As Astronaut’s Helmet Filled With Water, He Told NASA 3 Times It Wasn’t From Drinking Bag

Luca Parmitano during a a spacewalk on July 16, 2013. An hour into the spacewalk, he reported water in his helmet and NASA cut the spacewalk short. Credit: NASA

While NASA’s Mission Control “performed admirably” during a spacewalk water leak crisis in July, a report on the incident showed that controllers did not send astronaut Luca Parmitano back to the airlock until after he made three calls saying the water didn’t appear to be from a drinking bag.

There are several reasons this happened, the mishap report says, such as inadequate training, the crew members and ground misunderstanding the severity of the situation, and a (false) perception that any water leak is likely due to a problem with the drinking bag.

Another big problem was the “normalization of deviance”, similar language to what was used during in reports describing the Challenger and Columbia incidents. In this case, small amounts of water in the helmet was expected, and controllers also misunderstood the cause of a carbon dioxide alarm (a fairly regular occurrence during spacewalks).

The report pulls no punches when it describes how bad things were: “The presence of this water created a condition that was life threatening.”

While talking about what is in the report, it’s also important to point out what the investigators did not find. There was no evidence that contractors were afraid to bring up problems (such as what happened during the 1986 Challenger explosion), chair Chris Hanson told reporters yesterday. Also, while the suits are 35 years old, no aging problem was detected.

Another couple of cautions: the report is preliminary (the exact cause of the leak is under investigation), it’s lengthy (222 pages) and much of the technical information is unavailable to the public due to export control restrictions. Any news story will just scratch the surface of what happened and the recommendations to fix it.

That said, here are a few key points we found in the report.

European Space Agency astronaut Luca Parmitano on a spacewalk July 9, 2013 during Expedition 36. Here, Parmitano is riding the end of the robotic Canadarm2. Credit: NASA
European Space Agency astronaut Luca Parmitano on a spacewalk July 9, 2013 during Expedition 36. Here, Parmitano is riding the end of the robotic Canadarm2. Credit: NASA

Parmitano warned controllers multiple times.  The transcript shows three separate calls from Parmitano saying it wasn’t the drinking bag at cause: (1) “I feel a lot of water on the back of my head, but I don’t think it is from my bag.” (2) “The leak is not from the water bag and it is increasing.” (3) “I’m thinking that it might not be the water bag.” (In between 1 and 2, he also sent another call saying his “only guess” was it was the drinking bag, but the report adds that Parmitano may have softened his stance after speaking to controllers). Misunderstanding about the severity, lack of training, “cognitive overload” of controllers, and space-to-ground-to-space communication difficulties are all cited as contributing factors.

Drink bags don’t actually leak as much as people think they did. Unequivocally, the mishap investigation board says “the perception that drink bags leak, especially as a frequent occurrence, is false.” There has never been an instance of a bag leaking substantially during a spacewalk, the report says. After the crisis passed and investigators had the luxury of time, they in fact identified seven separate possible sources of water: (1) the bag; (2) the waste collection garment; (3) cooling water from the sublimator heat rejection component of the suit; (4) the Liquid Cooling Ventilation Garment connector or the tubing itself; (5) transfer lines through the Hard Upper Torso; (6) water storage tankage through the pressurizing bladders; (7) the water separator circuit (which is where the problem was eventually found).

It was a risky decision to send Parmitano back alone. Twenty-three minutes after Parmitano warned of water in his helmet, NASA terminated the spacewalk and as per procedure, had the astronaut head to the airlock while crewmate Chris Cassidy performed cleanup tasks before doing the same. (“Terminate” has a specific meaning as opposed to “abort”, which means both crew members leave immediately.) By this time, water was in Parmitano’s eyes and the station had passed into the shadow of the Earth, forcing him to feel his way back to the airlock along the tether. (This was only his second spacewalk on station, too.) Also, the water affected his communications equipment, as he made several calls “in the blind” that were not heard. At this time, Cassidy and the ground controllers did not know how severe the situation was. “Additional risk exposure that the team could have considered was the aspiration of water, failure of comm equipment, and impaired visibility,” the report said.

European Space Agency astronaut Luca Parmitano does spacesuit maintenance prior to July 9 and 16, 2013 spacewalks. Parmitano was a member of Expeditions 36 and 37. Credit: NASA
European Space Agency astronaut Luca Parmitano does spacesuit maintenance prior to July 9 and 16, 2013 spacewalks. Parmitano was a member of Expeditions 36 and 37. Credit: NASA

The emphasis on science on station can hinder with maintenance tasks. NASA and other space station partners are eager to demonstrate how great the station is to science, but crew time is divided between that and doing maintenance tasks. “Due to this knowledge, team members felt that requesting on-orbit time for anything non-science related was likely to be denied and therefore tended to assume their next course of action could not include on-orbit time,” the report states. To give a specific example of how this affected Parmitano’s suit: After water was found in the suit during a previous spacewalk, the crew and ground essentially determined it was due to the drink bag and did not probe further, partly because of the perception that doing an investigation would take an inordinate amount of time for little return (as they believed they knew the cause). On a related note, there was also the concern that investigating this occurrence (which happened on July 9) would delay the July 16 spacewalk. (Again, this sounds a bit like Challenger, where time pressure was cited as a reason to launch despite icy conditions.)

More needs to be done to understand the physics of water in a spacesuit. A few examples: it was believed the fan would have failed if water got through the separator unit, which did not occur. It was also believed that any water in the helmet would cling to the helmet, and not the crew member’s face. Not only that, the training for crew and ground was inadequate to seek out water causes on the fly. “Had this been done, the crew and ground team may not have attributed water in the helmet to just the drink bag,” the report stated.

Water in the helmet was normalized. If you’ve read Chris Hadfield’s An Astronaut’s Guide to Life On Earth, there’s an account in there about how Hadfield (who also was a junior spacewalker in 2001) became temporarily blind due to an anti-fog agent on the helmet getting into his eyes. This has happened during other spacewalks, too, which meant that the ground team was used to small amounts of water in the helmet — even though this wasn’t a normal condition. Another aspect: a carbon dioxide alarm went off in Parmitano’s suit after it became saturated with water. This happened six minutes before he felt the dampness. The team attributed this to “nominal accumulation of moisture in the vent loop,” which can happen at the end of the spacewalk. Having it happen less than an hour in, however, did not trigger a fault-finding process.

Water collecting inside of a spacesuit helmet. This was the lead image in a report investigating a July 2013 water leak in a spacesuit used by European Space Agency astronaut Luca Parmitano. Credit: NASA
Water collecting inside of a spacesuit helmet. This was the lead image in a report investigating a July 2013 water leak in a spacesuit used by European Space Agency astronaut Luca Parmitano. Credit: NASA

While there are many, many causes in the report (with aspects ranging from the technical to the procedural to the training), members identified three main ones to the incident: (1) inorganic materials in the water separator drum holes, for reasons still unknown (2) a lack of understanding that meant the team’s response took longer than usual (3) a misdiagnosis of the water found during the July 9, 2013 spacewalk.

There are 49 separate recommendations ranging from “Level 1” priority to “Level 3”, which are still important but less urgent. NASA has pledged it will clear all “Level 1” and “Level 2” items before doing any normal spacewalks, although contingency ones are still possible. They expect this to be finished by June, but say they will take as long as needed to get the investigation done. There are no pressing spacewalk tasks on station right now.

Looking to the long run, the report noted that there should be more backups available if a fault is found in the spacesuits, as NASA is relying on these devices to perform essential station maintenance as far as 2028. Also, the investigators say that the six-year certification of these suits for orbital tasks is likely inadequate, and calls for a review of that. So although aging was not identified as an issue, maintenance and backups of the spacesuits could be key features of NASA thinking in the months and years to come.

NASA/JAXA Precipitation Measurement Satellite ‘GO’ for Feb. 27 Launch – Watch Live Here on NASA TV

Visualization of the GPM Core Observatory and Partner Satellites. Credit: NASA

Visualization of the GPM Core Observatory and Partner Satellites. GPM is slated to launch on Feb. 27 from Japan. Credit: NASA
See launch animation, Shinto ceremony, Rocket roll out and more below[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MARYLAND – Blastoff of the powerful and revolutionary new NASA/JAXA rain and snow precipitation measurement satellite atop a Japanese rocket from a tiny offshore island launch pad is now less than 24 hours away on Thursday, Feb. 27, EST (Feb. 28 JST).

