Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX Story updated[/caption]
SpaceX CEO and billionaire founder Elon Musk gushed with excitement as he counted down the seconds and literally pulled the curtain away to unveil his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast shortly after 10 p.m. EST (7 p.m. PST, 0200 GMT) this evening, Thursday, May 29, from SpaceX HQ.
The first photos from the event are collected herein. And I’ll be adding more and updating this story as they flow in.
Musk’s Dragon V2 unveiling was brimming with excitement like a blockbuster Hollywood Science Fiction movie premiere – with lights, cameras and action.
But this was the real deal and hopefully gets America moving again back to thrilling, real space adventures in orbit and beyond – reaching for the stars.
“The Dragon V2 is a 21st century spacecraft,” Musk announced to a wildly cheering crowd. “As it should be.”
“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level.”
“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter.”
“I think that’s what a spaceship should be able to do.”
“It will be capable of carrying seven astronauts. And it will be fully reusable.”
The sleek gleaming spaceship looks decidedly different from the current cargo Dragon V1.
Read my “Dragon V2” preview articles leading up to the May 29 event – here and here.
This new manrated Dragon is aimed at restoring US human launch access to space from American soil by carrying crews of up to seven US astronauts to low Earth orbit and eventually perhaps Mars – starting as soon as 2017.
Musk unveiled the gumdrop-shaped Dragon V2, or Version 2, to an overflow crowd of employees and media at SpaceX headquarters and design and manufacturing facility in Hawthorne, CA.
But Musk and SpaceX are not alone in striving to get Americans back to space.
Two other US aerospace firms – Boeing and Sierra Nevada – are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.
Altogether they have received more than $1 Billion in NASA funding.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
The ‘Dragon V2’ is an upgraded, man-rated version of the unmanned Dragon cargo spaceship that just completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
SpaceX is hosting a worldwide live premiere event tonight, May 29, unmasking the veil from the company’s commercial “Dragon V2” manned spaceship, the next step in US human spaceflight at 7 p.m. PST (10 p.m. EST, 0200 GMT).
And none other than billionaire entrepreneur Elon Musk, SpaceX CEO and founder, will be the master of ceremonies for the live show direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA!
You can watch LIVE here – via the embedded player above.
Alternatively you can watch courtesy of a streaming webcast courtesy of SpaceX at: www.spacex.com/webcast
Read my “Dragon V2” or “Dragon Version 2” preview story – here.
Musk’s (and NASA’s) goal is to restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017 and to put an end total US dependency on Russia’s Soyuz for astronaut rides to orbit and back.
“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” says SpaceX.
“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk tweeted recently to build anticipation.
Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
The gumdrop-shaped ‘Dragon V2’ is an upgraded, man rated version of the unmanned Dragon spaceship that will carry a mix of cargo and up to a seven crewmembers to the International Space Station (ISS).
The cargo Dragon just successfully completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Why do some astronauts come back from the International Space Station needing glasses? Eye problems are one of the largest problems that have cropped up in the last three to four years of space station science, affecting 20% of astronauts. And the astronaut office is taking this problem very seriously, pointed out Scott Smith, who leads the Nutritional Biochemistry Lab at the Johnson Space Center.
It’s one example of how extended stays in flight can alter your health. Despite NASA’s best efforts, bones and muscles weaken and months of rehabilitation are needed after astronauts spend a half-year on the space station. But in recent years, there have been strides in understanding what microgravity does to the human body — and how to fix it.
Take the vision problem, for example. Doctors believed that increased fluid shift in the head increases pressure on the optic nerve, a spot in the back of the eye that affects vision. There are a few things that could affect that:
Exercise. Astronauts are told to allot 2.5 hours for exercise on the International Space Station daily, which translates to about 1.5 hours of activity after setup and transitions are accounted for. Weight lifting compresses muscles and could force more blood into their heads. NASA installed an advanced Resistive Exercise Device on the space station that is more powerful than its predecessor, but perhaps this is also causing the vision problem, Smith said. “It’s ironic that the exercise device we’re excited about for working the muscles and bone, may hurt eyes.”
CO2 levels. This gas (which naturally occurs when humans exhale) is “relatively high” on the space station because it takes more power and more supplies to keep the atmosphere cleaner, Smith said. “Increased carbon dioxide exposure will increase blood flow to your head,” he said. If this is found to be the cause, he added, NASA is prepared to make changes to reduce CO2 levels on station.
