UPDATE, 11:42 a.m. EDT: Rick Mastracchio and Steve Swanson finished their spacewalk in just 1 hour and 36 minutes, nearly an hour faster than what NASA budgeted for. Early tests show the replacement computer is working well, providing backup once again for the robotics, solar arrays and other systems on station.
Can two astronauts fix a broken computer quickly on the International Space Station, preventing possible problems with the solar arrays and robotics? Watch live (above) to find out.
The NASA spacewalk involving Rick Mastracchio and Steve Swanson is scheduled to start today (April 23) at 9:20 a.m. EDT (1:20 p.m. UTC), with coverage starting around 8:30 a.m. EDT (12:30 p.m. UTC). The spacewalk is scheduled to last 2.5 hours. Bear in mind that the times could change as circumstances arise.
The computer, also called a multiplexer/demultiplexer (MDM), failed for unknown reasons a couple of weeks ago. While the primary computer is working perfectly and the crew is in no danger, things get more risky if the primary computer also breaks. That’s why NASA worked to get the spacewalkers outside as quickly as possible. You can see a full briefing of the rationale here.
As a note, all non-urgent spacewalks have been suspended because NASA is still working on addressing the recommendations given after a life-threatening water leak took place in a NASA spacesuit last summer. Urgent spacewalks can still go ahead because the agency has implemented safety measures such as snorkels and helmet absorption pads in case of another leak.
That said, in the months since NASA has traced the problem to contamination in a filter in the fan pump separator. After replacing the separator, the leaky spacesuit was used during two contingency spacewalks in December with no water problems at all.
The space community lost a colossus of the of the Apollo era last week, when John Houbolt passed away last Tuesday just five days after his 95th birthday.
Perhaps the name isn’t as familiar to many as Armstrong or Von Braun, but John Houbolt was a pivotal figure in getting us to the Moon.
Born in Altoona, Iowa on April 10th, 1919, Houbolt spent most of his youth in Joliet, Illinois. He earned a Masters degree in Civil Engineering from the University of Illinois at Urbana-Champaign in 1942 and a PhD in Technical Sciences from ETH Zurich in Switzerland in 1957. But before that, he would become a member of the National Advisory Committee for Aeronautics (NACA) in 1942, an organization that would later become the National Aeronautics and Space Administration or NASA in 1958.
It was 1961 when Houbolt made what would be his most enduring mark on the space program. He was working as an engineer at the Langley Research Center, at a time when NASA and the United States seriously needed a win in the space race. The U.S.S.R. had enjoyed a long string of firsts, including first satellite in orbit (Sputnik 1, October 1957), first spacecraft to photograph the lunar farside (Luna 3 in October 1959) and first human in space with the launch of Yuri Gagarin aboard Vostok 1 in April 1961. A young President Kennedy would make his now famous “We choose to go to the Moon…” speech at Rice University later the next year in late 1962. Keep in mind, in U.S. astronaut John Glenn had just made his first orbital flight months before Kennedy’s speech, and total accumulated human time in space could be measured in mere hours. Unmanned Ranger spacecraft were having a tough time even getting off of the pad, and managing to crash a space probe into the Moon was considered to be a “success”. The task of sending humans “by the end of this decade” was a daunting one indeed…
NASA would soon have a mandate to sent humans to the Moon: but how could they pull it off?
Early ideas for manned lunar missions envisioned a single gigantic rocket that would head to the Moon and land, Buck Rodgers style, “fins first.” Such a rocket would have to be enormous, and carry the fuel to escape Earth’s gravity well, land and launch from the Moon, and return to Earth.
A second approach, known as Earth-orbit rendezvous, would see several launches assemble a mission in low Earth orbit and then head to the Moon. Curiously, though this was an early idea, it was never used in Apollo, though it was briefly resurrected during the now defunct Constellation Program.
But it was a third option that intrigued Houbolt, known as Lunar Orbit Rendezvous. LOR had been proposed by rocket pioneers Yuri Kondratyuk and Hermann Oberth in 1923, but had never been seriously considered. It called for astronauts to depart the Earth in a large rocket, and instead, use a small lander designed only to land and launch from the Moon while the spacecraft for Earth return orbited overhead.
Houbolt became a staunch advocate for the idea, and spent over a year convincing NASA officials. In one famous letter to NASA associate administrator Robert Seamans, Houbolt was known to have remarked “Do we want to go to the Moon or not?”
It’s interesting to note that it was probably only in a young organization like the NASA of the early 1960s that, in Houbolt’s own words, a “voice in in the wilderness” could be heard. Had NASA become a military run organization — as many advocated for in the 1950s — a rigid chain of command could have meant that such brash ideas as Houbolt’s would have never seen the light of day. Thank scientists such as James Van Allen for promoting the idea of a civilian space program that we take for granted today.
Even then, selling LOR wasn’t easy. The idea looked preposterous: astronauts would have to learn how to undock and dock while orbiting a distant world, with no chance of rescue. There was no second chance, no backup option. Early plans called for an EVA for astronauts to enter the Lunar Module prior to descent which were later scrapped in favor of extracting it from atop the third stage and boarding internally before reaching the Moon.
Once Houbolt had sold key visionaries such as Wernher von Braun on the idea in late 1962, LOR became the way we would go to the Moon. And although Houbolt’s estimations of the mass required for the Lunar Module were off by a factor of three, the story is now the stuff of early Apollo era legend. You can see Houbolt (played by Reed Birney) and the tale of the LM and LOR in the From Earth to the Moon episode 5 entitled “Spider”.
Houbolt was awarded NASA’s medal for Exceptional Scientific Achievement in 1963, and he was in Mission Control When Apollo 11 touched down in the Sea of Tranquility.
He passed away in a Scarborough, Maine nursing home last Tuesday, and joins other unsung visionaries of the early space program such as Mary Sherman Morgan. It’s sad to think that we may soon live in a world where those who not only walked on the Moon, but those who also sent us and knew how to get there, are no longer with us.
The SpaceX 3 Dragon commercial cargo freighter successfully arrived at the International Space Station (ISS) on Easter Sunday morning, April 20, as planned and was deftly captured by Expedition 39 Commander Koichi Wakata at 7:15 a.m. EDT at the controls of the Canadian built robotic arm.
The next step due shortly is berthing of Dragon at the Earth facing port of the Harmony module at approximately 9:30 a.m. EDT.
Berthing was officially completed at 10:06 a.m. EDT while the massive complex was soaring 260 miles above Brazil.
This story is being updated as events unfold. The mission is the company’s third cargo delivery flight to the station.
The Dragon vehicle loaded with nearly 2.5 tons of science experiments and supplies moved ever so slowly closely to within grappling distance – dramatically backdropped with gorgeous and ever changing scenery of our Home Planet sliding below.
The million pound orbiting lab complex and free flying SpaceX Dragon were soaring some 260 miles above Egypt and the Nile River as the 57 foot long robotic arm grappled the resupply ship.
Dragon was approximately 30 feet (10 meters) away from the stations hull at the time of capture.
Wakata, of the Japan Aerospace Exploration Agency, was assisted by NASA astronaut Rick Mastracchio, while both were working from inside the 7 windowed Cupola robotics work station. Newly arrived NASA astronaut Steve Swanson observed the proceedings with a big smile.
“Congratulations to the entire ops team for the successful launch, rendezvous and capture of Dragon,” Wakata radioed mission control moments after the successful grapple.
“Great work catching the Dragon, enabling fantastic science,” radioed Capcom Steve Fisher from NASA Houston Mission Control.
Cheers and celebrations erupted at SpaceX Mission Control at the firms headquarters in Hawthorne, Calif.
Dragon arrived this morning following Friday afternoons, Apr 18, spectacular blastoff from Cape Canaveral, Fla, atop an upgraded SpaceX Falcon 9 booster.
A two day orbital chase ensued with a series of critical engine burns targeting the ISS for Easter Sunday’s rendezvous and docking activities.
Rick Mastracchio was at the controls for the actual berthing and latching in place at Harmony with Dragon’s Common Berthing Mechanism (CBM).
The berthing process started at about 9:30 a.m. EDT.
4 latches were driven for 1st stage of capture. Followed by all 16 bolts and latches in total during second stage capture to firmly hold Dragon in place.
The crew and mission control concluded the berthing procedure at 10:06 a.m. EDT flying over Brazil.
The next step is for the crew to pressurize the vestibule connecting Dragon to station.
Hatch opening is set to take place on Monday morning.
It’s a busy week ahead for the six person international crew representing the US, Russia and Japan.
A Russian Progress departs on Wednesday followed by the 2 person US spacewalk to replace the failed MDM unit.
Dragon will remain attached to the station until May 18.
This story is being updated. Check back.
The SpaceX-3 mission marks the company’s third operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
There are over 150 science experiments loaded aboard the Dragon capsule for research to be conducted by the crews of ISS Expeditions 39 and 40.
This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition Earth observing imaging camera suite (HDEV), a laser optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
NASA TV coverage of the Easter Sunday grappling process began at 5:45 a.m. EDT with berthing coverage beginning at 9:30 a.m. EDT: http://www.nasa.gov/ntv
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Blastoff of SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Alan Walters/AmericaSpace
Story updated[/caption]
The powerful SpaceX Falcon 9 rocket that launched successfully on a cargo delivery run for NASA bound for the Space Station on Friday, April 18, from Cape Canaveral, Fla, also had a key secondary objective for the company aimed at experimenting with eventually recovering the rockets first stage via the use of landing legs and leading to the boosters refurbishment and reuse further down the road.
Marking a first of its kind test, this 20 story tall commercial Falcon 9 rocket was equipped with a quartet of landing legs to test controlled soft landing techniques first in the ocean and then back on solid ground at some later date this year or next – by reigniting the 1st stage engines for a guided touchdown.
The 12 foot diameter Falcon 9 rocket would sprout the legs just prior to water impact for the controlled soft landing in the Atlantic Ocean, guided by SpaceX engineers.
Prior to the launch SpaceX managers were careful not to raise expectations.
“The entire recovery of the first stage is completely experimental,” said Hans Koenigsmann, SpaceX vice president of mission assurance. “It has nothing to do with the primary mission.”
He estimated the odds of successfully retrieving an intact booster at merely 30 or 40 percent.
Following Friday’s blastoff, SpaceX reported they made significant strides towards that goal of a 1st stage recovery.
SpaceX engineers had preprogrammed the spent first stage to relight several Merlin 1 D engines after completing the boost phase and stage seperation to stabilize it, reduce its roll rate and then gradually lower its altitude back down to the Atlantic Ocean’s surface for a soft landing attempt and later possible recovery by retrieval ships.
All these critical steps seemed to go fairly well in initial reports that are subject to change.
SpaceX CEO and founder Elon Musk reported at a post launch briefing and later tweeted further updates that the Falcon 9 first stage actually made a good water landing despite rough seas, with waves swelling at least six feet.
“Roll rate close to zero (v important!).”
“Data upload from tracking plane shows landing in Atlantic was good! Several boats enroute through heavy seas,” Musk tweeted.
Furthermore he reported that the 1st stage survived the ocean touchdown.
“Flight computers continued transmitting for 8 seconds after reaching the water. Stopped when booster went horizontal.”
Because of the high waves, the recovery boats had difficulty reaching the booster in the recovery area located some two hundred miles off shore from Cape Canaveral.
Several previous attempts by SpaceX to recover the first stage via parachutes and thrusters were not successful. So SpaceX adopted this new approach with the landing legs and 1st stage Merlin 1 D engines.
Further details will be proved when they become available.
The attachment of the 25 foot long 1st stage landing legs to SpaceX’s next-generation Falcon 9 rocket for ocean recovery counts as a major step towards the firm’s future goal of building a fully reusable rocket and dramatically lowering launch costs compared to expendable boosters.
The eventual goal is to accomplish a successful first stage touchdown by the landing legs on solid ground back somewhere near on Cape Canaveral, Florida.
Musk said that SpaceX is still working out the details on finding a suitable landing location with NASA and the US Air Force.
Extensive work and testing remains to develop and refine the technology before a land landing will be attempted by the company, says Musk.
It will be left to future missions to accomplish a successful first stage touchdown by the landing legs back on solid ground back through a series of ramped up rocket tests at Cape Canaveral, Florida.
“Even though we probably won’t get the stage back, I think we’re really starting to connect the dots of what’s needed,” Musk said at the briefing.