The Global Precipitation Measurement (GPM) Core Observatory aimed at improving forecasts of extreme weather and climate change research has been given a green light for launch atop a Mitsubishi Heavy Industries H-IIA rocket from the Tanegashima Space Center on Tanegashima Island off southern Japan.

Roll out of the H-IIA launch vehicle from the Vehicle Assembly Building is scheduled for this evening, Feb. 26 at 11 p.m. EST.

Update: rocket rolled out. Photo below, plus watch streaming NASA TV below.

Following the Launch Readiness Review, mission managers approved the GO for liftoff.

The H-IIA rocket with GPM rolls to its launch pad in Japan! Credit: NASA/Bill Ingalls
The H-IIA rocket with GPM rolls to its launch pad in Japan! Credit: NASA/Bill Ingalls

Japanese team members also prayed at a Shinto ceremony for blessings for a successful launch at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage on Tuesday, Feb. 25, 2014 – see photo below.

However, the team also set a newly revised launch time of 1:37 p.m. EST (18:37 UTC, and Feb. 28 at 3:37 a.m. JST).



Live streaming video by Ustream

Mission managers adjusted the H-IIA launch time after concerns raised by a collision avoidance analysis between the GPM spacecraft and the International Space Station (ISS).

gpm launch

GPM will fly at an altitude of 253 miles (407 kilometers) above Earth – quite similar to the ISS.

It’s coverage runs over virtually the entire populated globe from 65 N to 65 S latitudes.

NASA plans live coverage of the launch on Feb. 27 beginning at 12 noon EST on NASA Television.

It will be streamed live at: http://www.nasa.gov/nasatv

The $933 Million observatory is a joint venture between the US and Japanese space agencies, NASA and the Japan Aerospace Exploration Agency (JAXA).

NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center, MD. Technicians at work on final processing during exclusive up-close inspection tour by Universe Today.  GPM is slated to launch on February 27, 2014 and will provide global measurements of rain and snow every 3 hours. Credit: Ken Kremer/kenkremer.com
NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center, MD. Technicians at work on final processing during exclusive up-close inspection tour by Universe Today. GPM is slated to launch on February 27, 2014 and will provide global measurements of rain and snow every 3 hours. Credit: Ken Kremer/kenkremer.com

GPM has a one-hour launch window. In case of any delays, the team will be required to conduct a thorough new collision avoidance analysis to ensure safety.

Weather forecast is excellent at this time.

Watch this GPM Launch animation:

Video caption: NASA/JAXA GPM Core Observatory Launch Animation

GPM is a next-generation satellite that will provide global, near real time observations of rain and snow from space. Such data is long awaited by climate scientists and weather forecasters.

It will open a new revolutionary era in global weather observing and climate science. Therefore it will have a direct impact on society and people’s daily lives worldwide.

The mission will significantly advance our understanding of Earth’s water and energy cycles and improve forecasting of extreme weather events.

The 3850 kilogram GPM satellite is equipped with two instruments – an advanced, higher resolution dual -frequency precipitation (DPR) radar instrument (Ku and Ka band) built by JAXA in Japan and the GPM microwave imager (GMI) built by Ball Aerospace in the US.

Major components of the GPM Core Observatory labeled, including the GMI, DPR, HGAS, solar panels, and more. Credit: NASA Goddard
Major components of the GPM Core Observatory labeled, including the GMI, DPR, HGAS, solar panels, and more. Credit: NASA Goddard

“The GPM satellite was built in house at NASA’s Goddard Space Flight Center in Maryland,” Art Azarbarzin, GPM project manager, told Universe Today during my exclusive up-close clean room inspection tour of the huge satellite as final processing was underway.

Researchers will use the GPM measurements to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.

“GPM will join a worldwide constellation of current and planned satellites,” Azarbarzin told me during an interview in the Goddard cleanroom beside GPM.

“GPM is the direct follow-up to the currently orbiting TRMM satellite,” Azarbarzin explained.

“TRMM is reaching the end of its usable lifetime. After GPM launches we hope it has some overlap with observations from TRMM.”

“The Global Precipitation Measurement (GPM) observatory will provide high resolution global measurements of rain and snow every 3 hours,” Dalia Kirschbaum, GPM research scientist, told me during an interview at Goddard.

Stay tuned here for Ken’s continuing GPM reports and on-site coverage at NASA Goddard Space Flight Center in Maryland.

And watch for Ken’s continuing planetary and human spaceflight news about Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars, Orion and more.

Ken Kremer

GPM: Three Shrine Pilgrimage  Japan Aerospace Exploration Agency (JAXA) team members bow at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays on Tuesday, Feb. 25, 2014 for a successful launch, Tanegashima Island, Japan.    Credit: NASA/Bill Ingalls
GPM: Three Shrine Pilgrimage Japan Aerospace Exploration Agency (JAXA) team members bow at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays on Tuesday, Feb. 25, 2014 for a successful launch, Tanegashima Island, Japan. Credit: NASA/Bill Ingalls
NASA/JAXA Global Precipitation Measurement (GPM) satellite inside the clean room at NASA Goddard Space Flight Center, MD, undergoes final processing during exclusive up-close inspection tour by Universe Today:   Dr. Art Azarbarzin/NASA GPM project manager, Dr. Ken Kremer/Universe Today and Dr. Dalia Kirschbaum/NASA GPM research scientist.    Credit: Ken Kremer/kenkremer.com
NASA/JAXA Global Precipitation Measurement (GPM) satellite inside the clean room at NASA Goddard Space Flight Center, MD, undergoes final processing during exclusive up-close inspection tour by Universe Today: Dr. Art Azarbarzin/NASA GPM project manager, Dr. Ken Kremer/Universe Today and Dr. Dalia Kirschbaum/NASA GPM research scientist. Credit: Ken Kremer/kenkremer.com

Spacesuit Leak: Why It Took NASA 23 Minutes To Send Astronaut To Safety

Self-portrait of Expedition 36/37 European Space Agency astronaut Luca Parmitano during a July 2013 spacewalk. Credit: NASA

It took NASA almost the same amount of time as a sitcom episode to send Luca Parmitano back to the airlock when the Italian astronaut experienced a leak in his spacesuit last summer, a new report reveals.

The 23-minute gap of time between when Parmitano first sent a report of water in his helmet, to when NASA told him to go back to safety, exposed the astronaut “to an increased level of risk”, the report said. While Parmitano emerged from the incident safely, in his last minutes inside the spacesuit the water was covering his eyes, getting close to his nose and mouth, and affecting the communications equipment.

 

“There wasn’t an issue of anything being hidden or surprised. It was a lack of understanding about the severity of the event. It was believed a drink bag caused the leak,” said Chris Hansen, the chair of the mishap investigation board, in a press conference today (Feb. 26).

This misunderstanding, added Hansen (who is also the chief engineer of the International Space Station Program) also led to a problem when a leak occurred in the same suit just the week before.

Parmitano’s water leak occurred July 16 when he and Chris Cassidy were preparing a part of the International Space Station for a new Russian module. Until today, however, few knew about the existence of a second leak in the same spacesuit that happened on July 9, when Cassidy and Parmitano were doing another spacewalk together.

Astronaut Chris Cassidy works with Luca Parmitano's spacesuit, which had a water leak on July 16, 2013. Credit: NASA
Astronaut Chris Cassidy works with Luca Parmitano’s spacesuit, which had a water leak on July 16, 2013. Credit: NASA

After the conclusion of “EVA 22” on July 9, as NASA called the extra-vehicular activity, Parmitano took off his helmet and crew members discovered between 0.5 and 1 liters (0.13 to 0.26 gallons) of water inside. Cassidy told the ground that he could not see any water during the spacewalk or repressurization, leading NASA to conclude the water got into the helmet in the airlock.

“Also,” the report noted, “[Parmitano] was looking down and leaning forward and likely had pressed on the drink bag with his chest and could have pinched the bite valve open with his chin, releasing water into his helmet. The ground team accepted the crew’s drink bag leak assessment and the presence of excessive water in the helmet was not investigated further … The ground team instructed the crew to use a new drink bag for the upcoming EVA 23, which they did.”

Hanson emphasized that the crew did not make the final call, and that the ground team did ask some questions about what was going on, but the assumption that a drink bag caused the water was also a key feature of the July 16 spacewalk when the leak began to show itself in earnest.

ISS Astronauts had to scramble to get Luca Parmitano out of his spacesuit after water leaked inside the suit, covering his face. Via NASA TV.
ISS Astronauts had to scramble to get Luca Parmitano out of his spacesuit after water leaked inside the suit, covering his face. Via NASA TV.

Also, NASA did not well understand the physics of how water worked inside of the suit, assuming there was no way for liquid to make it past a fan pump separator into the helmet unless the fan itself shut off. If that scenario arose, NASA would have kicked into a 30-minute return-to-airlock procedure, and that was in the back of controllers’ minds as they were working through the fault tree during the July 16 spacewalk, officials said in the phone call today.

In the short term, the authors of the report have several  “Level 1” or priority recommendations that they should be implemented before normal spacewalks resume. NASA said it’s planning to work through these and “Level 2” recommendations in time for June, with the aim of getting spacewalks going again in July or August.

NASA astronaut Mike Hopkins holds a spare ammonia pump module during a spacewalk Dec. 24, 2013. Hopkins and fellow Expedition 38 Rick Mastracchio (top) performed two spacewalks to replace a pump blamed for crippling one of the International Space Station's two cooling loops Dec. 11. Credit: NASA TV (screenshot)
NASA astronaut Mike Hopkins holds a spare ammonia pump module during a spacewalk Dec. 24, 2013. Hopkins and fellow Expedition 38 Rick Mastracchio (top) performed two spacewalks to replace a pump blamed for crippling one of the International Space Station’s two cooling loops Dec. 11. Credit: NASA TV (screenshot)

Emergency spacewalks can still go forward, as the agency has new safety measures in place (including snorkels). This happened in December as the astronauts replaced a faulty ammonia pump.

The agency has no pressing spacewalk tasks at this time. The broken pump, sitting in temporary stowage outside the station, was initially safed to stay there until summer, but further analysis shows that it could sit there for several months more.

You can read the entire 222-page report here. We’ll pull out more highlights tomorrow after we have some time to look over it in more detail, too. The exact cause of the leak is still under investigation.

Next SpaceX Falcon 9 Rocket Gets Landing Legs for March Blastoff to Space Station – Says Elon Musk

1st stage of SpaceX Falcon 9 rocket equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk

1st stage of SpaceX Falcon 9 rocket newly equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk
Story updated[/caption]

The next commercial SpaceX Falcon 9 rocket that’s set to launch in March carrying an unmanned Dragon cargo vessel will also be equipped with a quartet of landing legs in a key test that will one day lead to cheaper, reusable boosters, announced Elon Musk, the company’s founder and CEO.

The attachment of landing legs to the first stage of SpaceX’s new and more powerful, next-generation Falcon 9 rocket counts as a major step towards the firm’s eventual goal of building a fully reusable rocket.

Before attempting the use of landing legs “SpaceX needed to gain more confidence” in the new Falcon 9 rocket, Musk told me in an earlier interview.

Blastoff of the upgraded Falcon 9 on the Dragon CRS-3 flight is currently slated for March 16 from Cape Canaveral Air Force Station, Florida on a resupply mission to bring vital supplies to the International Space Station (ISS) in low Earth orbit for NASA.

“Mounting landing legs (~60 ft span) to Falcon 9 for next month’s Space Station servicing flight,” Musk tweeted, along with the up close photos above and below.

All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for Mar 16 launch.  Credit: SpaceX/Elon Musk
All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for March 16 launch. Credit: SpaceX/Elon Musk

“SpaceX believes a fully and rapidly reusable rocket is the pivotal breakthrough needed to substantially reduce the cost of space access,” according to the firm’s website.

SpaceX hopes to vastly reduce their already low $54 million launch cost when a reusable version of the Falcon 9 becomes feasible.

Although this Falcon 9 will be sprouting legs, a controlled soft landing in the Atlantic Ocean guided by SpaceX engineers is still planned for this trip.

“However, F9 will continue to land in the ocean until we prove precision control from hypersonic thru subsonic regimes,” Musk quickly added in a follow-up twitter message.

In a prior interview, I asked Elon Musk when a Falcon 9 flyback would be attempted?

“It will be on one of the upcoming missions to follow [the SES-8 launch],” Musk told me.

“What we need to do is gain more confidence on the three sigma dispersion of the mission performance of the rocket related to parameters such as thrust, specific impulse, steering loss and a whole bunch of other parameters that can impact the mission.”

“If all of those parameters combine in a negative way then you can fall short of the mission performance,” Musk explained to Universe Today.

When the upgraded Falcon 9 performed flawlessly for the SES-8 satellite launch on Dec 3, 2013 and the Thaicom-6 launch on Jan. 6, 2014, the path became clear to attempt the use of landing legs on this upcoming CRS-3 launch this March.

Atmospheric reentry engineering data was gathered during those last two Falcon 9 launches to feed into SpaceX’s future launch planning, Musk said.

That new data collected on the booster stage has now enabled the approval for landing leg utilization in this March 16 flight.

SpaceX engineers will continue to develop and refine the technology needed to accomplish a successful touchdown by the landing legs on solid ground back at the Cape in Florida.

Extensive work and testing remains before a land landing will be attempted by the company.

Ocean recovery teams will retrieve the 1st stage and haul it back to port much like the Space Shuttle’s pair of Solid Rocket Boosters.

This will be the second attempt at a water soft landing with the upgraded Falcon 9 booster.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to December 2013 SpaceX upgraded Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The two stage Falcon 9 rocket and Dragon cargo carrier are currently in the final stages of processing by SpaceX technicians for the planned March 16 night time liftoff from Space Launch Complex 40 at 4:41 a.m. that will turn night into day along the Florida Space Coast.

“All four landing legs now mounted on Falcon 9,” Musk tweeted today, Feb. 25.

SpaceX has carried out extensive landing leg and free flight tests of ever increasing complexity and duration with the Grasshopper reusable pathfinding prototype.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000) pounds of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

SpaceX Falcon 9 landing leg. Credit: SpaceX
SpaceX Falcon 9 landing leg. Credit: SpaceX

To date SpaceX has completed two cargo resupply missions. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013.

The Falcon 9 and Dragon were privately developed by SpaceX with seed money from NASA in a public-private partnership.

The goal was to restore the cargo up mass capability the US completely lost following the retirement of NASA’s space shuttle orbiters in 2011.

SpaceX along with Orbital Sciences Corp are both partnered with NASA’s Commercial Resupply Services program.

Orbital Sciences developed the competing Antares rocket and Cygnus cargo spacecraft.

This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.

The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news – and upcoming launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida.  Credit: Ken Kremer/kenkremer.com
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch nearby SpaceX Mission Control at Cape Canaveral Air Force Station. Florida. Credit: Ken Kremer/kenkremer.com

Yutu Moon Rover Starts 3rd Night Time Hibernation But Technical Problems Persist

Chang’e-3/Yutu Timelapse Color Panorama This newly expanded timelapse composite view shows China’s Yutu moon rover at two positions passing by crater and heading south and away from the Chang’e-3 lunar landing site forever about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree timelapse panorama. See complete 360 degree landing site timelapse panorama herein and APOD Feb. 3, 2014. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

Chang’e-3/Yutu Timelapse Color Panorama
This newly expanded timelapse composite view shows China’s Yutu moon rover at two positions passing by crater and heading south and away from the Chang’e-3 landing site forever about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree timelapse panorama. See complete 360 degree landing site timelapse panorama herein and APOD Feb. 3, 2014. . Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.
See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm
Story updated[/caption]

The world famous and hugely popular ‘Yutu’ rover entered its 3rd Lunar night time hibernation period this weekend as planned, but serious technical troubles persist that are hampering science operations Chinese space managers confirmed.

“China’s lunar rover Yutu entered its third planned dormancy on Saturday, with the mechanical control issues that might cripple the vehicle still unresolved,” reports Xinhua, China’s official government news agency, in a mission status update newly released today (Feb. 23).

Yutu went to sleep on Saturday afternoon, Feb. 22, local Beijing time, according to China’s State Administration of Science, Technology and Industry for National Defence (SASTIND), responsible for the mission.

The companion Chang’e-3 lunar lander entered hibernation soon thereafter early today, Sunday, Feb 23.

See our new lunar panoramas by Ken Kremer and Marco Di Lorenzo herein and at NASA APOD on Feb. 3, 2014.

360-degree time-lapse color panorama from China’s Chang’e-3 lander. This new 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at five different positions, including passing by crater and heading south and away from the Chang’e-3 lunar landing site forever during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.  See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm
360-degree time-lapse color panorama from China’s Chang’e-3 lander
This new 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at five different positions, including passing by crater and heading south and away from the Chang’e-3 lunar landing site forever during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

Yutu first encountered a serious technical malfunction a month ago on Jan. 25, when she suffered ‘a mechanical control anomoly’ just prior to entering hibernation for the duration of Lunar Night 2.

The abnormality occurred due to the “complicated lunar surface,” according to SASTIND.

Mosaic of the Chang'e-3 moon lander and the lunar surface taken by the camera on China’s Yutu moon rover from a position south of the lander.   Note the landing ramp and rover tracks at left.  Credit: CNSA/SASTIND/Xinhua/Marco Di Lorenzo/Ken Kremer
Chang’e-3 lander from Yutu moon rover
New mosaic of the Chang’e-3 moon lander and the lunar surface taken by the camera on China’s Yutu moon rover from a position south of the lander. Note the landing ramp and rover tracks at left. Credit: CNSA/SASTIND/Xinhua/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Chinese space officials have not divulged the exact nature of the problems. And they have not released any details of the efforts to resolve the issues that “might cripple the vehicle.”

Since both Chinese Moon probes are solar powered, they must power down and enter a dormant mode during every two week long lunar night period when there is no sunlight to generate energy from their solar arrays. And no communications with Earth are possible.

The rover, nicknamed ‘Jade Rabbit’ remained stationary during the just concluded two week long lunar day time period, said SASTIND. It was unable to move due to the mechanical glitches.

“Yutu only carried out fixed point observations during its third lunar day.”

But it did complete some limited scientific observations. And fortunately the ground penetrating radar, panoramic and infrared imaging equipment are functioning normally.

This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from the 360-degree panorama. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo.   See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014:  http://apod.nasa.gov/apod/ap140203.htm
This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from the 360-degree panorama. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo. See our complete Yutu timelapse pano herein and at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

The six wheel robot’s future was placed in jeopardy after it suffered the “mechanical anomaly” in late January 2014 and then awoke later than the scheduled time on Feb. 10, at the start of its 3rd Lunar Day.

To the teams enormous relief, a signal was finally detected.

“Yutu has come back to life!” said Pei Zhaoyu, the spokesperson for China’s lunar probe program, according to a Feb. 12 news report by the state owned Xinhua news agency.

“Experts are still working to verify the causes of its mechanical control abnormality.”

360-degree time-lapse color panorama from China’s Chang’e-3 lander This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.  See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm
360-degree time-lapse color panorama from China’s Chang’e-3 lander
This 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at three different positions during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

Since then, Chinese space engineers sought to troubleshoot the technical problems and were in a race against time to find a solution before the start of Lunar Night 3 this weekend.

“Experts had feared that it might never function again, but Yutu “woke up” on Feb. 12, two days behind schedule,” reported Xinhua.

Each lunar day and night lasts for alternating periods of 14 Earth days.

During each long night, the Moon’s temperatures plunge dramatically to below minus 180 Celsius, or minus 292 degrees Fahrenheit.

Both solar powered probes must enter hibernation mode during each lunar night to conserve energy and protect their science instruments and control mechanisms, computers and electronics.

“Scientists are still trying to find a fix for the abnormalities,” said CCTV, China’s official state television network.

So Yutu is now sleeping with the problems unresolved and no one knows what the future holds.

Hopefully Jade Rabbit awakes again in about two weeks time to see the start of Lunar Day 4.

The Chang’e-3 mothership lander and piggybacked Yutu surface rover soft landed on the Moon on Dec. 14, 2013 at Mare Imbrium (Sea of Rains) – marking China’s first successful spacecraft landings on an extraterrestrial body in history.

Snow Moon 2014 showing where China’s Yutu rover lives and works on lunar surface, at upper left.  Photo: Mark Usciak.  Annotation: Ken Kremer
Snow Moon 2014 showing where China’s Yutu rover lives and works on lunar surface, at upper left. Photo: Mark Usciak. Annotation: Ken Kremer

‘Jade Rabbit’ had departed the landing site forever, and was journeying southwards as the anomoly occurred – about six weeks into its planned 3 month long moon roving expedition to investigate the moon’s surface composition and natural resources.

The 140 kg Yutu robot is located some 100 m south of the lander.

The 1200 kg stationary lander is expected to return science data about the Moon and conduct telescopic observations of the Earth and celestial objects for at least one year.

Chang’e-3 and Yutu landed on a thick deposit of volcanic material.

Landing site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013.
Landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more planetary and human spaceflight news.

Ken Kremer

Chang’e-3 lander and Yutu rover – from Above And Below  Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander color panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander color panorama shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson
Chang’e-3 lander and Yutu rover – from Above And Below Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander color panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander color panorama shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson
Traverse Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang'e 3 imagery from space and ground.  Credit: CNSA/BACC
Traverse Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang’e 3 imagery from space and ground. Credit: CNSA/BACC

Powerful New Next-Gen US/Japan GPM Satellite to Revolutionize Global Precipitation Observations and Climate Science Research

NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center, MD. Technicians at work on final processing during exclusive up-close inspection tour by Universe Today. GPM is slated to launch on February 27, 2014 and will provide global measurements of rain and snow every 3 hours. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MARYLAND – Weather researchers and forecasters worldwide are gushing with excitement in the final days leading to blastoff of the powerful, new Global Precipitation Measurement (GPM) Core Observatory – built by NASA in a joint effort with Japan.

GPM is a next-generation satellite that will provide global, near real time observations of rain and snow from space and thereby open a new revolutionary era in global weather observing and climate science. Therefore it will have a direct impact on society and people’s daily lives worldwide.

The team is counting down to liftoff in less than 5 days, on Feb. 27 at 1:07 PM EST from the Tanegashima Space Center, on Tanegashima Island off southern Japan, atop the highly reliable Mitsubishi Heavy Industries H-IIA rocket.

The GPM launch to low Earth orbit was delayed by both natural and manmade disasters – namely the 2011 Fukushima earthquake in Japan as well as the ridiculous US government shutdown in Oct. 2013. That’s the same foolish shutdown that also delayed NASA’s new MAVEN Mars orbiter and numerous other US space & science projects.

Visualization of the GPM Core Observatory satellite orbiting the planet earth.  Credit: NASA Goddard
Visualization of the GPM Core Observatory satellite orbiting the planet earth. Credit: NASA Goddard

The $933 Million mission is a joint venture between NASA and the Japan Aerospace Exploration Agency (JAXA), Japan’s space agency.

The mission will significantly advance our understanding of Earth’s water and energy cycles and improve forecasting of extreme weather events.

It is equipped with an advanced, higher resolution dual -frequency precipitation (DPR) radar instrument (Ku and Ka band) built by JAXA in Japan and the GPM microwave imager (GMI) built by Ball Aerospace in the US.

“The GPM satellite was built in house at NASA’s Goddard Space Flight Center in Maryland,” Art Azarbarzin, GPM project manager, told Universe Today during my exclusive up-close clean room inspection tour of the huge satellite as final processing was underway.

Global Precipitation Management Measurement (GPM) observatory satellite inside the clean room at NASA Goddard Space Flight Center undergoes final processing - side view. Credit: Ken Kremer/kenkremer.com
Global Precipitation Measurement (GPM) observatory satellite inside the clean room at NASA Goddard Space Flight Center undergoes final processing – side view. Credit: Ken Kremer/kenkremer.com

Shortly after my tour of GPM, the 3850 kilogram satellite was carefully packed up for shipment to the Japanese launch site.

“GPM will join a worldwide constellation of current and planned satellites,” Azarbarzin told me during an interview in the Goddard cleanroom with GPM.

gpm-decal-smallAnd the imminent launch to augment the existing satellite constellation can’t come soon enough, he noted.

The GPM observatory will replace the aging NASA/JAXA Tropical Rainfall Measuring Mission (TRMM), satellite launched back in 1997.

“GPM is the direct follow-up to the currently orbiting TRMM satellite,” Azarbarzin explained.

“TRMM is reaching the end of its usable lifetime. GPM launches on February 27, 2014 and we hope it has some overlap with observations from TRMM.”