Folate (Vitamin B) problems. Out of the reams of blood and urine data collected since before NASA started looking at this problem, they had been looking at a biochemical (nutrient) pathway in the body that moves carbon units from one compound to another. This is important for synthesizing DNA and making amino acids, and involves several vitamins and nutrients. After scientists started noticing changes in folate (a form of Vitamin B), they probed further and found an interesting thing regarding homocysteine, a type of amino acid at the heart of this one carbon pathway. It turns out those astronauts with vision issues after flight had higher (but not abnormal) levels of homocysteine in their blood before flight, as published here.
“It’s speculating, but we think that genetic differences in this pathway may somehow alter your response to things that affect blood flow into the head,” Smith said.
After finding these essentially “circumstantial” evidence of a genetic predisposition to vision issues, they proposed an experiment to look at genes associated with one carbon metabolism. “To give you an idea of the importance of this problem, we went to every crew member that’s flown to space station, or will fly to space station. We asked if they would give us a blood sample and look at their genes for one carbon meytabolism,” he said. “We approached 72 astronauts to do that, and 70 of them gave us blood, which is unheard of.”
While NASA tries to nail down what is going on with astronaut vision, the agency has made substantial progress in preserving bone density during flights — for the first time in 50 years of spaceflight, Smith added.
We mentioned the advanced Resistive Exercise Device, an orbital weight-lifting device which was installed and first used during Expedition 18 in 2008 and has been in use on the space station ever since. It’s a large improvement over the previous interim Resistive Exercise Device (iRED), which didn’t provide enough resistance, allowing some astronauts to “max out” on the device and could not further increase weightlifting loads after some weeks or months of use.
“We flew the iRED on station and the bone loss on station looked just like it did on Mir, that is, with no resistive exercise device available,” Smith said. But that changed drastically with ARED, which has twice as much loading capability. Crews ate better, maintained body weight and had better levels of Vitamin D compared to those that went before. Most strikingly, they maintained their bone density at preflight levels, as this paper shows.
While we think of bone as being cement-like and unchanging (at least until you break one!), it’s actually an organ that is always breaking down and reforming. When the breakdown accelerates, such as when you are not putting weight on it in orbit, you lose bone density and are at higher risk for fractures.
Why is unknown, except to say that the bone seems to rely on some sort of “signalling” that indicates loads or weights are being put on it. Conversely, if you are to put more weight on your bones — maybe carrying a backpack with weights on it — your skeleton would gradually get bigger to accommodate the extra weight.
While it’s exciting that the ARED is maintaining bone density, the question is whether the body can sustain two processes happening at a faster rate than before flight: the breakdown and buildup of bone. More study will be needed, Smith said, to pinpoint whether this affects the strength of the bone, which is ultimately more important than just mineral density. Nutrition and exercise may also be optimized, to further allow for better bone preservation.
That’s one of the things scientists are excited to study with the upcoming one-year mission to the International Space Station, when Scott Kelly (NASA) and Mikhail Kornienko (Roscosmos) will be one of a small number of people to do one consecutive calendar year in space. The bone “remodelling” doesn’t level off after six months, but perhaps it will closer to a year.
Smith pointed out the quality of health data has also improved since the long-duration Mir missions of the early to mid 1990s. Specific markers of bone breakdown and formation were just being discovered and implemented during that time, whereas today they’re commonly used in medicine. Between that, and the fact that NASA’s Mir data are from shorter-duration missions, Smith said he’s really looking forward to seeing what the year in space will tell scientists.
Here’s the thing about going to the International Space Station: No one can predict what you’ll need to do during your six-month stay there. Maybe something breaks and you need to go “outside” to fix it, in a spacesuit. Maybe you’re going to spend a day or three in a cramped corner, fixing something behind a panel.
Your body needs to be able to handle these challenges. And a big key behind that is regular exercise.
To get ready, you need to change things up frequently on Earth. Weights. Kettleballs. Pull-ups. Squats. Deadlifts. Interval training on cycles and treadmills. And more.
“Preflight, we throw everything but the kitchen sink at [astronauts],” said Mark Guilliams, a NASA astronaut health specialist who gets them ready before orbit. “We try to work as many different movements, using multiple joints and as many different planes of motion as possible “.
Some astronauts hit the gym every single day, such as the enthusiastic Mike Hopkins who did a whole YouTube series on exercising in orbit during Expeditions 37/38 earlier this year. Others prefer a few times a week. The astronauts also receive training on how to use the exercise devices they’ll have in orbit. Because time is precious up there, even when it comes to preserving your stamina.
Now imagine yourself in a weightless environment for half a year. Many of the exercises you do on the ground are impossible, unless you make certain modifications — such as strapping yourself down. Nevertheless, to make sure astronauts’ physiological systems remain at healthy levels, the space station has a range of gym equipment and the astronauts are allotted 2.5 hours for exercise daily.