“There are only a few more dots that need to be there to have it all work. I think we’ve got a decent chance of bringing a stage back this year, which would be wonderful.”
Overall Musk was very pleased with the performance of the rocket and the landing leg test.
“I would consider it a success in the sense that we were able to control the boost stage to a zero roll rate, which is previously what has destroyed the stage, an uncontrolled roll, where the on-board nitrogen thrusters weren’t able to control the aerodynamic torque and spun up.”
“This time, with more powerful thrusters and more nitrogen propellant, we were able to null the roll rates.”
“I’m feeling pretty excited,” Musk stated. “This is a happy day. Most important of all is that we did a good job for NASA.”
This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
Indeed Dragon is loaded with nearly 5000 pounds of cargo, about double the weight carried previously.
If all goes well, Dragon will reach the ISS early on Easter Sunday morning after a two day orbital chase.
Station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday at about 7:14 a.m. and then berth it at the Earth-facing port of the Harmony module.
NASA TV coverage of the Easter Sunday grappling process will begin at 5:45 a.m. with berthing coverage beginning at 9:30 a.m. : http://www.nasa.gov/ntv
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Jeff Seibert/Wired4Space See expanding launch gallery below[/caption]
A mighty SpaceX rocket carrying the firms commercial Dragon resupply ship loaded with nearly 2.5 tons of NASA science instruments and critical supplies thundered to space this afternoon on a two day journey bound for the International Space Station.
The Dragon vessel launched atop the 20 story tall, upgraded Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida precisely on time at 3:25 p.m. EDT (1925 GMT), Friday, April 18.
“I want to congratulate SpaceX. Everyone did a great job” said William Gerstenmaier, NASA associate administrator for human exploration and operations, at a post launch briefing at the Kennedy Space Center press site.
“The SpaceX team went the extra mile to get everything ready for an on time launch.”
The spectacular blastoff went off without a hitch despite a poor weather prognosis in the morning that brightened considerably in the final hours leading up to the afternnon liftoff.
“Everything went well with the ascent,” said SpaceX CEO and founder Elon Muck at the briefing.
“I’m pretty excited. We did a good gob for our NASA customer and that’s very important,” Musk added.
The on time blastoff sets the stage for an Easter Sunday, April 20, rendezvous and berthing of the Dragon resupply spacecraft at the massive orbiting outpost packed with a striking variety of science experiments and needed supplies for the six person crew.
Station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday at about 7:14 a.m. if all goes well and then berth it at the Earth-facing port of the Harmony module.
The SpaceX-3 mission marks the company’s third resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
There are over 150 science experiments loaded aboard the Dragon capsule for research to be conducted by the crews of ISS Expeditions 39 and 40.
“SpaceX is delivering important research experiments and cargo to the space station,” said Gerstenmaier.
“The diversity and number of new experiments is phenomenal. The investigations aboard Dragon will help us improve our understanding of how humans adapt to living in space for long periods of time and help us develop technologies that will enable deep space exploration.”
This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
To date SpaceX had completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.
The next launch of Orbital Sciences Antares/Cygnus commercial rocket to the ISS from NASA Wallops, VA, was tentatively slated for May 6. But the target date will now slip to into mid-June since it can’t arrive until the Dragon departs.
Both the Dragon and Antares dock at the same port on the Harmony module at the end of the station.
This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
NASA’s LADEE lunar orbiting dust and atmosphere explorer probe has bitten the dust and crashed into the Moon’s surface exactly as planned following a fabulously successful and groundbreaking science mission that exceeded all expectations.
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the far side of the Moon sometime overnight between 12:30-1:22 a.m. EDT, Friday, April 18 (9:30 and 10:22 p.m. PDT, Thursday, April 17) according to a NASA statement.
Running low on fuel and unable to continue any further science observations, the couch sized spacecraft was intentionally plunged into the rugged lunar surface at a spot designed to keep it far away from disturbing any of the historic Apollo manned lunar landing sites or unmanned surveyors on the Moon’s near side.
Mission controllers at NASA’s Ames Research Center allowed LADEE’s orbit to naturally decay following the conclusion of the probes extended mission in the final low orbit science phase.
The probe was likely smashed violently to smithereens and mostly vaporized from the heat generated upwards of several hundred degrees. Any surviving debris may be buried in shallow crater formed by the impact.
“At the time of impact, LADEE was traveling at a speed of 3,600 miles per hour – about three times the speed of a high-powered rifle bullet,” said Rick Elphic, LADEE project scientist at Ames, in a NASA statement.
“There’s nothing gentle about impact at these speeds – it’s just a question of whether LADEE made a localized craterlet on a hillside or scattered debris across a flat area. It will be interesting to see what kind of feature LADEE has created.”
The powerful NAC telescopic camera aboard NASA’s still orbiting Lunar Reconnaissance Orbiter (LRO) will be directed in coming months to try and photograph the impact site after engineers pinpoint the likely crash site.
After completing its primary science mission in March, the already ultra low altitude of the lunar orbiting probe was reduced even further so that it was barely skimming just 2 kilometers (1 mile) above the pockmarked lunar surface.
Such a low altitude thus enabled LADEE to gather unprecedented science measurements of the Moon’s extremely tenuous atmosphere and dust particles since the species would be present at a higher concentration.
Lots of fuel is required to maintain LADEE’s orbit due to the uneven nature of the Moon’s global gravity field.
The final engine firing was commanded on April 11 to ensure a far side impact and the safety of all the historic lunar landing sites.
“LADEE also survived the total lunar eclipse on April 14 to 15. This demonstrated the spacecraft’s ability to endure low temperatures and a drain on batteries as it, and the moon, passed through Earth’s deep shadow,” said NASA
LADEE was launched on Sept. 6, 2013 from NASA Wallops in Virginia on a science mission to investigate the composition and properties of the Moon’s pristine and extremely tenuous atmosphere, or exosphere, and untangle the mysteries of its lofted lunar dust dating back to the Apollo Moon landing era.
All those objectives and more were accomplished during its nearly half year investigating Earth’s nearest neighbor.
It entered lunar orbit on Oct. 6, 2013 amidst the ridiculous government shutdown that negatively affected a number of science missions funded across the US federal government.
The science mission duration had initially been planned to last approximately 100 days and finish with a final impact on the Moon on about March 24th.
NASA granted LADEE a month long extension since the residual rocket fuel was more than anticipated due to the expertise of LADEE’s navigation engineers and the precision of the launch atop the Orbital Sciences Minotaur V rocket and orbital insertion.
“It’s bittersweet knowing we have received the final transmission from the LADEE spacecraft after spending years building it in-house at Ames, and then being in constant contact as it circled the moon for the last several months,” said Butler Hine, LADEE project manager at Ames.
The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.
The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.
Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more planetary and human spaceflight news.
It’s a good thing that next week’s urgent spacewalk is pegged as a short one, because the coming days will be hectic for the Expedition 39 crew.
Finding a spot for even a 2.5-hour excursion on the International Space Station was extremely challenging, NASA officials said in a news conference today (April 18), because crew time also is needed for two cargo spacecraft: the SpaceX Dragon launch scheduled for today and subsequent Progress undocking/redocking on station.
Here’s a rundown of some things NASA was juggling as it moves hastily to replace a failed backup computer on the outside of the station. Rick Mastracchio and Steve Swanson are expected to go “outside” on Wednesday (April 23), but if today’s SpaceX launch is delayed the spacewalk will be moved up to Sunday (April 20).
Why it’s urgent
The U.S. portion of the station has 46 computers, with 24 of them external. The multiplexer/demultiplexer or MDM (one of two) controls 12 of these external computers and is responsible for everything for how the solar arrays are pointed to how some robotics operate. It should be noted here that the primary MDM is working just fine, but if it fails with no backup, there will be problems. NASA will lose telemetry or data from the external ammonia cooling systems operating on station (although the systems themselves will work automatically). Some redundant equipment can’t be turned on, either. The agency also won’t be able to point the solar arrays to get power or to move them aside when spacecraft come in, to protect the arrays from thruster plumes (although further below you can see some backups they have for the array problems.)
Fixing the spacesuits
Since last summer’s life-threatening water leak, NASA has been moving quickly to fix the spacesuits it has. All non-urgent spacewalks are off the table until at least this summer while NASA addresses a panel’s recommendations to fix the problem. A faulty fan pump separator was swapped out on the bad suit (Suit 3011) last December, but two spacesuits still needed to be fixed on station. The crew spent much of the past week changing out a fan pump separator on Suit 3005 (which will also be used in the spacewalk) and flushing out the cooling lines in the suit and on station, since contamination is believed to have led to the failure. (More parts will arrive on Dragon, but they won’t be used this time, NASA has determined.)
Spacewalk preps on the ground
Also today, NASA astronaut Chris Cassidy was in “the pool” (at NASA’s Neutral Buoyancy Laboratory) simulating the spacewalk. He’s part of a team working to see what could go wrong on the spacewalk and come up with procedures dealing with that. “As best we can we have all those answers in our hip pockets so as they get thrown out on the game day, we can give the crew a quick answer,” he said in an interview Wednesday (April 16) on NASA TV.
Preparing the new computer
A spare MDM is inside the station, but it was an older model that needed to be reconfigured. Astronauts changed out a processing card and did other hardware/software changes to prepare the MDM to sit outside of the station. They also thoroughly tested it to make sure it’s working before mounting it outside. As a point of interest, no one yet knows why the backup MDM failed, but astronauts will inspect the site for damage (and take pictures). It’s expected that once they bring the broken MDM inside, any failed cards will be swapped out and sent to the ground sometime for analysis. The MDM itself will stay on station to be used again, as needs arise.
Grappling Dragon
SpaceX’s Dragon is a cargo spacecraft controlled by the ground, but the astronauts need to be ready to nab it with the robotic Canadarm2 once it arrives (now scheduled for Sunday, April 20). The crew has their normal amount of training and preparation for the procedures, then the time it takes to capture the spacecraft, and then the time to unload the vehicle (which is somewhat urgent as there are certain research experiments that need to come off fairly quickly, NASA said.)
Moving the solar array
NASA not only needs to have the solar arrays out of the way from thruster plumes from Dragon and Progress, but it also needs to keep power to the station and configure the arrays so that if the other MDM fails, the arrays will automatically be placed in a safe spot. The array would autotrack for 24 hours after the MDM fails, then go to a “preset angle” that NASA carefully chose. As for whether there would be power shortages on station, NASA says it depends on the sun’s angle and what needs to be done on station at a particular time.
Moving the Progress spacecraft
Russian cargo ship Progress 53 is supposed to undock from the Zvezda service module on Wednesday (April 23) to test an automated rendezvous system that controls approaches to station. Then it’s docking again on Friday (April 25).
Unless otherwise noted, information in this article is based on comments from the following officials in today’s NASA news conference: Mike Suffredini, International Space Station program manager; Brian Smith, International Space Station flight director and Glenda Brown, lead spacewalk officer.
NASA and SpaceX are marching forward towards a Friday, April 18 liftoff attempt for the Falcon 9 rocket sending a commercial Dragon cargo craft on the company’s third resupply mission to the International Space Station following the scrubbed launch attempt on Monday, April 14 – forced by the discovery of a Helium gas leak inside the rocket during the latter stages of the countdown.
An on time blastoff of the upgraded Falcon 9 sets the stage for an Easter Sunday rendezvous and berthing of the Dragon resupply spacecraft at the massive orbiting outpost packed with almost 5000 pounds of science experiments and supplies for the six person crew.
However the weather prognosis is rather iffy for Friday afternoons launch attempt at 3:25:21 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
Forecasters predict only a 40 percent “GO” of acceptable weather conditions at the appointed liftoff time of the SpaceX-3 mission – roughly the time when the Earth’s rotation moves the rocket into the plane of the space stations orbit.
Meteorologists with the U.S. Air Force 45th Weather Squadron are predicting a significant chance of rain showers and thunderstorms in the Florida Space coast launch area that could violate three launch rules, namely the Thick Cloud, Lightning and Flight Through Precipitation rules.
In the event of a scrub for any reason on Friday, NASA, SpaceX and Air Force managers approved another backup launch opportunity on Saturday, April 19 at 3:02:42 p.m.
The weather outlook for a Saturday liftoff improves somewhat to 60 percent “GO”.
Originally, Monday and Friday were the only available launch target dates this week.
Assuming a successful Falcon 9 launch on Friday, station crew members Rick Mastracchio and Steven Swanson will grapple the Dragon cargo freighter with the 57 foot long Canadarm2 on Easter Sunday morning, April 20, at 7:14 a.m. at then berth it at the Earth-facing port of the Harmony module.
NASA TV coverage of the Easter Sunday grappling process will begin at 5:45 a.m. with berthing coverage beginning at 9:30 a.m. : http://www.nasa.gov/ntv
Monday’s launch attempt was scrubbed about an hour before liftoff when SpaceX mission controllers and engineers detected that a helium valve in the pneumatic system for stage separation between the first and second stages was not holding the specified pressure.
The success of the mission was therefore dependent on the perfect operation of a backup check valve for the stage separation pistons.
Although no technical issues were detected with the backup valve, the anamolous situation violated SpaceX launch rules.
“SpaceX policy is not to launch with any known anomalies,” said SpaceX in a statement.
The erect Falcon 9 was lowered back to the horizontal position so that SpaceX engineers could swap out the faulty helium valve, as well as conduct a complete inspection of the rocket to look for signs of any other issues that may have contributed to the valve not working as designed, said SpaceX.
This unmanned SpaceX mission dubbed CRS-3 will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
To date SpaceX has completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.
NASA awarded contracts to SpaceX and competitor Orbital Sciences to develop unmanned cargo freighters via CRS to restore US capability to resupply the ISS following the shutdown of the space shuttle program in 2011.
SpaceX is under contract to NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016 at a cost of about $1.6 Billion.
The next launch of Orbital Sciences Antares/Cygnus commercial rocket to the ISS from NASA Wallops, VA, is tentatively slated for May 6. But the target date hinges on when this SpaceX-3 mission actually flies and could slip into mid-June.
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
The keys to NASA’s historic launch Pad 39A that propelled humanity’s first man to walk on the Moon – Neil Armstrong – during the history making flight of Apollo 11, have been handed over to new owners, namely the private aerospace firm SpaceX for a new purpose – serving as a commercial launch facility.
NASA and Space Exploration Technologies Corporation (SpaceX) of Hawthorne, Calif., have just signed an agreement giving SpaceX rights to occupy and operate seaside Launch Complex 39A at the Kennedy Space Center (KSC) in Florida.
SpaceX was founded by billionaire, entrepreneur and space visionary Elon Musk.
SpaceX aims to give the now dormant pad a new lease on life in the emerging New Space era by revitalizing it as a commercial launch site for the company’s mammoth new Falcon Heavy rocket, currently under development, as well as for manned launches of the firm’s human rated Dragon spacecraft atop the Falcon 9 according to Gwynne Shotwell, president of SpaceX.
“We’ll make great use of this pad, I promise,” Shotwell told reporters at a briefing at the pad.
The liquid fueled Falcon Heavy will be the most powerful rocket in the world according to SpaceX, generating generating nearly four million pounds of liftoff thrust from 27 engines and thus significantly exceeding the power of the Delta IV Heavy manufactured by competitor United Launch Alliance.
Shotwell said renovations to pad 39A would start later this year. The maiden SpaceX launch from the complex is expected next year.
“We will launch the Falcon Heavy from here from this pad early next year,” Shotwell stated.
The SpaceX Dragon is one of three commercial crew vehicles being developed under a public-private partnership with NASA to ferry US astronauts to the International Space Station (ISS) and restore America’s human spaceflight capability lost since the shuttle’s retirement.
The Boeing CST-100 and Sierra Nevada Dream Chaser are also vying for the next round of private ‘space taxi’ funding from NASA.
Pad 39A has been inactive and mothballed since the last shuttle mission, STS-135, thundered to space in July 2011.
Not a single rocket has rolled up the ramp at KSC in nearly 3 years.
The new lease agreement was signed by NASA and SpaceX officials and announced onsite at Pad 39 at the briefing.
“Today this historic site from which numerous Apollo and space shuttle missions began and from which I first flew and left the planet on STS-61C on Columbia, is beginning a new mission as a commercial launch site,” said NASA Administrator Charles Bolden.
“While SpaceX will use pad 39A at Kennedy, about a mile away on pad 39B, we’re preparing for our deep space missions to an asteroid and eventually Mars. The parallel pads at Kennedy perfectly exemplify NASA’s parallel path for human spaceflight exploration — U.S. commercial companies providing access to low-Earth orbit and NASA deep space exploration missions at the same time.”
Under terms of the new agreement with NASA, the lease with SpaceX spans 20 years.
“It’s exciting that this storied NASA launch pad is opening a new chapter for space exploration and the commercial aerospace industry,” said Bolden.
SpaceX will also maintain and operate Pad 39A at its own expense, with no US federal funding from NASA.
Pad 39A will be SpaceX’s third launch site. The company also launches its Falcon 9 rockets from nearby Pad 40 on Cape Canaveral Air Force Station and a west coast pad on Vandenberg Air Force Base, Calif.
The next Falcon 9 liftoff with an unmanned Dragon cargo freighter is currently slated from Friday, April 18 following Monday’s scrub.
NASA determined that the agency no longer has a use for pad 39A since the end of the shuttle era and has been looking for a new tenant to take over responsibility and pay for maintenance of the launch complex. The agency awarded the lease to SpaceX in December 2013.
Instead, NASA decided to completely upgrade, renovate and modernize Pad 39As twin, namely Launch Pad 39B, and invested in converting it into a 21st Century launch complex.
NASA will use Pad 39B to launch the state of the art Orion crew vehicle atop the new Space Launch System (SLS) booster for voyages beyond Earth and taking humans back to the vicinity of the Moon and further out on deep space missions to Asteroids, Mars and beyond.
The first unmanned SLS test flight from Pad 39B is slated for late 2017.
Pad 39A was an active NASA launch pad for nearly 35 years starting back near the dawn of the Space Age in the 1960s.
Apollo 4 was the first NASA booster to blast off from Pad 39A on Nov. 9, 1967 during the historic inaugural test flight of the Saturn V moon rocket that eventually served to dispatch all six US manned lunar landing missions.
The closing NASA use of Pad 39A took place on July 8, 2011 with the launch of STS-135 and orbiter Atlantis on the final flight of the space shuttle era.
The four person STS-135 crew delivered the last US pressurized module to the massive low-Earth orbiting ISS.
No Americans have launched to space from American soil since STS-135.
Launch Complex 39 was originally constructed to launch the Apollo moon landing missions atop NASA’s Saturn V booster in the 1960s and 1970s. Both pads were later modified to support the Space Shuttle program whose first launch took place in 1981 from pad 39A.
“Kennedy Space Center is excited to welcome SpaceX to our growing list of partners,” Center Director Bob Cabana said. “As we continue to reconfigure and repurpose these tremendous facilities, it is gratifying to see our plan for a multi-user spaceport shared by government and commercial partners coming to fruition.”
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
And now, time for some thrilling heroics. NASA astronaut Steve Swanson sent out the first Instagram from space last week wearing none other than a Firefly T-shirt. There’s something to be said about a space-faring guy evoking images of Captain Mal doing the impossible in the plucky Serenity spaceship, isn’t there?
We’re happy the epicness did not break NASA’s Instagram feed, as Swanson has been sending out pictures regularly since then showing the view from orbit (he joked about wanting a vacation at one point) as well as another selfie. You can check out the magic below, and follow the rest on NASA’s Instagram feed. We’ve copied and pasted Swanson’s captions below each image.
During Swanson’s first mission to space in 2007, STS-117, he brought with him the DVD set of Firefly and its movie spinoff, Serenity, and left it on the International Space Station library, according to collectSPACE.
Oh, and social media from space is also being covered on Twitter, via Expedition 39 NASA astronaut Rick Mastracchio and Koichi Wakata, from the Japan Aerospace Exploration Agency.
“The Turks and Caicos islands – I think I need to go there after this mission.” – Swanny #exp39 #earth #iss #international #space #station #nasa #vacation #earthrightnow
“Blood, sweat, but hopefully no tears.” – Swanny #nasa #iss #exp39 #international #space #station #blood #sweat #tears #medical
“Cape Canaveral – looking forward to when the US launches out of here again.” – Swanny #iss #exp39 #earth #florida #capecanaveral #international #space #station #launch #atlantic #coast #nasa