiosity treks across Martian dunes and drives outside landing ellipse here, in this photo mosaic view captured on Sol 672, June 27, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Trekking Mars – NASA’s intrepid robot Curiosity is roving rapidly across the sandy ripples of the Red Planet in her quest to reach mysterious Mount Sharp and just drove outside her landing ellipse!

The six wheeled rover marked a major milestone on Sol 672, June 27, 2014, by traversing beyond her targeted landing ellipse for the first time since touchdown on Mars nearly two years ago on August 5, 2012.

“On yestersol’s drive [June 27], I left my landing ellipse—the 20×25 km area I targeted for landing,” Curiosity tweeted across interplanetary space.

See our new Sol 672 photo mosaic above showing Curiosity’s glorious view marking this major achievement just days ago.

Since switching paths to smoother, sandier terrain with less sharp edged rocks, Curiosity continues rolling across the floor of her Gale Crater landing site, pausing occasionally for potentially dicey dunes.

“After traversing 82 meters the rover stopped because it determined that it was slipping too much,” wrote mission scientist Ken Herkenhoff in an update.

“Coincidentally, the rover stopped right on the landing ellipse, a major mission milestone!”

Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014.    Navcam camera raw images stitched and colorized.   Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com
1 Martian Year on Mars!
Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

“The vehicle was designed to be able to traverse far enough to drive out of the region defined by the uncertainty in the landing location, and has now achieved that laudable goal,” Herkenhoff confirmed.

The SUV sized rover automatically stopped when it encountered soft sand and sensed that it wasn’t making enough progress. It’s been programmed with this built in safety check to avoid being trapped in a quagmire of quicksand.

Curiosity crosses landing ellipse on Sol 672. Credit: NASA/JPL
Curiosity crosses landing ellipse on Sol 672. Credit: NASA/JPL

Earlier last week, Curiosity celebrated another milestone anniversary on June 24 (Sol 669) – 1 Martian Year on Mars!

A Martian year is equivalent to 687 Earth days, or nearly two Earth years.

See our Sol 669 photo mosaic marking 1 Mars Year on Mars – above.

During Year 1 on Mars, Earth’s emissary has already accomplished her primary objective of discovering a habitable zone on the Red Planet that contains the minerals necessary to support microbial life in the ancient past.

So there’s no stopping Curiosity on her way to Mount Sharp, which dominates the center of Gale Crater and reaches 3.4 miles (5.5 km) into the Martian sky – taller than Mount Rainier.

Driving, Driving, Driving – that’s Curiosity’s number one priority as she traverses across the surface of Gale Crater towards towering Mount Sharp on an expedition in search of the chemical ingredients of life that could support Martian microbes if they ever existed.

Curiosity still has about another 2.4 miles (3.9 kilometers) to go to reach the entry way at a gap in the dunes at the foothills of Mount Sharp sometime later this year.

Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater.  Note rover wheel tracks at left.  She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer.   Credit:   NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater. Note rover wheel tracks at left. She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com

To date, Curiosity’s odometer totals over 5.1 miles (8.4 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 162,000 images.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer