Columbia’s Demise 11 Years Ago Today Sparked Regular Shuttle Inspections In Space

A shower of foam debris after the impact on Columbia?s left wing. The event was not observed in real time. Credit: NASA

The Columbia’s shuttle fiery end came as the STS-107 astronauts’ families were waiting runway-side for everyone to come home. NASA’s oldest space shuttle broke up around 9 a.m. Eastern (2 p.m. UTC) on Feb. 1, 2003, scattering debris along east Texas and nearby areas. Its demise was captured on several amateur video cameras, many of which were rebroadcast on news networks.

In the next four months, some 20,000 volunteers fanned out across the southwest United States to find pieces of the shuttle, coming up with 85,000 pieces (38% of the shuttle) as well as human remains. Meanwhile, investigators quickly zeroed in on a piece of foam that fell off of Columbia’s external tank and struck the wing. A seven-month inquiry known as the Columbia Accident Investigation Board eventually yielded that as the ultimate cause of the shuttle’s demise, although there were other factors as well.

The disaster killed seven people: Rick Husband, Willie McCool, Michael Anderson, Kalpana Chawla, David Brown, Laurel Clark and Ilan Ramon (who was Israel’s first astronaut.) At a time when most shuttles were focused on building the International Space Station, this crew’s mandate was different: to spend 24 hours a day doing research experiments. Some of the work was recoverable from the crew’s 16 days in space.

Columbia’s demise brought about several design changes in the external tank as NASA zeroed in on “the foam problem.” NASA put in a new procedure in orbit for astronauts to scan the shuttle’s belly for broken tiles using the robotic Canadarm and video cameras; shuttles also flew to the International Space Station in such a way so that astronauts on station could take pictures of the bottom.

Return-to-flight mission STS-114 in July-August 2005 yielded more foam loss than expected. Then NASA found something. For a long time, workers at the Michoud Assembly Facility were blamed for improper foam installation after partial tests on external tanks, but an X-ray analysis on an entire tank (done for reasons that are explained in this blog post from then-shuttle manager Wayne Hale) revealed it was actually due to “thermal cycles associated with filling the tank.”

“Discovery flew on July 4, 2006; no significant foam loss occurred. I consider that to be the real return to flight for the space shuttle,” he wrote. “So were we stupid? Yes. Can you learn from our mistake? I hope so.”

The Columbia  crew. From the left: Mission Specialist David Brown, Commander Rick Husband, Mission Specialists Laurel Clark, Kalpana Chawla and Michael Anderson, Pilot William McCool and Payload Specialist Ilan Ramon. Credit: NASA.
The Columbia crew. From the left: Mission Specialist David Brown, Commander Rick Husband, Mission Specialists Laurel Clark, Kalpana Chawla and Michael Anderson, Pilot William McCool and Payload Specialist Ilan Ramon. Credit: NASA.

Spirit and Opportunity Top 10 Decade 1 Discoveries – Top Rover Scientist Tells Universe Today

Carbonate-Containing Martian Rocks discovered by Spirit Mars Rover. Spirit collected data in late 2005 which confirmed that the Comanche outcrop contains magnesium iron carbonate, a mineral indicating the past environment was wet and non-acidic, possibly favorable to life. This view was captured during Sol 689 on Mars (Dec. 11, 2005). The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds. Credit: NASA/JPL-Caltech/Cornell University

A Top 10 Decade 1 Discovery by NASA’s Twin Mars Exploration Rovers
Carbonate-Containing Martian Rocks discovered by Spirit Mars Rover
Spirit collected data in late 2005 which confirmed that the Comanche outcrop contains magnesium iron carbonate, a mineral indicating the past environment was wet and non-acidic, possibly favorable to life. This view was captured during Sol 689 on Mars (Dec. 11, 2005). The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers’ earlier finds. Credit: NASA/JPL-Caltech/Cornell University
Story updated[/caption]

January 2014 marks the 10th anniversary since the nail biting and history making safe landings of NASA’s renowned Mars Explorations Rovers – Spirit and Opportunity – on the Red Planet barely three weeks apart during January 2004.

