Why Commercial Crew is Critical for Future Exploration: One-on-One Interview with NASA Administrator Charles Bolden

NASA Administrator Charles Bolden discusses future of NASA human spaceflight at NASA Headquarters, Washington, DC. Credit: Ken Kremer- kenkremer.com

NASA Administrator Charles Bolden discusses future of NASA human spaceflight during exploration forum at NASA Headquarters, Washington, DC. Credit: Ken Kremer- kenkremer.com
Story updated[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MD – Why is NASA’s Commercial Crew Program to develop private human transport ships to low Earth orbit important?

That’s the question I posed to NASA Administrator Charles Bolden when we met for an exclusive interview at NASA Goddard.

The Commercial Crew Program (CCP) is the critical enabler “for establishing a viable orbital infrastructure” in the 2020s, NASA Administrator Charles Bolden told Universe Today in an exclusive one-on-one interview at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Bolden, a Space Shuttle commander who flew four time to space, says NASA wants one of the new American-made private crewed spaceships under development by SpaceX, Boeing and Sierra Nevada – with NASA funding – to be ready to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017. Flights for other commercial orbital space ventures would follow later and into the next decade.

Since the shutdown of NASA’s space shuttle program following the final flight by STS-135 in 2011 (commanded by Chris Ferguson), America has been 100% dependent on the Russians to fly our astronauts to the space station and back.

“Commercial crew is critical. We need to have our own capability to get our crews to space,” Bolden told me, during a visit to the NASA Goddard cleanroom with the agency’s groundbreaking Magnetospheric Multiscale (MMS) science probes.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Administrator Bolden foresees a huge shift in how the US will conduct space operations in low earth orbit (LEO) just a decade from now. The future LEO architecture will be dominated not by NASA and the ISS but rather by commercial entrepreneurs and endeavors in the 2020s.

“There are going to be other commercial stations or other laboratories,” Bolden excitedly told me.

And the cash strapped Commercial Crew effort to build new astronaut transporters is the absolutely essential enabler to get that exploration task done, he says.

“Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration.”

“We have got to have a way to get our crews to space.”

“You know people try to separate stuff that NASA does into nice little neat packages. But it’s not that way anymore.”

Bolden and NASA are already looking beyond the ISS in planning how to use the new commercial crew spaceships being developed by SpaceX, Boeing and Sierra Nevada in a public- partnership with NASA’s Commercial Crew Program.

“Everything we do [at NASA] is integrated. We have to have commercial crew [for] a viable low Earth orbit infrastructure – a place where we can do testing – for example with what’s going on at the ISS today.”

“And in the out years you are going to be doing the same type of work.”

“But it’s not going to be on the ISS.”

“After 2024 or maybe 2028, if we extend it again, you are going to see the people on commercial vehicles. There are going to be other stations or other laboratories.”

“But there won’t be NASA operated laboratories. They will be commercially viable and operating laboratories.”

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Private NewSpace ventures represent a revolutionary departure from current space exploration thinking. But none of these revolutionary commercial operations will happen if we don’t have reliable and cost effective human access to orbit from American soil with American rockets on American spaceships.

“We need to have our own capability to get our crews to space – first of all. That’s why commercial crew is really, really, really important,” Bolden emphasized.

The ongoing crises in Ukraine makes development of a new US crew transporter to end our total reliance on Russian spaceships even more urgent.

“Right now we use the Russian Soyuz. It is a very reliable way to get our crews to space. Our partnership with Roscosmos is as strong as it’s ever been.”

“So we just keep watching what’s going on in other places in the world, but we continue to work with Roscosmos the way we always have,” Bolden stated.

The latest example is this week’s successful launch of the new three man Russian-US- German Expedition 40 crew to the ISS on a Soyuz.

Of course, the speed at which the US develops the private human spaceships is totally dependent on the funding level for the Commercial Crew program.

Unfortunately, progress in getting the space taxis actually built and flying has been significantly slowed because the Obama Administration CCP funding requests for the past few years of roughly about $800 million have been cut in half by a reluctant US Congress. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.

And every forced postponement to CCP costs US taxpayers another $70 million payment per crew seat to the Russians. As a result of the congressional CCP cuts more than 1 Billion US Dollars have been shipped to Russia instead of on building our own US crew transports – leaving American aerospace workers unemployed and American manufacturing facilities shuttered.

I asked Bolden to assess NASA’s new funding request for the coming fiscal year 2015 currently working its way through Congress.

“It’s looking better. It’s never good. But now it’s looking much better,” Bolden replied.

“If you look at the House markup that’s a very positive indication that the budget for commercial crew is going to be pretty good.”

The pace of progress in getting our crews back to orbit basically can be summed up in a nutshell.

“No Bucks, No Buck Rogers,” Chris Ferguson, who now leads Boeing’s crew effort, told me in a separate exclusive interview for Universe Today.

NASA Administrator Charles Bolden and Ken Kremer (Universe Today) inspect NASA’s Magnetospheric Multiscale (MMS) mated quartet of stacked spacecraft at the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden and Ken Kremer (Universe Today) inspect NASA’s Magnetospheric Multiscale (MMS) mated quartet of stacked spacecraft at the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

The Boeing CST-100, Sierra Nevada Dream Chaser and SpaceX Dragon ‘space taxis’ are all vying for funding in the next round of contracts to be awarded by NASA around late summer 2014 known as Commercial Crew Transportation Capability (CCtCap).

All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.

Altogether they have received more than $1 Billion in NASA funding under the current CCiCAP initiative. Boeing and SpaceX were awarded contracts worth $460 million and $440 million, respectively. Sierra Nevada was given what amounts to half an award worth $212.5 million.

SpaceX CEO Elon Musk just publicly unveiled his manned Dragon V2 spaceship on May 29.

Boeing’s Chris Ferguson told me that assembly of the CST-100 test article starts soon at the Kennedy Space Center.

NASA officials have told me that one or more of the three competitors will be chosen later this year in the next phase under CCtCAP to build the next generation spaceship to ferry astronauts to and from the ISS by 2017.

In order to certify the fitness and safety of the new crew transporters, the CCtCAP contracts will specify that “each awardee conduct at least one crewed flight test to verify their spacecraft can dock to the space station and all its systems perform as expected.”

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS
Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Concurrently, NASA is developing the manned Orion crew vehicle for deep space exploration. The state-of-the-art capsule will carry astronauts back to the Moon and beyond on journeys to Asteroids and one day to Mars.

“We need to have our own capability to get our crews to space. Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration,” that’s the bottom line message from my interview with NASA Administrator Bolden.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

Elon Musk Premiers SpaceX Manned Dragon V2 Astronaut Transporter – 1st Photos

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX

Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX
Story updated[/caption]

SpaceX CEO and billionaire founder Elon Musk gushed with excitement as he counted down the seconds and literally pulled the curtain away to unveil his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast shortly after 10 p.m. EST (7 p.m. PST, 0200 GMT) this evening, Thursday, May 29, from SpaceX HQ.

The first photos from the event are collected herein. And I’ll be adding more and updating this story as they flow in.

Musk’s Dragon V2 unveiling was brimming with excitement like a blockbuster Hollywood Science Fiction movie premiere – with lights, cameras and action.

But this was the real deal and hopefully gets America moving again back to thrilling, real space adventures in orbit and beyond – reaching for the stars.

“The Dragon V2 is a 21st century spacecraft,” Musk announced to a wildly cheering crowd. “As it should be.”

“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level.”

“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter.”

“I think that’s what a spaceship should be able to do.”

“It will be capable of carrying seven astronauts. And it will be fully reusable.”

Dragon V2, SpaceX's next generation spacecraft designed to carry astronauts to space is unveiled by CEO Elon Musk on May 29, 2014. Credit: SpaceX
Dragon V2, SpaceX’s next generation spacecraft designed to carry astronauts to space is unveiled by CEO Elon Musk on May 29, 2014. Credit: SpaceX

The sleek gleaming spaceship looks decidedly different from the current cargo Dragon V1.

Read my “Dragon V2” preview articles leading up to the May 29 event – here and here.

Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014  Credit: SpaceX
Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX

This new manrated Dragon is aimed at restoring US human launch access to space from American soil by carrying crews of up to seven US astronauts to low Earth orbit and eventually perhaps Mars – starting as soon as 2017.

Musk unveiled the gumdrop-shaped Dragon V2, or Version 2, to an overflow crowd of employees and media at SpaceX headquarters and design and manufacturing facility in Hawthorne, CA.

SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014.  Credit: NASA
SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014. Credit: NASA

But Musk and SpaceX are not alone in striving to get Americans back to space.

Two other US aerospace firms – Boeing and Sierra Nevada – are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.

Altogether they have received more than $1 Billion in NASA funding.

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

The ‘Dragon V2’ is an upgraded, man-rated version of the unmanned Dragon cargo spaceship that just completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014.  Credit: NASA
SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014. Credit: NASA

Watch Live Here – SpaceX Founder Elon Musk Unveils Manned “Dragon V2” Spaceship on May 29

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA



SpaceX
is hosting a worldwide live premiere event tonight, May 29, unmasking the veil from the company’s commercial “Dragon V2” manned spaceship, the next step in US human spaceflight at 7 p.m. PST (10 p.m. EST, 0200 GMT).

And none other than billionaire entrepreneur Elon Musk, SpaceX CEO and founder, will be the master of ceremonies for the live show direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA!

You can watch LIVE here – via the embedded player above.

Alternatively you can watch courtesy of a streaming webcast courtesy of SpaceX at: www.spacex.com/webcast

Read my “Dragon V2” or “Dragon Version 2” preview story – here.

Musk’s (and NASA’s) goal is to restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017 and to put an end total US dependency on Russia’s Soyuz for astronaut rides to orbit and back.

“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” says SpaceX.

“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk tweeted recently to build anticipation.

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

The gumdrop-shaped ‘Dragon V2’ is an upgraded, man rated version of the unmanned Dragon spaceship that will carry a mix of cargo and up to a seven crewmembers to the International Space Station (ISS).

The cargo Dragon just successfully completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.

Dragon V2 – SpaceX’s next generation spacecraft designed to carry astronauts to space.  Credit: SpaceX
Dragon V2 – SpaceX’s next generation spacecraft designed to carry astronauts to space. Credit: SpaceX

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters including Ken Kremer/Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including ken Kremer/Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

spaceX May 29 event

The Battle Against What Spaceflight Does To Your Health

Expedition 36/37 astronaut Karen Nyberg uses a fundoscope to take still and video images of her eye while in orbit. Credit: NASA

Why do some astronauts come back from the International Space Station needing glasses? Eye problems are one of the largest problems that have cropped up in the last three to four years of space station science, affecting 20% of astronauts. And the astronaut office is taking this problem very seriously, pointed out Scott Smith, who leads the Nutritional Biochemistry Lab at the Johnson Space Center.

It’s one example of how extended stays in flight can alter your health. Despite NASA’s best efforts, bones and muscles weaken and months of rehabilitation are needed after astronauts spend a half-year on the space station. But in recent years, there have been strides in understanding what microgravity does to the human body — and how to fix it.

Take the vision problem, for example. Doctors believed that increased fluid shift in the head increases pressure on the optic nerve, a spot in the back of the eye that affects vision. There are a few things that could affect that:

Expedition 32 astronaut Aki Hoshide with a fistfull of blood samples on the International Space Station in 2012. Credit: NASA
Expedition 32 astronaut Aki Hoshide with a fistfull of blood samples on the International Space Station in 2012. Credit: NASA
  • Exercise. Astronauts are told to allot 2.5 hours for exercise on the International Space Station daily, which translates to about 1.5 hours of activity after setup and transitions are accounted for. Weight lifting compresses muscles and could force more blood into their heads. NASA installed an advanced Resistive Exercise Device on the space station that is more powerful than its predecessor, but perhaps this is also causing the vision problem, Smith said. “It’s ironic that the exercise device we’re excited about for working the muscles and bone, may hurt eyes.”
  • CO2 levels. This gas (which naturally occurs when humans exhale) is “relatively high” on the space station because it takes more power and more supplies to keep the atmosphere cleaner, Smith said. “Increased carbon dioxide exposure will increase blood flow to your head,” he said. If this is found to be the cause, he added, NASA is prepared to make changes to reduce CO2 levels on station.
  • Folate (Vitamin B) problems. Out of the reams of blood and urine data collected since before NASA started looking at this problem, they had been looking at a biochemical (nutrient) pathway in the body that moves carbon units from one compound to another. This is important for synthesizing DNA and making amino acids, and involves several vitamins and nutrients. After scientists started noticing changes in folate (a form of Vitamin B), they probed further and found an interesting thing regarding homocysteine, a type of amino acid at the heart of this one carbon pathway. It turns out those astronauts with vision issues after flight had higher (but not abnormal) levels of homocysteine in their blood before flight, as published here.

“It’s speculating, but we think that genetic differences in this pathway may somehow alter your response to things that affect blood flow into the head,” Smith said.

After finding these essentially “circumstantial” evidence of a genetic predisposition to vision issues, they proposed an experiment to look at genes associated with one carbon metabolism. “To give you an idea of the importance of this problem, we went to every crew member that’s flown to space station, or will fly to space station.  We asked if they would give us a blood sample and look at their genes for one carbon meytabolism,” he said. “We approached 72 astronauts to do that, and 70 of them gave us blood, which is unheard of.”

While NASA tries to nail down what is going on with astronaut vision, the agency has made substantial progress in preserving bone density during flights — for the first time in 50 years of spaceflight, Smith added.

We mentioned the advanced Resistive Exercise Device, an orbital weight-lifting device which was installed and first used during Expedition 18 in 2008 and has been in use on the space station ever since. It’s a large improvement over the previous interim Resistive Exercise Device (iRED), which didn’t provide enough resistance, allowing some astronauts to “max out” on the device and could not further increase weightlifting loads after some weeks or months of use.

“We flew the iRED on station and the bone loss on station looked just like it did on Mir, that is, with no resistive exercise device available,” Smith said. But that changed drastically with ARED, which has twice as much loading capability. Crews ate better, maintained body weight and had better levels of Vitamin D compared to those that went before. Most strikingly, they maintained their bone density at preflight levels, as this paper shows.

While we think of bone as being cement-like and unchanging (at least until you break one!), it’s actually an organ that is always breaking down and reforming. When the breakdown accelerates, such as when you are not putting weight on it in orbit, you lose bone density and are at higher risk for fractures.

Why is unknown, except to say that the bone seems to rely on some sort of “signalling” that indicates loads or weights are being put on it. Conversely, if you are to put more weight on your bones — maybe carrying a backpack with weights on it — your skeleton would gradually get bigger to accommodate the extra weight.

While it’s exciting that the ARED is maintaining bone density, the question is whether the body can sustain two processes happening at a faster rate than before flight: the breakdown and buildup of bone. More study will be needed, Smith said, to pinpoint whether this affects the strength of the bone, which is ultimately more important than just mineral density. Nutrition and exercise may also be optimized, to further allow for better bone preservation.

That’s one of the things scientists are excited to study with the upcoming one-year mission to the International Space Station, when Scott Kelly (NASA) and Mikhail Kornienko (Roscosmos) will be one of a small number of people to do one consecutive calendar year in space. The bone “remodelling” doesn’t level off after six months, but perhaps it will closer to a year.

Smith pointed out the quality of health data has also improved since the long-duration Mir missions of the early to mid 1990s. Specific markers of bone breakdown and formation were just being discovered and implemented during that time, whereas today they’re commonly used in medicine. Between that, and the fact that NASA’s Mir data are from shorter-duration missions, Smith said he’s really looking forward to seeing what the year in space will tell scientists.

This concludes a three-part series on astronaut health. Two days ago:  Why human science is so hard to do in space. Yesterday: How do we make exercises work in Zero G?

Push. Pull. Run. Lift! How Do We Make These Exercises Work In Zero G?

Expedition 38/39 astronaut Koichi Wakata (Japanese Aerospace Exploration Agency) uses the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station in February 2014. Credit: NASA

Here’s the thing about going to the International Space Station: No one can predict what you’ll need to do during your six-month stay there. Maybe something breaks and you need to go “outside” to fix it, in a spacesuit. Maybe you’re going to spend a day or three in a cramped corner, fixing something behind a panel.

Your body needs to be able to handle these challenges. And a big key behind that is regular exercise.

To get ready, you need to change things up frequently on Earth. Weights. Kettleballs. Pull-ups. Squats. Deadlifts. Interval training on cycles and treadmills. And more.

“Preflight, we throw everything but the kitchen sink at [astronauts],” said Mark Guilliams, a NASA astronaut health specialist who gets them ready before orbit. “We try to work as many different movements, using multiple joints and as many different planes of motion as possible “.

Some astronauts hit the gym every single day, such as the enthusiastic Mike Hopkins who did a whole YouTube series on exercising in orbit during Expeditions 37/38 earlier this year. Others prefer a few times a week. The astronauts also receive training on how to use the exercise devices they’ll have in orbit. Because time is precious up there, even when it comes to preserving your stamina.

Now imagine yourself in a weightless environment for half a year. Many of the exercises you do on the ground are impossible, unless you make certain modifications — such as strapping yourself down. Nevertheless, to make sure astronauts’ physiological systems remain at healthy levels, the space station has a range of gym equipment and the astronauts are allotted 2.5 hours for exercise daily.

That sounds like a lot, until you start factoring in other things. Setting up and taking down equipment takes time, such as when the astronauts harness themselves to the treadmill to avoid floating away. The resistance exercise machine has to be changed around for different exercises. This means that their “active” time is roughly 60 minutes for weightlifting and 40 minutes for aerobic, six days a week.

Compare that to what is recommended by the American Heart Association– 30 minutes, five days a week for light aerobic activity and two days of weightlifting — and you can see the time astronauts spend on exercise is not unreasonable. Also remember that the rest of the day, they have no gravity. Treadmill stats show the astronauts take only roughly 5,000 to 6,000 steps each day they use they use the treadmill, compared to some people’s goals of reaching 10,000 steps a day on Earth.

“When you compare the actual time the crew spends on exercise to that recommended by the AHA, it’s not a significant portion of their day that we’re asking them to participate in order for them to try and maintain their physiological health,” said Andrea Hanson, an exercise hardware specialist for the space station.

Expedition 26's Cady Coleman (NASA) calibrates a device intended to measure oxygen production while sitting on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station. Credit: NASA
Expedition 26’s Cady Coleman (NASA) calibrates a device intended to measure oxygen production while sitting on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station. Credit: NASA

So what’s the equipment the astronauts get to use? The pictures in this article show you a range of things. There’s the Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS) — a fancy name for the exercise bike. It has remained pretty much the same since it was brought to the space station back in 2001, for Expedition 2. Its major goal is to keep an astronaut’s aerobic capacity up for demanding spacewalks, which can take place for up to eight hours at a time.