That sounds like a lot, until you start factoring in other things. Setting up and taking down equipment takes time, such as when the astronauts harness themselves to the treadmill to avoid floating away. The resistance exercise machine has to be changed around for different exercises. This means that their “active” time is roughly 60 minutes for weightlifting and 40 minutes for aerobic, six days a week.
Compare that to what is recommended by the American Heart Association– 30 minutes, five days a week for light aerobic activity and two days of weightlifting — and you can see the time astronauts spend on exercise is not unreasonable. Also remember that the rest of the day, they have no gravity. Treadmill stats show the astronauts take only roughly 5,000 to 6,000 steps each day they use they use the treadmill, compared to some people’s goals of reaching 10,000 steps a day on Earth.
“When you compare the actual time the crew spends on exercise to that recommended by the AHA, it’s not a significant portion of their day that we’re asking them to participate in order for them to try and maintain their physiological health,” said Andrea Hanson, an exercise hardware specialist for the space station.
So what’s the equipment the astronauts get to use? The pictures in this article show you a range of things. There’s the Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS) — a fancy name for the exercise bike. It has remained pretty much the same since it was brought to the space station back in 2001, for Expedition 2. Its major goal is to keep an astronaut’s aerobic capacity up for demanding spacewalks, which can take place for up to eight hours at a time.
The weight device has changed over time, however. The initial Interim Resistive Exercise Device used rubber to provide the resistive force and ended up being not enough for some astronauts, who found themselves reaching the designed capability limits long before their missions ended. (Here’s a picture of it.) Astronauts stopped using it after Expedition 28 in favor of the advanced Resistive Exercise Device, which instead uses piston-driven vacuum cylinders.
“The new device actually enables us to go up to 600 pounds of loading,” Guillams said. The IRED device could only give 300 pounds of resistance. So now, even the strongest astronaut can get a challenge out of ARED, he said.
The treadmill aboard the station is also a newer one. The second-generation device allows for faster speeds, and to even save programs for each individual crew member so that they can have customized workouts when they arrive on station. (The first one, “Treadmill With Vibration Isolation And Stabilization System“, was put on to an unmanned Progress spacecraft in 2013 to burn up in the atmosphere.)
By the way, the new treadmill (T2) is called the COLBERT, or Combined Operational Load Bearing External Resistance Treadmill. It’s named after comedian Stephen Colbert, who in 2009 had his viewers vote to attach his name to a space station module when NASA held an open contest. When “Colbert” won, NASA elected to name the treadmill after him, and called the module Tranquility instead.
Whatever the treadmill’s name, the goal is to maintain astronaut bone and cardiovascular health while in orbit. A future story will deal with some of the scientific results obtained from more than a decade of ISS science in orbit.
What’s an everyday astronaut to do when it’s not his turn to take a mission to space? Well, the same things as the rest of us — brush teeth, do a little cooking — but wearing a (pretend) spacesuit, just in case.
At least, that’s the vision of photographer Tim Dodd, who posted a series of photos of him going about the everyday actions of a wannabe astronaut during one day. He wakes up in a space-themed bed, mows the lawn and goes shopping bedecked in the suit, and then toasts the movie Apollo 13 before going to bed.
“In November of 2013, I found myself the lone bidder of a Russian high altitude space suit on an auction website called RRauction,” Tim Dodd wrote on his blog.
“Since then, I’d been scheming how to best use the suit. I have been revisiting my childhood love for space and my obsession was growing stronger and stronger. It was only natural to use this suit to project the inner child in me, still dreaming about space. With that, I present to you: ‘A day in the life of Everyday Astronaut.’ ”
The series is full of a few jokes, including a reference to Canadian astronaut Chris Hadfield — that social media sensation who went on to write a bestseller called “An Astronaut’s Guide To Life On Earth.”
In a few hours, you’ll be able to watch three crew members of Expedition 40/41 rocket to space — live from Kazakhstan!
At 3:57 p.m. EDT (7:57 p.m. UTC) a rocket carrying a Soyuz spacecraft is expected to lift off from the Baikonur Cosmodrome, carrying Reid Wiseman (NASA), Alexander Gerst (ESA) and Maxim Suraev (Roscosmos). Full schedule details are below.
NASA TV will turn on the cameras at 3 p.m. EDT (7 p.m. UTC) and stay on the crew until after they make it to orbit. If all goes to plan, NASA TV will then resume coverage at 9 p.m. EDT (1 p.m. UTC) for docking to the International Space Station 48 minutes later.