Due to their completely unforeseen longevity, a decade of spectacular and groundbreaking scientific discoveries continuously flowed from the robot sisters that have graced many articles, magazine covers, books, documentaries and refereed scientific papers.

What are the Top 10 Decade 1 discoveries from Spirit and Opportunity?

Find out below what a top Mars rover team scientist told Universe Today!

Ray Arvidson, the rovers Deputy Principal Investigator and professor at Washington University in St. Louis, has kindly shared with me his personal list of the Top 10 discoveries from Spirit and Opportunity for the benefit of readers of Universe Today.

The Top 10 list below are Ray’s personal choices and does not necessarily reflect the consensus of the Mars Explorations Rover (MER) team.

First some background.

The dynamic duo were launched on their interplanetary voyages from Cape Canaveral Florida atop Delta II rockets during the summer of 2003.

The now legendary pair landed on opposite sides of the Red Planet. Spirit landed first on Jan. 3 inside Gusev Crater and twin sister Opportunity landed second on Jan. 24 on the dusty plains of Meridiani Planum.

A Moment Frozen in Time On May 19th, 2005, NASA's Mars Exploration Rover Spirit captured this stunning view as the Sun sank below the rim of Gusev crater on Mars. This Panoramic Camera (Pancam) mosaic was taken around 6:07 in the evening of Sol 489. The terrain in the foreground is the rock outcrop "Jibsheet," a feature that Spirit has been investigating for several weeks (rover tracks are dimly visible leading up to "Jibsheet"). The floor of Gusev crater is visible in the distance, and the Sun is setting behind the wall of Gusev some 80 km (50 miles) in the distance. Credit: NASA/JPL-Caltech/Texas A&M/Cornell
A Moment Frozen in Time
On May 19th, 2005, NASA’s Mars Exploration Rover Spirit captured this stunning view as the Sun sank below the rim of Gusev crater on Mars. This Panoramic Camera (Pancam) mosaic was taken around 6:07 in the evening of Sol 489. The terrain in the foreground is the rock outcrop “Jibsheet,” a feature that Spirit has been investigating for several weeks (rover tracks are dimly visible leading up to “Jibsheet”). The floor of Gusev crater is visible in the distance, and the Sun is setting behind the wall of Gusev some 80 km (50 miles) in the distance. Credit: NASA/JPL-Caltech/Texas A&M/Cornell

The goal was to “follow the water” as a potential enabler for past Martian microbes if they ever existed.

Together, the long-lived, golf cart sized robots proved that early Mars was warm and wet, billions of years ago – a key finding in the search for habitats conducive to life beyond Earth.

The solar powered robo duo were expected to last a mere three months – with a ‘warrenty’ of 90 Martian days (Sols).

Spirit endured the utterly extreme Red Planet climate for more than six years until communications ceased in 2010.

Last View from Spirit rover on Mars.  Spirit’s last panorama from Gusev Crater was taken during February 2010 before her death from extremely low temperatures during her 4th Martian winter.  Spirit was just 500 feet from her next science target - dubbed Von Braun – at center, with Columbia Hills as backdrop.  Mosaic Credit: Marco Di Lorenzo/ Kenneth Kremer/ NASA/JPL/Cornell University.  Mosaic featured on Astronomy Picture of the Day (APOD) on 30 May 2011 - http://apod.nasa.gov/apod/ap110530.html
Last View from Spirit rover on Mars
Spirit’s last panorama from Gusev Crater was taken during February 2010 before her death from extremely low temperatures during her 4th Martian winter. Spirit was just 500 feet from her next science target – dubbed Von Braun – at center, with Columbia Hills as backdrop. Mosaic Credit: Marco Di Lorenzo/ Kenneth Kremer/ NASA/JPL/Cornell University.
Mosaic featured on Astronomy Picture of the Day (APOD) on 30 May 2011 – http://apod.nasa.gov/apod/ap110530.html

Opportunity lives on TODAY and is currently exploring by the summit of Solander Point on the western rim of a vast crater named Endeavour that spans some 22 kilometers (14 miles) in diameter.

“Because of the rovers’ longevity, we essentially got four different landing sites for the price of two,” says the rovers’ Principal Investigator, Steve Squyres of Cornell University, Ithaca, N.Y.

Here are the Top 10 MER discoveries from Ray Arvidson, Deputy Principal Investigator

1. Opportunity: Ancient Acidic Martian Lakes

The Meridiani plains Burns formation as sulfate-rich sandstones with hematitic concretions formed in ancient acidic and oxidizing shallow lakes and reworked into sand dunes and cemented by rising groundwaters.

'Burns Cliff' Color Panorama Opportunity captured this view of "Burns Cliff" after driving right to the base of this southeastern portion of the inner wall of "Endurance Crater." The view combines frames taken by Opportunity's panoramic camera between the rover's 287th and 294th martian days (Nov. 13 to 20, 2004). The mosaic spans more than 180 degrees side to side. Credit: NASA/JPL-Caltech/Cornell
‘Burns Cliff’ Color Panorama Opportunity captured this view of “Burns Cliff” after driving right to the base of this southeastern portion of the inner wall of “Endurance Crater.” The view combines frames taken by Opportunity’s panoramic camera between the rover’s 287th and 294th martian days (Nov. 13 to 20, 2004). The mosaic spans more than 180 degrees side to side. Credit: NASA/JPL-Caltech/Cornell

2. Opportunity: Phyllosilicate Clays at ‘Whitewater Lake’ at Endeavour Crater indicate Ancient Habitable Zone

At the rim of Endeavour crater and the Cape York rim segment the discovery of ferric and aluminous smectite [phyllosilicate] clays in the finely-layered Matijevic formation rocks that pre-exist the Endeavour impact event.

Pancam false-color view acquired on Sol 3066 (Sept. 8 2012) of fine-scale layering in the Whitewater Lake locality that is indicative of an ancient aqueous environment on Mars. Veneers have been resistant to wind erosion and enhanced the layered appearance of the outcrop. Layers are typically several millimeters thick.  Credit: NASA/JPL-Caltech/Cornell/Arizona State University
Pancam false-color view acquired on Sol 3066 (Sept. 8 2012) of fine-scale layering in the Whitewater Lake locality that is indicative of an ancient aqueous environment on Mars. Veneers have been resistant to wind erosion and enhanced the layered appearance of the outcrop. Layers are typically several millimeters thick. Credit: NASA/JPL-Caltech/Cornell/Arizona State University

Alteration in moderately acidic and reducing waters, perhaps mildly oxidizing for ferric smectites. These are the oldest rocks examined by Opportunity and the waters are much more habitable than waters that led to Burns formation.

Opportunity rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013, coinciding with her 9th anniversary on Mars.  “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. This panoramic view was snapped from ‘Matijevic Hill’ on Cape York ridge at Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer
Opportunity rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013, coinciding with her 9th anniversary on Mars. “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. This panoramic view was snapped from ‘Matijevic Hill’ on Cape York ridge at Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer

3. Opportunity: Martian Meteorites

Many meteorites were found [throughout the long traverse] that are dispersed across the Meridiani plains landing site

4. Opportunity: Wind-blown sand ripples

Wind-blown sand ripples throughout the Meridiani plains relict from the previous wind regime, probably when Mars spin axis tilt was different than today’s value

5. Spirit: Opaline silica indicates Ancient Hydrothermal system

Discovery of Opaline silica at Home Plate, Gusev Crater. This formed in volcanic fumeroles and/or hydrothermal vents indicating that water was interacting with magma.

Spirit acquired this mosaic on Sol 1202  (May 21, 2007), while investigating the area east of the elevated plateau known as "Home Plate" in the "Columbia Hills." The mosaic shows an area of disturbed soil, nicknamed "Gertrude Weise" by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Credit: NASA/JPL-Caltech/Cornell
Spirit acquired this mosaic on Sol 1202 (May 21, 2007), while investigating the area east of the elevated plateau known as “Home Plate” in the “Columbia Hills.” The mosaic shows an area of disturbed soil, nicknamed “Gertrude Weise” by scientists, made by Spirit’s stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. Credit: NASA/JPL-Caltech/Cornell

6. Spirit: Carbonates at Comanche – see lead image above

The discovery of Fe-Mg [iron-magnesium] carbonates at the Comanche outcrop on Husband Hill, Gusev Crater, again showing that water interacted with magma.

Note: Carbonates form in neutral, non-acid water. This was the first time they were found and investigated examined on the surface Mars during Dec. 2005.

7. Spirit: Ferric sulfates moved by modern water

Ferric sulfates moved down the soil column by modern waters at Troy and Husband Hill in Gusev Crater.

'Calypso' Panorama of Spirit's View from 'Troy'. This full-circle view from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit shows the terrain surrounding the location called "Troy," where Spirit became embedded in soft soil during the spring of 2009. The hundreds of images combined into this view were taken beginning on the 1,906th Martian day (or sol) of Spirit's mission on Mars (May 14, 2009) and ending on Sol 1943 (June 20, 2009). Credit: NASA/JPL-Caltech/Cornell University
‘Calypso’ Panorama of Spirit’s View from ‘Troy’. This full-circle view from the panoramic camera (Pancam) on NASA’s Mars Exploration Rover Spirit shows the terrain surrounding the location called “Troy,” where Spirit became embedded in soft soil during the spring of 2009. The hundreds of images combined into this view were taken beginning on the 1,906th Martian day (or sol) of Spirit’s mission on Mars (May 14, 2009) and ending on Sol 1943 (June 20, 2009). Credit: NASA/JPL-Caltech/Cornell University

8. Spirit: Modern water alters rocks

Complex coatings on olivine basalts on the Gusev Crater plains showing modern water or frost has altered rock surfaces

9. Both rovers: Martian Dust Devils

The finding [and imaging] of dust devil frequency and dynamics, showing how dust and sand are moved by wind in the very thin Martian atmosphere.

Note: Wind action occasionally cleaning off the solar panels led to their unexpected longevity

See a dust devil imaged in our Solander Point mosaic below

Spirit Mars rover - view from Husband Hill summit - panels cleaned by wind action Spirit snapped this unique self portrait view from the summit of Husband Hill inside Gusev crater on Sol 618 on 28 September 2005.  The rovers were never designed or intended to climb mountains. It took more than 1 year for Spirit to scale the Martian mountain.  This image was created from numerous raw images by an international team of astronomy enthusiasts and appeared on the cover of the 14 November 2005 issue of Aviation Week & Space Technology magazine and the April 2006 issue of Spaceflight magazine.  Also selected by Astronomy Picture of the Day (APOD) on 28 November 2005. Credit: NASA/JPL/Cornell/ Marco Di Lorenzo/Doug Ellison/Bernhard Braun/Ken Kremer
Spirit Mars rover – view from Husband Hill summit – panels cleaned by wind action
Spirit snapped this unique self portrait view from the summit of Husband Hill inside Gusev crater on Sol 618 on 28 September 2005. The rovers were never designed or intended to climb mountains. It took more than 1 year for Spirit to scale the Martian mountain. This image was created from numerous raw images by an international team of astronomy enthusiasts and appeared on the cover of the 14 November 2005 issue of Aviation Week & Space Technology magazine and the April 2006 issue of Spaceflight magazine. Also selected by Astronomy Picture of the Day (APOD) on 28 November 2005. Credit: NASA/JPL/Cornell/ Marco Di Lorenzo/Doug Ellison/Bernhard Braun/Ken Kremer – kenkremer.com

10. Both rovers: Atmospheric Argon measurements

Argon gas was used as a tracer of atmospheric dynamics by both rovers. It was measured by using the APXS (Alpha Particle X-Ray Spectrometer) on the robotic arm to measure the Martian atmosphere and detect argon

Another major discovery by Opportunity was the finding of hydrated mineral veins of calcium sulfate in the bench surrounding Cape York. The vein discovery is another indication of the ancient flow of liquid water in this region on Mars.

Opportunity discovers hydrated Mineral Vein at Endeavour Crater - November 2011. Opportunity determined that the ‘Homestake’ mineral vein was composed of calcium sulfate,or gypsum, while exploring around the base of Cape York ridge at the western rim of Endeavour Crater.  The vein discovery indicates the ancient flow of liquid water at this spot on Mars. This panoramic mosaic of images was taken on Sol 2761, November 2011, and illustrates the exact spot of the mineral vein discovery. Featured on NASA Astronomy Picture of the Day (APOD) on 12 Dec 2011 -  http://apod.nasa.gov/apod/ap111212.html. Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo.
Opportunity discovers hydrated Mineral Vein at Endeavour Crater – November 2011. Opportunity determined that the ‘Homestake’ mineral vein was composed of calcium sulfate,or gypsum, while exploring around the base of Cape York ridge at the western rim of Endeavour Crater. The vein discovery indicates the ancient flow of liquid water at this spot on Mars. This panoramic mosaic of images was taken on Sol 2761, November 2011, and illustrates the exact spot of the mineral vein discovery. Featured on NASA Astronomy Picture of the Day (APOD) on 12 Dec 2011 – http://apod.nasa.gov/apod/ap111212.html. Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo.

Altogether, Spirit snapped over 128,000 raw images, drove 4.8 miles (7.7 kilometers) and ground into 15 rock targets.

MER10-SpiritAndOpportunity_ByTheNumbers[1]

Opportunity is currently investigating a new cache of exposed clay mineral outcrops by the summit of Solander Point, a rim segment just south of Cape York and Matejivic Hill.

These new outcrops at ‘Cape Darby’ like those at ‘Esperance’ at Matijevic Hill were detected based on spectral observations by the CRISM spectrometer aboard NASA’s Mars Reconnaissance Orbiter (MRO) circling overhead, Arvidson told me.

Opportunity by Solander Point peak – 2nd Mars Decade Starts here!  NASA’s Opportunity rover captured this panoramic mosaic on Dec. 10, 2013 (Sol 3512) near the summit of “Solander Point” on the western rim of vast Endeavour Crater where she starts Decade 2 on the Red Planet. She is currently investigating summit outcrops of potential clay minerals formed in liquid water on her 1st mountain climbing adventure. See wheel tracks at center and dust devil at right. Assembled from Sol 3512 navcam raw images. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Opportunity by Solander Point peak – 2nd Mars Decade Starts here!
NASA’s Opportunity rover captured this panoramic mosaic on Dec. 10, 2013 (Sol 3512) near the summit of “Solander Point” on the western rim of vast Endeavour Crater where she starts Decade 2 on the Red Planet. She is currently investigating summit outcrops of potential clay minerals formed in liquid water on her 1st mountain climbing adventure. See wheel tracks at center and dust devil at right. Assembled from Sol 3512 navcam raw images. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Today, Jan. 31, marks Opportunity’s 3563rd Sol or Martian Day roving Mars – for what was expected to be only a 90 Sol mission.

So far she has snapped over 188,200 amazing images on the first overland expedition across the Red Planet.

Her total odometry stands at over 24.07 miles (38.73 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.

Read more about sister Spirit – here and here.

Meanwhile on the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp. She celebrated 500 Sols on Mars on New Years Day 2014.

And a pair of new orbiters are streaking to the Red Planet to fortify Earth’s invasion fleet- NASA’s MAVEN and India’s MOM.

What’s Ahead for Opportunity in Decade 2 on Mars ?

Many more ground breaking discoveries surely lie ahead for Opportunity since she is currently exploring ancient terrain at Endeavour crater that’s chock full of minerals indicative of a Martian habitable zone.

She remains healthy and the solar panels are generating enough power to actively continue science investigations throughout her 6th frigid Martian winter!

NASA's Opportunity Mars rover recorded the component images for this self-portrait near the peak of Solander Point and about three weeks before completing a decade of work on Mars. The rover's panoramic camera (Pancam) took the images during the interval Jan. 3, 2014, to Jan. 6, 2014.  Credit: NASA/JPL-Caltech/Cornell/Arizona State University
NASA’s Opportunity Mars rover recorded the component images for this self-portrait near the peak of Solander Point and about three weeks before completing a decade of work on Mars. The rover’s panoramic camera (Pancam) took the images during the interval Jan. 3, 2014, to Jan. 6, 2014. Credit: NASA/JPL-Caltech/Cornell/Arizona State University

Therefore – Stay tuned here for Ken’s continuing Opportunity, Curiosity, Chang’e-3, LADEE, MAVEN, Mars rover and MOM news.

Ken Kremer

Spirit Rover traverse map from Gusev Crater landing site to Home Plate: 2004 to 2011
Spirit Rover traverse map from Gusev Crater landing site to Home Plate: 2004 to 2011
Traverse Map for NASA’s Opportunity rover from 2004 to 2014  This map shows the entire path the rover has driven during a decade on Mars and over 3560 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location by Solander Point summit at the western rim of Endeavour Crater. Rover will spend 6th winter here atop Solander. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer – kenkremer.com
Traverse Map for NASA’s Opportunity rover from 2004 to 2014
This map shows the entire path the rover has driven during a decade on Mars and over 3560 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location by Solander Point summit at the western rim of Endeavour Crater. Rover will spend 6th winter here atop Solander. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Close Encounters of the Lunar Kind – LRO images LADEE

This dissolve animation compares the LRO image (geometrically corrected) of LADEE captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE . LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit: NASA/Goddard/Arizona State University

This dissolve animation compares the LRO image (geometrically corrected) of LADEE captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE . LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit: NASA/Goddard/Arizona State University
Story updated[/caption]

A pair of NASA spacecraft orbiting Earth’s nearest celestial neighbor just experienced a brief ‘Close Encounter of the Lunar Kind’.

Proof of the rare orbital tryst has now been revealed by NASA in the form of spectacular imagery (see above and below) just released showing NASA’s recently arrived Lunar Atmosphere and Dust Environment Explorer (LADEE) lunar orbiter being photographed by a powerful camera aboard NASA’s five year old Lunar Reconnaissance Orbiter (LRO) – as the two orbiters met for a fleeting moment just two weeks ago.

See above a dissolve animation that compares the LRO image (geometrically corrected) of LADEE captured on Jan. 14, 2014 with a computer-generated and labeled LADEE image.

All this was only made possible by a lot of very precise orbital calculations and a spacecraft ballet of sorts that had to be nearly perfectly choreographed and timed – and spot on to accomplish.

This subsection of the LRO image, expanded four times, shows the smeared view of LADEE against the lunar background..   LADEE is about 2 meters in the long direction. Lunar scene about 81 meter wide.  Credit:  NASA/Goddard/Arizona State University
This subsection of the LRO image, expanded four times, shows the smeared view of LADEE against the lunar background. LADEE is about 2 meters in the long direction. Lunar scene about 81 meter wide. Credit: NASA/Goddard/Arizona State University

Both sister orbiters were speeding along at over 3600 MPH (1,600 meters per second) while traveling perpendicularly to one another!

So the glimpse was short but sweet.

LADEE flies in an equatorial orbit (east-to-west) while LRO travels in a polar orbit (south-to-north). LADEE achieved lunar orbit on Oct. 6, 2013 amidst the federal government shutdown.

Thus their orbits align only infrequently.

The LRO orbiter did a pirouette to precisely point its high resolution narrow angle camera (NAC) while hurtling along in lunar orbit, barely 5.6 miles (9 km) above LADEE.