The weight device has changed over time, however. The initial Interim Resistive Exercise Device used rubber to provide the resistive force and ended up being not enough for some astronauts, who found themselves reaching the designed capability limits long before their missions ended. (Here’s a picture of it.) Astronauts stopped using it after Expedition 28 in favor of the advanced Resistive Exercise Device, which instead uses piston-driven vacuum cylinders.

“The new device actually enables us to go up to 600 pounds of loading,” Guillams said. The IRED device could only give 300 pounds of resistance. So now, even the strongest astronaut can get a challenge out of ARED, he said.

Expedition 32 astronaut Sun Williams uses the COLBERT (Combined Operational Load Bearing External Resistance Treadmill) in the Tranquility node of the International Space Station in August 2012. The treadmill was named after comedian Stephen Colbert. Credit: NASA
Expedition 32 astronaut Sun Williams uses the COLBERT (Combined Operational Load Bearing External Resistance Treadmill) in the Tranquility node of the International Space Station in August 2012. The treadmill was named after comedian Stephen Colbert. Credit: NASA

The treadmill aboard the station is also a newer one. The second-generation device allows for faster speeds, and to even save programs for each individual crew member so that they can have customized workouts when they arrive on station. (The first one, “Treadmill With Vibration Isolation And Stabilization System“, was put on to an unmanned Progress spacecraft in 2013 to burn up in the atmosphere.)

By the way, the new treadmill (T2) is called the COLBERT, or Combined Operational Load Bearing External Resistance Treadmill. It’s named after comedian Stephen Colbert, who in 2009 had his viewers vote to attach his name to a space station module when NASA held an open contest. When “Colbert” won, NASA elected to name the treadmill after him, and called the module Tranquility instead.

Whatever the treadmill’s name, the goal is to maintain astronaut bone and cardiovascular health while in orbit. A future story will deal with some of the scientific results obtained from more than a decade of ISS science in orbit.

This is part of a three-part series on astronaut health. Yesterday: Why human science is so hard to do in space. Tomorrow: How do you fight back against space health problems?

Everyday ‘Astronaut’ Photo Series Goes From Cooking Disaster To Toasting Apollo 13

One photo in the series "A day in the life of Everyday Astronaut". Credit: Tim Dodd

What’s an everyday astronaut to do when it’s not his turn to take a mission to space? Well, the same things as the rest of us — brush teeth, do a little cooking — but wearing a (pretend) spacesuit, just in case.

At least, that’s the vision of photographer Tim Dodd, who posted a series of photos of him going about the everyday actions of a wannabe astronaut during one day. He wakes up in a space-themed bed, mows the lawn and goes shopping bedecked in the suit, and then toasts the movie Apollo 13 before going to bed.

“In November of 2013, I found myself the lone bidder of a Russian high altitude space suit on an auction website called RRauction,” Tim Dodd wrote on his blog.

“Since then, I’d been scheming how to best use the suit. I have been revisiting my childhood love for space and my obsession was growing stronger and stronger. It was only natural to use this suit to project the inner child in me, still dreaming about space. With that, I present to you: ‘A day in the life of Everyday Astronaut.’ ”

The series is full of a few jokes, including a reference to Canadian astronaut Chris Hadfield — that social media sensation who went on to write a bestseller called “An Astronaut’s Guide To Life On Earth.”

(h/t Reddit)

Launch Alert! Watch Live As Three People Rocket To Space Today

The Expedition 40/41 crew prior to their launch to the International Space Station. From left, Alexander Gerst (ESA), Maxim Suraev (Roscosmos) and Reid Wiseman (NASA). Credit: NASA/Victor Zelentsov

In a few hours, you’ll be able to watch three crew members of Expedition 40/41 rocket to space — live from Kazakhstan!

At 3:57 p.m. EDT (7:57 p.m. UTC) a rocket carrying a Soyuz spacecraft is expected to lift off from the Baikonur Cosmodrome, carrying Reid Wiseman (NASA), Alexander Gerst (ESA) and Maxim Suraev (Roscosmos). Full schedule details are below.