“The Global Precipitation Measurement (GPM) observatory will provide high resolution global measurements of rain and snow every 3 hours,” Dalia Kirschbaum, GPM research scientist, told me during an interview at Goddard.

NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center, MD. Technicians at work on final processing during exclusive up-close inspection tour by Universe Today.  GPM is slated to launch on February 27, 2014 and will provide global measurements of rain and snow every 3 hours. Credit: Ken Kremer/kenkremer.com
NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center, MD. Technicians at work on final processing during exclusive up-close inspection tour by Universe Today. GPM is slated to launch on February 27, 2014 and will provide global measurements of rain and snow every 3 hours. Credit: Ken Kremer/kenkremer.com

It is vital to continuing the TRMM measurements and will help provide improved forecasts and advance warning of extreme super storms like Hurricane Sandy and Super Typhoon Haiyan, Azarbarzin and Kirschbaum explained.

Researchers will use the GPM measurements to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.

“The water-cycle, so familiar to all school-age young scientists, is one of the most interesting, dynamic, and important elements in our studies of the Earth’s weather and climate,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, in a statement.

“GPM will provide scientists and forecasters critical information to help us understand and cope with future extreme weather events and fresh water resources.”

Tanegashima Space Center, on Tanegashima Island off southern Japan
GPM satellite launch site at Tanegashima Space Center, Tanegashima Island, Japan. Credit: NASA

NASA TV will carry the launch live with commentary starting at 12 Noon EST on Feb. 27.

Stay tuned here for Ken’s continuing GPM reports and onsite coverage at NASA Goddard Space Flight Center in Maryland.

And watch for Ken’s continuing planetary and human spaceflight news about Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars, Orion and more.

Ken Kremer

NASA/JAXA Global Precipitation Measurement (GPM) satellite inside the clean room at NASA Goddard Space Flight Center, MD, undergoes final processing during exclusive up-close inspection tour by Universe Today:   Dr. Art Azarbarzin/NASA GPM project manager, Dr. Ken Kremer/Universe Today and Dr. Dalia Kirschbaum/NASA GPM research scientist.    Credit: Ken Kremer/kenkremer.com
NASA/JAXA Global Precipitation Measurement (GPM) satellite inside the clean room at NASA Goddard Space Flight Center, MD, undergoes final processing during exclusive up-close inspection tour by Universe Today: Dr. Art Azarbarzin/NASA GPM project manager, Dr. Ken Kremer/Universe Today and Dr. Dalia Kirschbaum/NASA GPM research scientist. Credit: Ken Kremer/kenkremer.com

Dale Gardner, Astronaut Who Rescued A Satellite With A Jetpack, Dead At 65

Dale Gardner (left) prior to the launch of STS-8 in 1983, along with the rest of his crew. Moving left, Guy Bluford, Bill Thornton, Daniel Brandenstein and Dick Truly. Credit: NASA

When Dale Gardner smiled for this preflight picture somewhere around 1983, there was another mission on his horizon: picking up a broken satellite … using a jet backpack. And while we believe that all astronauts have an element of derring-do to them, strapping on a device to bring you away from the shuttle’s safety must have taken a special kind of confidence in your equipment.

Gardner, who died Wednesday (Feb. 18) of a brain aneurysm at the age of 65, was one of a handful of astronauts who used the Manned Maneuvering Unit. In his case, it was to retrieve the malfunctioning Westar 6 satellite. Listen to his account of the story (around 9:25 here), however, and you’ll hear a man more focused on favorable sun angles and learning from the experience of another crewmate on STS-51A.

“I essentially just had a lot of fun on Flight Day 7,” he said in the video. And as the sequence of pictures below shows you, technical as the procedure was, the view must have been breathtaking.

Sequence of images showing NASA astronaut Dale Gardner approaching and capturing the malfunctioning Westar 6 satellite in 1984 during STS-51A. Click for a larger version. Credit: NASA (images) / Elizabeth Howell (photo combination)
Sequence of images showing NASA astronaut Dale Gardner approaching and capturing the malfunctioning Westar 6 satellite in 1984 during STS-51A. Click for a larger version. Credit: NASA (images) / Elizabeth Howell (photo combination)

Gardner, who was born in Minnesota, joined the U.S. Navy after graduating from the University of Illinois in 1970. He earned his wings the following year, then made his way through assignments to the prestigious Naval Air Test Center in Patuxent River, Maryland (the training ground for many future astronauts).

There, he participated in the development and evaluation of the Grumman F-14 Tomcat, an aircraft eventually used in Operation Desert Storm in the 1990s, among many other missions. Gardner was in fact part of the first F-14 squadron from none other than the USS Enterprise (the aircraft carrier, not the Star Trek ship.)

Gardner came to NASA as part of an immense astronaut class in 1978 that was later known as the “Thirty-Five New Guys” (which, it should be noted, also included six women, a first for the agency). With shuttle flights about to begin — a program that was then expected to launch dozens of flights a year — there appeared to be plenty of room for new recruits. Gardner’s first space-based assignment came upon STS-8, which flew in 1983 to deploy an Indian satellite called Insat-1B.

But it was for STS-51A’s eight-day mission in November 1984 where Gardner will be best remembered, because he did this:

NASA astronaut Dale Gardner captures the malfunctioning Westar 6 satellite during STS-51A in 1984. Gardner was using the Manned Maneuvering Unit, a sort of space backpack that was discontinued for astronaut use after the Challenger explosion of 1986. Credit: NASA
NASA astronaut Dale Gardner captures the malfunctioning Westar 6 satellite during STS-51A in 1984. Gardner was using the Manned Maneuvering Unit, a sort of space backpack that was discontinued for astronaut use after the Challenger explosion of 1986. Credit: NASA

The shuttle mission was packed with satellite activity, with crew members deploying the Canadian communications satellite Anik D2, and U.S. defense communications satellite Leasat-1. Then it was time to pick up a couple of broken satellites to haul back to Earth.

Using a sort of grapple tool and his MMU, Joe Allen successfully retrieved Palapa-B2 on Flight Day 5. After Allen told his crewmates that he had some trouble with the sun in his eyes, Gardner used that information on his own MMU trip to pick up Westar 6 two days later. Specifically, Gardner and the crew had him approach in such a way that the shadow of the satellite fell across the astronaut, stopping the sun glare from becoming a problem.

NASA astronaut Dale Gardner holds a "For Sale" sign during STS-51A in 1984, referring to two satellites captured and retrieved on that mission. Credit: NASA
NASA astronaut Dale Gardner holds a “For Sale” sign during STS-51A in 1984, referring to two satellites captured and retrieved on that mission. Credit: NASA

Both satellites had been in improper orbits due to problems with motors, but Gardner and his crew nabbed them safely for a return back to Earth, allowing insurers to resell the satellites for separate launches in 1990. But Gardner had a parting gotcha before handing them back: he held up a “For Sale” sign that you’ve likely seen reprinted somewhere, as it’s among the most famous shots of the shuttle program.

Gardner returned to the Navy in October 1986 (almost a year after the shuttle Challenger explosion), where he joined U.S. Space Command and held several senior positions. He retired from the Navy in 1990 to work in the private sector.

His death this week from a brain aneurysm was said to be sudden, and prompted a Twitter comment from the Association of Space Explorers saying that it was “devastating news.”

Martian Dune Buggy Curiosity Adopts New Driving Mode to Save Wheels from Rough Rocks

Curiosity looks back eastward to ‘Dingo Gap’ sand dune inside Gale Crater. After crossing over the 3 foot (1 meter) tall dune on Sol 539, Feb. 9, 2014 the rover drove westward into the ‘Moonlight Valley’. The parallel rover wheel tracks are 9 feet (2.7 meters) apart. Assembled from Sol 539 colorized navcam raw images. Credit: NASA/JPL/ Ken Kremer- kenkremer.com/Marco Di Lorenzo

Curiosity looks back eastward to ‘Dingo Gap’ sand dune inside Gale Crater
After crossing over the 3 foot (1 meter) tall dune on Sol 539, Feb. 9, 2014 the rover drove westward into the ‘Moonlight Valley’. The parallel rover wheel tracks are 9 feet (2.7 meters) apart. Assembled from Sol 539 colorized navcam raw images. Credit: NASA/JPL/ Ken Kremer- kenkremer.com/Marco Di Lorenzo
See Dune and Wheel mosaics below – Story updated [/caption]

The team directing the epic trek of NASA’s Curiosity rover across the floor of Gale Crater has adopted new driving strategies and a new way forward in response to the unexpected wheel damage caused by driving over fields of rough edged Red Planet rocks in recent months.

This week, engineers directed dune buggy Curiosity to drive backwards for a lengthy distance over the Martian surface for the first time since landing.

The SUV sized vehicle apparently passed the reverse driving feasibility test with flying colors and is now well on the way to the exciting journey ahead aiming for the sedimentary layers at the base of towering Mount Sharp – the primary mission destination – which reaches 3.4 miles (5.5 km) into the Martian sky and possesses water altered minerals.

“We wanted to have backwards driving in our validated toolkit because there will be parts of our route that will be more challenging,” said Curiosity Project Manager Jim Erickson of NASA’s Jet Propulsion Laboratory, Pasadena, Calif, in a statement.

On Tuesday, Feb. 18, Curiosity not only drove in reverse, but the 329 feet (100.3 meters) distance covered marked her farthest one-day advance in over three months.

And she is also now roving over the much sought after smoother Martian terrain, as hoped, when the team decided to alter the traverse route based on high resolution imaging observations collected by the telescopic camera on NASA’s Mars Reconnaissance Orbiter (MRO) circling overhead.

The goal is to minimize wear and tear on the 20 inch diameter wheels.

This map shows the route driven and route planned for NASA's Curiosity Mars rover from before reaching "Dingo Gap" -- in upper right -- to the mission's next science waypoint, "Kimberley" (formerly referred to as "KMS-9") -- in lower left.   Credit: NASA/JPL-Caltech/Univ. of Arizona
This map shows the route driven and route planned for NASA’s Curiosity Mars rover from before reaching “Dingo Gap” — in upper right — to the mission’s next science waypoint, “Kimberley” (formerly referred to as “KMS-9”) — in lower left. Credit: NASA/JPL-Caltech/Univ. of Arizona

Engineers were forced to devise new driving techniques and consider a new route forward after the aluminum wheels accumulated significant punctures and rips during the past few months of driving over fields strewn with sharp edged Martian rocks.

“We have changed our focus to look at the big picture for getting to the slopes of Mount Sharp, assessing different potential routes and different entry points to the destination area,” Erickson said.

“No route will be perfect; we need to figure out the best of the imperfect ones.”

But to reach the smooth terrain and the science rich targets located on the pathway ahead, the six wheeled rover first had to pass through a gateway known as the ‘Dingo Gap’ sand dune.

Curiosity’s View Past Tall Dune at edge of ‘Dingo Gap’  This photomosaic from Curiosity’s Navigation Camera (Navcam) taken at the edge of the entrance to the Dingo Gap shows a 3 foot (1 meter) tall dune and valley terrain beyond to the west, all dramatically back dropped by eroded rim of Gale Crater. View from the rover’s current position on Sol 528 (Jan. 30, 2014). The rover team may decide soon whether Curiosity will bridge the dune gap as a smoother path to next science destination. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Curiosity’s View Past Tall Dune at edge of ‘Dingo Gap’
This photomosaic from Curiosity’s Navigation Camera (Navcam) taken at the edge of the entrance to the Dingo Gap shows a 3 foot (1 meter) tall dune and valley terrain beyond to the west, all dramatically back dropped by eroded rim of Gale Crater. View from the rover’s current position on Sol 528 (Jan. 30, 2014). The rover team may decide soon whether Curiosity will bridge the dune gap as a smoother path to next science destination. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer- kenkremer.com

“Moonlight Valley” is the name of the breathtaking new locale beyond Dingo, Curiosity Principal Investigator John Grotzinger, of Caltech, told Universe Today.

Curiosity crossed through the 3 foot (1 meter) tall Dingo Gap sand dune with ease on Feb. 9 and roved on to targets in the “Moonlight Valley” and the region beyond.

“Moonlight Valley has got lots of veins cutting through it,” Grotzinger told me.

“We’re seeing recessive bedrock.”

Curiosity scans Moonlight Valley beyond Dingo Gap Dune. Curiosity’s view to “Moonlight Valley” beyond after crossing over ‘Dingo Gap’ sand dune. This photomosaic was taken after Curiosity drove over the 1 meter tall Dingo Gap sand dune and shows dramatic scenery in the valley beyond, back dropped by eroded rim of Gale Crater. Assembled from navigation camera (navcam) raw images from Sol 535 (Feb. 6, 2104) Credit: NASA/JPL-Caltech/Ken Kremer- kenkremer.com/Marco Di Lorenzo
Curiosity scans Moonlight Valley beyond Dingo Gap Dune. Curiosity’s view to “Moonlight Valley” beyond after crossing over ‘Dingo Gap’ sand dune. This photomosaic was taken after Curiosity drove over the 1 meter tall Dingo Gap sand dune and shows dramatic scenery in the valley beyond, back dropped by eroded rim of Gale Crater. Assembled from navigation camera (navcam) raw images from Sol 535 (Feb. 6, 2104) Credit: NASA/JPL-Caltech/Ken Kremer- kenkremer.com/Marco Di Lorenzo

Since passing through the Dingo Gap gateway, Curiosity has traveled another 937 feet (285.5 meters) for a total mission odometry of 3.24 miles (5.21 kilometers) since the nail biting landing on Aug. 6, 2012.

“After we got over the dune, we began driving in terrain that looks like what we expected based on the orbital data. There are fewer sharp rocks, many of them are loose, and in most places there’s a little bit of sand cushioning the vehicle,” Erickson said.

Curiosity looks back to ‘Dingo Gap’ sand dune after crossing over, backdropped by Mount Sharp on Sol 540, Feb. 12, 2014.  Rear hazcam fisheye image linearized and colorized.  Credit: NASA/JPL/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Curiosity looks back to ‘Dingo Gap’ sand dune after crossing over, backdropped by Mount Sharp on Sol 540, Feb. 12, 2014. Rear hazcam fisheye image linearized and colorized. Credit: NASA/JPL/Marco Di Lorenzo/Ken Kremer- kenkremer.com

Curiosity’s near term goal is to reach her next science waypoint, named Kimberly (formerly called KMS-9) which lies about two-thirds of a mile (about 1.1 kilometers) ahead.

Kimberly is of interest to the science team because it sits at an the intersection of different rock layers.

The 1 ton robot may be directed to drill into another rock at Kimberly.

If approved, Kimberly would be her first since drilling operation since boring into Cumberland rock target last spring and since departing the Yellowknife Bay region in July 2013 where she discovered a habitable zone.

Curiosity looks back to ‘Dingo Gap’ sand dune after crossing over, backdropped by Mount Sharp on Sol 535, Feb. 5, 2014.  Hazcam fisheye image linearized and colorized.  Credit: NASA/JPL/Marco Di Lorenzo/Ken Kremer- kenkremer.
Curiosity looks back to ‘Dingo Gap’ sand dune after crossing over, backdropped by Mount Sharp on Sol 535, Feb. 5, 2014. Hazcam fisheye image linearized and colorized. Credit: NASA/JPL/Marco Di Lorenzo/Ken Kremer- kenkremer

To date Curiosity’s odometer stands at 5.2 kilometers and she has taken over 118,000 images. The robot has about another 5 km to go to reach the foothills of Mount Sharp.

Meanwhile, NASA’s sister Opportunity rover was just imaged from orbit by MRO while exploring clay mineral outcrops by the summit of Solander Point on the opposite side of Mars at the start of her 2nd Decade investigating the Red Planet’s mysteries.

And a pair of new orbiters are streaking to the Red Planet to fortify Earth’s invasion fleet- NASA’s MAVEN and India’s MOM.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

Up close photomosaic view shows lengthy tear in rover Curiosity’s left front wheel caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Jan. 31, 2014 (Sol 529) were assembled to show some recent damage to several of its six wheels   Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com  See below complete 6 wheel mosaic and further wheel mosaics for comparison
Up close photomosaic view shows lengthy tear in rover Curiosity’s left front wheel caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Jan. 31, 2014 (Sol 529) were assembled to show some recent damage to several of its six wheels Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

Opportunity rover Spied atop Martian Mountain Ridge from Orbit – Views from Above and Below

Opportunity Rover on 'Murray Ridge' Seen From Orbit on Valentine’s Day 2014 . The telescopic High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter caught this view of NASA's Mars Exploration Rover Opportunity on Feb. 14, 2014 by the summit of Solander Point. The red arrow points to Opportunity at the center of the image. Blue arrows point to tracks left by the rover since it entered the area seen here, in October 2013. The scene covers a patch of ground about one-quarter mile (about 400 meters) wide. North is toward the top. The location is the "Murray Ridge" section of the western rim of Endeavour Crater. Credit: NASA/JPL-Caltech/Univ. of Arizona

Opportunity Rover on ‘Murray Ridge’ Seen From Orbit on Valentine’s Day 2014
The telescopic High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter caught this view of NASA’s Mars Exploration Rover Opportunity on Feb. 14, 2014 by the summit of Solander Point. The red arrow points to Opportunity at the center of the image. Blue arrows point to tracks left by the rover since it entered the area seen here, in October 2013. The scene covers a patch of ground about one-quarter mile (about 400 meters) wide. North is toward the top. The location is the “Murray Ridge” section of the western rim of Endeavour Crater. Credit: NASA/JPL-Caltech/Univ. of Arizona
See below corresponding surface view snapped by Opportunity from this location[/caption]

NASA’s renowned Mars rover Opportunity has been spied anew in a fabulous new photo captured just days ago by NASA’s ‘Spy in the Sky’ orbiter circling overhead the Red Planet. See Opportunity from above and below – from today’s location. See orbital view above – just released today.

The highly detailed image was freshly taken on Feb. 14 (Valentine’s Day 2014) by the telescopic High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter (MRO) as the decade old Opportunity was investigating the tasty alien terrain on ‘Murray Ridge’ – nearby the celebrated ‘jelly doughnut’ rock by the summit of Solander Point. See surface views below.

The fabulous orbital image shows not only rover Opportunity at her location today, but also the breathtaking landscape around the robots current location as well as some of the wheel tracks created by the Martian mountaineer as she climbed from the plains below up to near the peak of Solander Point.

The scene is narrowly focused on a spot barely one-quarter mile (400 meters) wide.

Murray Ridge and Solander Point lie at the western rim of a vast crater named Endeavour that spans some 22 kilometers (14 miles) in diameter.

Here is the corresponding Martian surface view snapped by Opportunity on Feb. 16, 2014 (looking back and down to Endeavour crater), while she’s being imaged from Mars orbit on Feb. 14, 2014:

NASA’s Opportunity rover was imaged here from Mars orbit by MRO HiRISE camera on Feb. 14, 2014.  This mosaic shows Opportunity’s view today while looking back to vast Endeavour crater from atop Murray Ridge by summit of Solander Point.  Opportunity captured this photomosaic view on Feb. 16, 2014 (Sol 3579) from the western rim of Endeavour Crater where she is investigating outcrops of potential clay minerals formed in liquid water.  Assembled from Sol 3579 colorized navcam raw images.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity rover was imaged here from Mars orbit by MRO HiRISE camera on Feb. 14, 2014. This mosaic shows Opportunity’s view today while looking back to vast Endeavour crater from atop Murray Ridge by summit of Solander Point. Opportunity captured this photomosaic view on Feb. 16, 2014 (Sol 3579) from the western rim of Endeavour Crater where she is investigating outcrops of potential clay minerals formed in liquid water. Assembled from Sol 3579 colorized navcam raw images. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Endeavour is an impact scar created billions of years ago. See our 10 Year Opportunity traverse map below.

And believe it or not, that infamous ‘jelly doughnut’ rock was actually the impetus for this new imaging campaign by NASA’s MRO Martian ‘Spysat.’

To help solve the mystery of the origin of the shiny 1.5 inches wide (4 centimeters) ‘jelly doughnut’ rock, dubbed ‘Pinnacle Island’, the science team decided to enlist the unparalleled capabilities of the HiRISE camera and imaging team in pursuit of answers.

Opportunity by Solander Point peak – 2nd Mars Decade Starts here!  NASA’s Opportunity rover captured this panoramic mosaic on Dec. 10, 2013 (Sol 3512) near the summit of “Solander Point” on the western rim of Endeavour Crater where she starts Decade 2 on the Red Planet. She is currently investigating outcrops of potential clay minerals formed in liquid water on her 1st mountain climbing adventure. Assembled from Sol 3512 navcam raw images. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Opportunity by Solander Point peak – 2nd Mars Decade Starts here!
NASA’s Opportunity rover captured this panoramic mosaic on Dec. 10, 2013 (Sol 3512) near the summit of “Solander Point” on the western rim of Endeavour Crater where she starts Decade 2 on the Red Planet. She is currently investigating outcrops of potential clay minerals formed in liquid water on her 1st mountain climbing adventure. Assembled from Sol 3512 navcam raw images. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

‘Pinnacle Island’ had suddenly appeared out of nowhere in a set of before/after pictures taken by Opportunity’s cameras on Jan, 8, 2014 (Sol 3540), whereas that exact same spot had been vacant of debris in photos taken barely 4 days earlier. And the rover hadn’t budged a single millimeter.

So the HiRISE research team was called in to plan a new high resolution observation of the ‘Murray Ridge’ area and gather clues about the rocky riddle.

The purpose was to “check the remote possibility that a fresh impact by an object from space might have excavated a crater near Opportunity and thrown this rock to its new location”- now known as Pinnacle Island, said NASA in a statement.

Well, no fresh crater impacting site was found in the new image.

“We see no obvious signs of a very recent crater in our image, but a careful comparison to prior images might reveal subtle changes,” wrote HiRISE principal investigator Alfred McEwen in a description today.

Back on sol 3365 we took this image of Solander Point as we approached it. Here I have plotted the subsequent route that Opportunity has taken in climbing up the ridge. The outcrop shown I the images below are near the end of the yellow traverse line.  Caption and mosaic by Larry Crumpler/NASA/JPL/
Back on sol 3365 we took this image of Solander Point as we approached it. Here I have plotted the subsequent route that Opportunity has taken in climbing up the ridge. The outcrop shown I the images below are near the end of the yellow traverse line. Caption and mosaic by Larry Crumpler/NASA/JPL/

In the meantime, as I reported here a few days ago the mystery was solved at last by the rover team after Opportunity drove a short distance away from the ‘jelly doughnut’ rock and snapped some ‘look back’ photographs to document the ‘mysterious scene’ for further scrutiny.

It turns out that the six wheeled Opportunity unknowingly ‘created’ the mystery herself when she drove over a larger rock, crushing and breaking it apart with the force from the wheels and her hefty 400 pound (185 kg) mass.

“Once we moved Opportunity a short distance, after inspecting Pinnacle Island, we could see directly uphill an overturned rock that has the same unusual appearance,” said Opportunity Deputy Principal Investigator Ray Arvidson of Washington University in St. Louis, in a NASA statement.

“Murray Ridge” and the Solander Point mountaintop are of great scientific interest because the region is riven with outcrops of minerals, including clay minerals, that likely formed in flowing liquid neutral water conducive to life – potentially a scientific goldmine.

Today, Feb 19, marks Opportunity’s 3582nd Sol or Martian Day roving Mars. She is healthy with plenty of power.

So far she has snapped over 188,800 amazing images on the first overland expedition across the Red Planet.

Her total odometry stands at over 24.07 miles (38.73 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.

Opportunity by Solander Point peak – 2nd Mars Decade Starts here!  NASA’s Opportunity rover captured this panoramic mosaic on Dec. 10, 2013 (Sol 3512) near the summit of “Solander Point” on the western rim of vast Endeavour Crater where she starts Decade 2 on the Red Planet. She is currently investigating summit outcrops of potential clay minerals formed in liquid water on her 1st mountain climbing adventure. See wheel tracks at center and dust devil at right. Assembled from Sol 3512 navcam raw images. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Opportunity by Solander Point peak – 2nd Mars Decade Starts here!
NASA’s Opportunity rover captured this panoramic mosaic on Dec. 10, 2013 (Sol 3512) near the summit of “Solander Point” on the western rim of vast Endeavour Crater where she starts Decade 2 on the Red Planet. She is currently investigating summit outcrops of potential clay minerals formed in liquid water on her 1st mountain climbing adventure. See wheel tracks at center and dust devil at right. Assembled from Sol 3512 navcam raw images. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Read more about sister Spirit – here and here.

Meanwhile on the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp and just crested over the Dingo Gap sand dune. She celebrated 500 Sols on Mars on New Years Day 2014.