And it was all over in less than the wink of an eye!

LADEE entered LRO’s Narrow Angle Camera (NAC) field of view for 1.35 milliseconds and a smeared image of LADEE was snapped. LADEE appears in four lines of the LROC image, and is distorted right-to-left.

Both spacecraft are tiny – barely two meters in length.

“Since LROC is a pushbroom imager, it builds up an image one line at a time, thus catching a target as small and fast as LADEE is tricky!” wrote Mark Robinson, LROC principal investigator of Arizona State University.

So the fabulous picture was only possible as a result of close collaboration and extraordinary teamwork between NASA’s LADEE, LRO and LROC camera mission operations teams.

NASA’s LRO imaged NASA’s LADEE, about 5.6 miles (9 km) beneath it, at 8:11 p.m. EST on Jan. 14, 2014. (LROC NAC image M1144387511LR).  Image width is 821 meters, or about 898 yards.)   Credit:   NASA/Goddard/Arizona State University
NASA’s LRO imaged NASA’s LADEE, about 5.6 miles (9 km) beneath it, at 8:11 p.m. EST on Jan. 14, 2014. (LROC NAC image M1144387511LR). Image width is 821 meters, or about 898 yards.) Credit: NASA/Goddard/Arizona State University

LADEE passed directly beneath the LRO orbit plane a few seconds before LRO crossed the LADEE orbit plane, meaning a straight down LROC image would have just missed LADEE, said NASA.

LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. LRO cameras are pointing to right. LRO is piggybacked atop NASA’s LCROSS spacecraft.  Payload fairing in background protects the spacecraft during launch and ascent. Credit: Ken Kremer
LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. LRO cameras are pointing to right. LRO is piggybacked atop NASA’s LCROSS spacecraft. Payload fairing in background protects the spacecraft during launch and ascent. Credit: Ken Kremer

Therefore, LRO was rolled 34 degrees to the west so the LROC detector (one line) would be precisely oriented to catch LADEE as it passed beneath.

“Despite the blur it is possible to find details of the spacecraft. You can see the engine nozzle, bright solar panel, and perhaps a star tracker camera (especially if you have a correctly oriented schematic diagram of LADEE for comparison),” wrote Robinson in a description.

See the LADEE schematic in the lead image herein.

LADEE was launched Sept. 6, 2013 from NASA Wallops in Virginia on a science mission to investigate the composition and properties of the Moon’s pristine and extremely tenuous atmosphere, or exosphere, and untangle the mysteries of its lofted lunar dust.

Since LADEE is now more than halfway through its roughly 100 day long mission, timing was of the essence before the craft takes a death dive into the moon’s surface.

You can see a full scale model of LADEE at the NASA Wallops visitor center, which offers free admission.

Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

LRO launched Sept. 18, 2009 from Cape Canaveral, Florida to conduct comprehensive investigations of the Moon with seven science instruments and search for potential landing sites for a return by human explorers. It has collected astounding views of the lunar surface, including the manned Apollo landing sites as well as a treasure trove of lunar data.

In addition to NASA’s pair of lunar orbiters, China recently soft landed two probes on the Moon.

So be sure to read my new story detailing how LRO took some stupendous Christmas time 2013 images of China’s maiden lunar lander and rover; Chang’e-3 and Yutu from high above- here.

Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more news.

Ken Kremer

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

‘Stupid Astronaut Tricks’ Spread The Joy of Space To New Astronaut Class

NASA astronaut candidate Christina Hammock starts a fire successfully during wilderness survival training near Rangeley, Maine in August 2013. Credit: NASA/Lauren Harnett

You sure couldn’t hide those grins on television from the Astronaut Candidate Class of 2013 when the call came from the International Space Station.

NASA’s latest recruits were at the Smithsonian National Air and Space Museum in Washington, D.C. at an event today (Thursday) for students. Amid the many youngster questions to Expedition 38 astronauts Mike Hopkins and Rick Mastracchio, astronaut candidate Jessica Meir managed one of her own: was the wait worth it?