Next comes the hatch opening. NASA will start coverage at 11 p.m. EDT (3 a.m. UTC) for the opening about 25 minutes later. Greeting the arriving crew members will be the other half of the Expedition 40 crew: Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The incoming crew traditionally participates in a televised chat with their families once they are a little settled in.
Because these are live events, all schedules are subject to change. Make sure to follow the NASA Twitter feed for any adjustments. For example, during the last launch the Soyuz spacecraft failed to make a burn to bring the crew members to the station quickly, making the crew go to a standard backup procedure that brought them to the station about two days later. No one was at risk, NASA said, and the delayed docking happened flawlessly.
SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA Story updated[/caption]
SpaceX CEO, founder and chief designer Elon Musk is set to unveil the manned version of his firms commercial Dragon spaceship later this week, setting in motion an effort that he hopes will soon restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017.
Musk will personally introduce SpaceX’s ‘Space Taxi’ dubbed ‘Dragon V2’ at what amounts to sort of a world premiere event on May 29 at the company’s headquarters in Hawthorne, CA, according to an official announcement this evening (May 27) from SpaceX.
“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” according to the SpaceX statement.
The manned Dragon will launch atop the powerful SpaceX Falcon 9 v1.1 rocket from a SpaceX pad on the Florida Space Coast.
Dragon was initially developed as a commercial unmanned resupply freighter to deliver 20,000 kg (44,000 pounds) of supplies and science experiments to the ISS under a $1.6 Billion Commercial Resupply Services (CRS) contract with NASA during a dozen Dragon cargo spacecraft flights through 2016.
Musk is making good on a recent comment he posted to twitter on April 29, with respect to the continuing fallout from the deadly crisis in Ukraine which has resulted in some US economic sanctions imposed against Russia, that now potentially threaten US access to the ISS in a boomerang action from the Russian government:
“Sounds like this might be a good time to unveil the new Dragon Mk 2 spaceship that @SpaceX has been working on with @NASA. No trampoline needed,” Musk tweeted.
“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk added.
The ‘Dragon V2’ is an upgraded, man rated version of the unmanned spaceship that can carry a mix of cargo and up to a seven crewmembers to the ISS.
Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.
Since that day, US astronauts have been totally dependent on the Russian Soyuz capsules for ferry rides to orbit and back.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.
However, US progress getting the space taxis actually built and flying has been repeatedly stifled by the US Congress who have severely cut NASA’s budget request for the Commercial Crew Program by about half each year. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.
The situation with regard to US dependency on Russian rocketry to reach the ISS has always been awkward.
But it finally took on new found importance and urgency from politicos in Washington, DC, since the ongoing crisis in Ukraine this year exposed US vulnerability in a wide range of space endeavors affecting not just astronaut rides to the ISS but also the launch of the most critical US national security surveillance satellites essential to US defense.
US space vulnerability became obvious to everyone when Russia’s deputy prime minister, Dmitry Rogozin. who is in charge of space and defense industries, said that US sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”
Rogozin also threatened to cut off exports of the Russian made RD-180 rocket engines which power the first stage of the United Launch Alliance (ULA) Atlas V rocket used to launch numerous US National Security spy satellites.
“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” Rogozin said at a media briefing held on May 13.
NASA is also a hefty user of the Atlas V for many of the agency’s science and communication satellites like the Curiosity Mars rover, MAVEN Mars orbiter, MMS, Juno Jupiter orbiter and TDRS.
Musk and SpaceX have also filed lawsuits against the US Air Force to legally block the importation of the RD-180 engines by ULA for the Atlas V as a violation of the US economic sanctions.
So overall, US space policy is in a murky and uncertain situation and Musk clearly aims for SpaceX to be a central and significant player in a wide range of US space activities, both manned and unmanned.
Read my earlier articles about the Atlas V controversy, Rogozin’s statements, Musk’s suit and more about the effects of economic sanctions imposed by the US and Western nations in response to Russia’s actions in Ukraine and the annexation of Crimea; here, here, here, here and here.
The 3rd operational Dragon cargo resupply mission completed the 30 day SpaceX-3 flight to the ISS with a successful Pacific Ocean splashdown on May 18.
SpaceX will webcast the Dragon unveiling event LIVE on May 29 at 7 p.m. PST for anyone wishing to watch at: www.spacex.com/webcast
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
In a thrilling demonstration of space robotics, today the Dextre “hand” replaced a malfunctioning camera on the station’s Canadarm2 robotic arm. And the Canadian Space Agency gleefully tweeted every step of the way, throwing in jokes to describe what was happening above our heads on the International Space Station.
“Dextre’s job is to reduce the risk to astronauts by relieving them of routine chores, freeing their time for science,” the Canadian Space Agency tweeted today (May 27) .