And a pair of new orbiters are streaking to the Red Planet to fortify Earth’s invasion fleet- NASA’s MAVEN and India’s MOM.

Finally, China’s Yutu rover has awoken for her 3rd workday on the Moon.

Stay tuned here for Ken’s continuing Opportunity, Curiosity, Chang’e-3, LADEE, MAVEN, Mars rover, MOM and continuing planetary and human spaceflight news.

Ken Kremer

This image from the panoramic camera (Pancam) on NASA’s rover Opportunity shows the location of a rock called "Pinnacle Island" before it appeared in front of the rover in early January 2014.  Arrow at lower left. This image was taken during Sol 3567 of Opportunity's work on Mars (Feb. 4, 2014).  Credit:  NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
This image from the panoramic camera (Pancam) on NASA’s rover Opportunity shows the location of a rock called “Pinnacle Island” before it appeared in front of the rover in early January 2014. Arrow at lower left. This image was taken during Sol 3567 of Opportunity’s work on Mars (Feb. 4, 2014). Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Traverse Map for NASA’s Opportunity rover from 2004 to 2014  This map shows the entire path the rover has driven during a decade on Mars and over 3560 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location by Solander Point summit at the western rim of Endeavour Crater. Rover will spend 6th winter here atop Solander. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer – kenkremer.com
Traverse Map for NASA’s Opportunity rover from 2004 to 2014
This map shows the entire path the rover has driven during a decade on Mars and over 3560 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location by Solander Point summit at the western rim of Endeavour Crater. Rover will spend 6th winter here atop Solander. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer – kenkremer.com
NASA’s Opportunity rover was imaged here from Mars orbit by MRO HiRISE camera on Feb. 14, 2014.  This mosaic shows Opportunity’s view today while looking back to vast Endeavour crater from atop Murray Ridge by summit of Solander Point.  Opportunity captured this photomosaic view on Feb. 16, 2014 (Sol 3579) from the western rim of Endeavour Crater where she is investigating outcrops of potential clay minerals formed in liquid water.  Assembled from Sol 3579 navcam raw images.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity rover was imaged here from Mars orbit by MRO HiRISE camera on Feb. 14, 2014. This mosaic shows Opportunity’s view today while looking back to vast Endeavour crater from atop Murray Ridge by summit of Solander Point. Opportunity captured this photomosaic view on Feb. 16, 2014 (Sol 3579) from the western rim of Endeavour Crater where she is investigating outcrops of potential clay minerals formed in liquid water. Assembled from Sol 3579 navcam raw images. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Gaping Inside The Huge Vehicle Assembly Building NASA Used For Space Shuttles And Moon Missions

The Vehicle Assembly Building at the Kennedy Space Center in Florida on Nov. 16, 2009, just hours before the launch of STS-129. Credit: Elizabeth Howell

ORLANDO, FLORIDA – There’s something about this city that brings out the crazy travel planner in me. I visited here four times betting a shuttle would launch, luckily winning on three occasions. I also once took an epic bus trip from here as far south as Fort Lauderdale before zooming back north, looking at space exhibits up and down the coast.

This time, it was to catch the Vehicle Assembly Building tour before it was gone. Tours inside the iconic, huge structure — best known as the spot where the Apollo rockets and space shuttle went through final assembly before going to the pad — are closing down on Sunday (Feb. 23). Warned by Ken Kremer and others that soon the public couldn’t get inside, I booked a ticket late last month after the announcement was made.

I came in search of the past, but what I saw instead was the future — an agency preparing to hand over a launch pad  to SpaceX, and at least part of an Orion spacecraft on the VAB floor, ready to be shipped to Langley, Virginia.

The floor of the Vehicle Assembly Building at the Kennedy Space Center in Florida during a tour in February 2014. At left is an Orion spacecraft prototype readied for shipping to Langley, Virginia. Credit: Elizabeth Howell
The floor of the Vehicle Assembly Building at the Kennedy Space Center in Florida during a tour in February 2014. At left is an Orion spacecraft prototype readied for shipping to Langley, Virginia. Credit: Elizabeth Howell
Atlantis suspended in the Vehicle Assembly Building during the shuttle era. Image credit: NASA
Atlantis suspended in the Vehicle Assembly Building during the shuttle era. Image credit: NASA

It’s hard to convey the size of one of the world’s largest buildings. It’s so big that it can form its own weather inside, without proper air conditioning. It stands almost twice as high as the Statue of Liberty, at 160 meters (525 feet) tall and 158 meters (518 feet) wide.

The 3.25-hectare (8-acre) building needed to be so huge to hold the 363-foot (111-meter) Apollo/Saturn vehicles in the 1960s and 1970s, and then was modified for use of the shuttle in the 1970s until just a few years ago.

What surprised me, however, was how narrow the main floor appeared. That’s because there are all of these catwalks on either side of the space for workers to get access to different parts of the spacecraft.

A view of scaffolding inside the Vehicle Assembly Building at the Kennedy Space Center in Florida. Photo taken in February 2014. Credit: Elizabeth Howell
A view of scaffolding inside the Vehicle Assembly Building at the Kennedy Space Center in Florida. Photo taken in February 2014. Credit: Elizabeth Howell

Tours of this building were off-limits between 1978 and 2011, when the shuttle program was launching its vehicles in earnest. After the program retired, however, NASA opened the VAB and nearby facilities (including the Launch Control Center and Launch Pad 39A) up to visitors. As these areas are now being used by contractors and the Orion/Space Launch System, however, the agency is closing down public access so the work of getting to space can continue.

As NASA prepares for a test of Orion later in 2014, the agency is also looking to lease out parts of the big building to commercial vendors. It appears negotiations for at least some of the high bays are ongoing.

Meanwhile, we were lucky enough to glimpse at least part of an Orion spacecraft prototype ready for shipping to Langley, Virginia, with about a dozen people busily milling around it as it lay on the back of a tractor trailer. It’s unclear to me how much of the spacecraft was inside that package, but our tour guide told us it was the whole thing. Yes, the truck looked really tiny in the big building.

An Orion prototype spacecraft in the Vehicle Assembly Building at the Kennedy Space Center in Florida, ready to be shipped to Langley, Virginia. Credit: Elizabeth Howell
An Orion prototype spacecraft in the Vehicle Assembly Building at the Kennedy Space Center in Florida, ready to be shipped to Langley, Virginia. Credit: Elizabeth Howell

Our group also had the chance to visit Launch Pad 39A, one of the two pads used in the Apollo program and also for shuttle. It was eerie to see the pad still in its shuttle configuration, complete with the clamshell-like structure that used to protect the vehicle from the weather until just prior to launch.

All that is going to be torn down for scrap shortly as SpaceX likely takes over the pad, our guide told us, and it’s unclear how long pad tours will continue. Likely those will be gone soon as well. Meanwhile, I took special delight standing in the “flame trench” where noxious chemicals from the launch used to flow. You certainly didn’t want to be close to this spot when a Saturn V or shuttle stack took off.

By the way, the first thing I thought of when I saw the huge pipes on the side of the picture below is the 1996 movie Apollo 13, which has a dramatic launch sequence that includes a neat pan across the coolant tubing. That’s about the time when I decided I wanted to see the VAB and launch pads, so it only took me 18 years to get out here.

Launch Pad 39A at the Kennedy Space Center, one of two locations where the shuttle went into space. Photo taken in February 2014. Credit: Elizabeth Howell
Launch Pad 39A at the Kennedy Space Center, one of two locations where the shuttle went into space. Photo taken in February 2014. Credit: Elizabeth Howell

Although these tours are likely changing or closing, these steps are to get the complex ready for manned launches again, if the current plan and funding holds as NASA hopes.

In the meantime, there are other things to see at the center. The picture at the top of this article shows the Vehicle Assembly Building just before the launch of STS-129, my first experience seeing a shuttle rocket into space.

That shuttle happened to be Atlantis, which today is handily displayed nearby in the KSC Visitor Complex. Weird, I thought, as I looked at the immense vehicle’s bulk. The last time I saw you in November 2009, you were on your way to orbit and making a lot of noise.

I wonder how much things will change at KSC in the next four years.

The Atlantis space shuttle at the Kennedy Space Center in Florida in February 2014. Credit: Elizabeth Howell
The Atlantis space shuttle at the Kennedy Space Center in Florida in February 2014. Credit: Elizabeth Howell