NASA TV will turn on the cameras at 3 p.m. EDT (7 p.m. UTC) and stay on the crew until after they make it to orbit. If all goes to plan, NASA TV will then resume coverage at 9 p.m. EDT (1 p.m. UTC) for docking to the International Space Station 48 minutes later.

Next comes the hatch opening. NASA will start coverage at 11 p.m. EDT (3 a.m. UTC) for the opening about 25 minutes later. Greeting the arriving crew members will be the other half of the Expedition 40 crew: Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The incoming crew traditionally participates in a televised chat with their families once they are a little settled in.

Because these are live events, all schedules are subject to change. Make sure to follow the NASA Twitter feed for any adjustments. For example, during the last launch the Soyuz spacecraft failed to make a burn to bring the crew members to the station quickly, making the crew go to a standard backup procedure that brought them to the station about two days later. No one was at risk, NASA said, and the delayed docking happened flawlessly.

By the way, all three crew members are on Twitter: @astro_alex, @astro_reid and @msuraev.

SpaceX CEO Elon Musk to Unveil Manned Dragon ‘Space Taxi’ on May 29

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA
Story updated[/caption]

SpaceX CEO, founder and chief designer Elon Musk is set to unveil the manned version of his firms commercial Dragon spaceship later this week, setting in motion an effort that he hopes will soon restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017.

Musk will personally introduce SpaceX’s ‘Space Taxi’ dubbed ‘Dragon V2’ at what amounts to sort of a world premiere event on May 29 at the company’s headquarters in Hawthorne, CA, according to an official announcement this evening (May 27) from SpaceX.

“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” according to the SpaceX statement.

The manned Dragon will launch atop the powerful SpaceX Falcon 9 v1.1 rocket from a SpaceX pad on the Florida Space Coast.

Dragon was initially developed as a commercial unmanned resupply freighter to deliver 20,000 kg (44,000 pounds) of supplies and science experiments to the ISS under a $1.6 Billion Commercial Resupply Services (CRS) contract with NASA during a dozen Dragon cargo spacecraft flights through 2016.

Musk is making good on a recent comment he posted to twitter on April 29, with respect to the continuing fallout from the deadly crisis in Ukraine which has resulted in some US economic sanctions imposed against Russia, that now potentially threaten US access to the ISS in a boomerang action from the Russian government:

“Sounds like this might be a good time to unveil the new Dragon Mk 2 spaceship that @SpaceX has been working on with @NASA. No trampoline needed,” Musk tweeted.

“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk added.

The ‘Dragon V2’ is an upgraded, man rated version of the unmanned spaceship that can carry a mix of cargo and up to a seven crewmembers to the ISS.

NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by SpaceX. The evaluation in Hawthorne, Calif., on Jan. 30, 2012, was part of SpaceX's Commercial Crew Development Round 2 agreement with NASA's Commercial Crew Program. Credit: NASA
NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by SpaceX. The evaluation in Hawthorne, Calif., on Jan. 30, 2012, was part of SpaceX’s Commercial Crew Development Round 2 agreement with NASA’s Commercial Crew Program. Credit: NASA

Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

Since that day, US astronauts have been totally dependent on the Russian Soyuz capsules for ferry rides to orbit and back.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.

However, US progress getting the space taxis actually built and flying has been repeatedly stifled by the US Congress who have severely cut NASA’s budget request for the Commercial Crew Program by about half each year. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.

The situation with regard to US dependency on Russian rocketry to reach the ISS has always been awkward.

But it finally took on new found importance and urgency from politicos in Washington, DC, since the ongoing crisis in Ukraine this year exposed US vulnerability in a wide range of space endeavors affecting not just astronaut rides to the ISS but also the launch of the most critical US national security surveillance satellites essential to US defense.