“Spacewalks are thrilling, inspiring, but can potentially be dangerous. They also take a lot of resources and time. So Dextre is riding the end of Canadarm2 today instead of an astronaut. And our inner child is still yelling out ‘Weeeee…!’ ”
The complex maneuvers actually took a few days to accomplish, as the robot removed the broken camera last week and stowed it. Today’s work (performed by ground controllers) was focused on putting in the new camera and starting to test it. You can see some of the most memorable tweets of the day below.
The cookie you see in the first tweet is part of a tradition in Canada’s robotic mission control near Montreal, Que., where controllers have this snack on the day when they are doing robotic work in space.
So what does an agency like NASA do after making a daring new type of landing with the Mars Curiosity rover? Try to make it even better for next time.
NASA is readying a new technology for landing on the Red Planet that is supposed to help brake the spacecraft in the atmosphere by inflating a buffer around the heat shield to slow things down. And after testing this so-called “Low-Density Supersonic Decelerator” on a rocket sled in January and April, the team is ready for the next major test: heading aloft.
As early as June 3, NASA will strap a test device below a high-altitude balloon and send it up to 120,000 feet — about the same altitude that Felix Baumgartner jumped from in 2012. The device will then drop from the balloon sideways, spinning like a football, and reach a velocity of four times the speed of sound. Then the LDSD will inflate, if all goes as planned, and NASA will evaluate how well it performs.
The agency hopes to use this technology to land heavier and heavier spacecraft on the Red Planet. If the testing goes as scheduled and the funding is available, NASA plans to use an LDSD on a spacecraft as early as 2018.
Small populations make it really hard to do scientific studies, because the sample size may not be representative of the population being studied. And that’s the challenge with spaceflight, right before you start: only so many people head up there and take part of your experiments. With less than 20 people heading to space per year these days, that’s a tiny population to do medical studies from.
“One of the advantages that terrestrial medicine has is a lot of people to study,” said Jean Sibonga, the bone lead of NASA’s human spaceflight program. “While we’re acquiring our data using the conventional clinical methods for testing bone health here on Earth, terrestrial medicine is running these same studies and getting the results sooner.”
But for a small group being studied, the science is highly professionalized. NASA’s scientists are part of many professional societies ranging from anesthesia to bone science to nutrition. They collaborate with people all over the world. And slowly, as the results come in, they say they are making progress in understanding how space deconditions our bodies and how to make them stronger again.
With bone — where for decades, physicians have tried to figure out which populations are most at risk for fractures — comes an example of another hurdle. The astronauts are young, usually 50 or below, making them statistically one of the least at risk for fractures until they expose themselves to microgravity. This means that comparing them to seniors is “clearly not an appropriate test for our population,” Sibonga said.
But for what it’s worth, NASA has adapted international clinical guidelines to identify astronauts who have optimal bone health, and to see if the “countermeasures” — weight-bearing exercises — are having any success. This also means looking at the astronaut’s entire picture of health, from family history to medication intake to hormone levels, to see if these variables have any sorts of effect. (More on the results of these tests tomorrow.)
The issue with astronauts, Sibonga said, is they go through very rapid bone losses — even faster than what postmenopausal women experience. Astronauts lose about 1% of their bone density on average per month from their hip and spine. In aging women, vertebrae are the most affected and they can find themselves with “compression fractures” where the vertebrae collapse and their backs are stooped over.
Astronauts may be at risk, but it’s hard with tests on the space station to see if this is happening real time. This work has to wait until they get back to Earth. Sibonga said NASA is trying to fix that. “We’re doing market surveys, and if we find a promising technology for inflight monitoring, we will work to develop and validate these tests in these astronauts.”
Sometimes that technology comes from other sectors. The idea of “loading” not only applies to human health, but also to engineering. So some of the same models could have relevancy between engineering and humans. One device NASA has been testing on the ground is a quantitative computed tomography (QCT), an imager that quantifies the amount of bone mass an astronaut has in true three dimensions. From these QCT data, engineers can develop models to estimate the mechanical loads that would cause a bone to fracture. But only a handful of people have applied this engineering model to biological systems, Sibonga said.
Naturally, NASA is also interested in how much bone mineral density (BMD) comes back after a mission. BMD tests are done every three years in astronauts from the time they are selected (bearing in mind the technology was not available until about the mid-1990s). Uniquely, NASA also invites its astronauts back after they leave or retire to continue the tests — a practice even the military branches in the United States don’t do. This allows the agency to do long-term population studies on its astronaut corps.
Sibonga added that NASA’s science is proceeding at an aggressive pace, given the small population and mission schedules, and cited a few examples of research papers on skeletal health and femoral strength as examples.