US space vulnerability became obvious to everyone when Russia’s deputy prime minister, Dmitry Rogozin. who is in charge of space and defense industries, said that US sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Rogozin also threatened to cut off exports of the Russian made RD-180 rocket engines which power the first stage of the United Launch Alliance (ULA) Atlas V rocket used to launch numerous US National Security spy satellites.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” Rogozin said at a media briefing held on May 13.

NASA is also a hefty user of the Atlas V for many of the agency’s science and communication satellites like the Curiosity Mars rover, MAVEN Mars orbiter, MMS, Juno Jupiter orbiter and TDRS.

Musk and SpaceX have also filed lawsuits against the US Air Force to legally block the importation of the RD-180 engines by ULA for the Atlas V as a violation of the US economic sanctions.

So overall, US space policy is in a murky and uncertain situation and Musk clearly aims for SpaceX to be a central and significant player in a wide range of US space activities, both manned and unmanned.

Read my earlier articles about the Atlas V controversy, Rogozin’s statements, Musk’s suit and more about the effects of economic sanctions imposed by the US and Western nations in response to Russia’s actions in Ukraine and the annexation of Crimea; here, here, here, here and here.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The 3rd operational Dragon cargo resupply mission completed the 30 day SpaceX-3 flight to the ISS with a successful Pacific Ocean splashdown on May 18.

SpaceX will webcast the Dragon unveiling event LIVE on May 29 at 7 p.m. PST for anyone wishing to watch at: www.spacex.com/webcast

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Space Robot Fixes Itself, Takes Selfie As Funny Livetweet Happens On The Ground

Dextre, the Canadian Space Agency's robotic handyman aboard the International Space Station. Credit: CSA/NASA

In a thrilling demonstration of space robotics, today the Dextre “hand” replaced a malfunctioning camera on the station’s Canadarm2 robotic arm. And the Canadian Space Agency gleefully tweeted every step of the way, throwing in jokes to describe what was happening above our heads on the International Space Station.

“Dextre’s job is to reduce the risk to astronauts by relieving them of routine chores, freeing their time for science,” the Canadian Space Agency tweeted today (May 27) .

“Spacewalks are thrilling, inspiring, but can potentially be dangerous. They also take a lot of resources and time. So Dextre is riding the end of Canadarm2 today instead of an astronaut. And our inner child is still yelling out ‘Weeeee…!’ ”

The complex maneuvers actually took a few days to accomplish, as the robot removed the broken camera last week and stowed it. Today’s work (performed by ground controllers) was focused on putting in the new camera and starting to test it. You can see some of the most memorable tweets of the day below.

The cookie you see in the first tweet is part of a tradition in Canada’s robotic mission control near Montreal, Que., where controllers have this snack on the day when they are doing robotic work in space.

Incidentally, the Canadian Space Agency bet NASA a box of maple cream cookies in February during a gold-medal Olympic hockey game between the two countries, which Canada won.

NASA’s Mars Landing Idea Will Take To The Air In June

No rocket sleds were harmed in the making of this video. (NASA/JPL)

So what does an agency like NASA do after making a daring new type of landing with the Mars Curiosity rover? Try to make it even better for next time.

NASA is readying a new technology for landing on the Red Planet that is supposed to help brake the spacecraft in the atmosphere by inflating a buffer around the heat shield to slow things down. And after testing this so-called “Low-Density Supersonic Decelerator” on a rocket sled in January and April, the team is ready for the next major test: heading aloft.

As early as June 3, NASA will strap a test device below a high-altitude balloon and send it up to 120,000 feet — about the same altitude that Felix Baumgartner jumped from in 2012. The device will then drop from the balloon sideways, spinning like a football, and reach a velocity of four times the speed of sound. Then the LDSD will inflate, if all goes as planned, and NASA will evaluate how well it performs.

The agency hopes to use this technology to land heavier and heavier spacecraft on the Red Planet. If the testing goes as scheduled and the funding is available, NASA plans to use an LDSD on a spacecraft as early as 2018.

You can read more about LDSD at this website.