Hovering in front of the camera, four-time flyer Mastracchio vigorously shook his hand “no” to laughter from the audience. Hopkins answered her more seriously: “It is definitely worth it. It is the most amazing experience I think you can ever have. Floating is just truly incredible; it just never gets old.”

Minutes later, Hopkins demonstrated a “stupid astronaut trick”: doing Road Runner-style sprinting in place in mid-air. The laughing crew signed off — “So they’re floating off now?” asked event moderator and veteran astronaut Leland Melvin — and the new class had the chance to answer questions of their own.

While the class expressed effusive delight at being astronauts — they were hired last year, so the feeling is quite new to them — Meir said that there was some sadness at leaving the careers they had before. As a recent article in Air&Space Smithsonian pointed out, this class will have several years to wait for a seat into space because there aren’t robust shuttle crews of seven people going up several times a year any more. The Soyuz only carries three people at a time, and there are fewer missions that last for a longer time.

There also is some ambiguity about where the astronauts will go. The International Space Station has been extended until at least 2024, but astronaut candidate Anne McClain added today that an asteroid or Mars are other things being considered for their class. “This class is such an exciting time to be at NASA,” she said.

Other questions asked of the class at the event include who is going to go in space first, and from a wee future astronaut, which planet they’d prefer to go to. You can watch the whole broadcast on the link above.

Can A Mega-Magnetic Field Protect Astronauts From Radiation?

NASA astronaut Peggy Whitson working at the Plant Generic Bioprocessing Apparatus during Expedition 5 on the International Space Station in 2002. The experiment "monitored and maintained light, temperature, humidity and oxygen levels", NASA stated, to look at the production of lignin (a polymer) in plants. Credit: NASA

A bunch of people really, really want to go to the Red Planet on the proposed one-way Mars One trip; more than 1,000 applicants are being considered in Round 2 selections. They will face, however, more radiation during their journey that could put them at higher risk of cancers down the road. While the solution could be to add more shielding to a spacecraft, that’s both heavy and expensive.

Enter the alternative: a magnetic field. A group calling itself the EU Project Space Radiation Superconductive Shield says their technology will “solve the issue of radiation protection in three years” and is seeking academic collaborations to make that happen. Here’s how it will work:

“The SR2S superconducting shield will provide an intense magnetic field, 3,000 times stronger than the Earth’s magnetic field and will be confined around the space craft,” a press release states.

“The magnetic fields will extend to about 10 metres in diameter and ionizing particles will be deflected away. Only the most energetic particles will penetrate the superconducting shield, but these will contribute the least to the absorbed radiation dose as their flux is negligible. This will address the issue of suitability of people for space travel as it will open up eligibility for space travel regardless of gender.”

That last bit refers to some radiation guidelines highlighted a few months ago. Peggy Whitson, a veteran NASA astronaut, said publicly that women fly far fewer hours in space than men. That’s because space authorities apply lower “lifetime” radiation limits to females (for biological reasons, which you can read more about here).

The project team includes participation from the Italian National Institute of Nuclear Physics, General Company For Space (CGS SpA), Columbus Superconductor SpA, Thales Alenia Space – Italia S.p.A., the French Commission of Atomic Energy and Alternative Energies, and the European Organization for Nuclear Research (CERN).

“We have already made significant progress since the beginning of the project and believe we will succeed in this goal of solving the radiation protection issue,” stated Roberto Battiston, who leads the project and is also a professor of experimental physics at the University of Trento in Italy. The project started a year ago.

“In the last few months, the international teams working at CERN have solved two major technical issues relevant to the superconducting magnets in space (i) how to make very long high temperature superconducting cables join together in a shorter segment without losing the superconducting properties and (ii) how to ensure protection of long high temperature cables from a quench.”

More information on the project is available at its website. What do you think of their idea? Leave your thoughts in the comments.

China’s Chang’e-3 Lander and Yutu Moon Rover – from Above and Below

Chang’e-3 lander and Yutu rover – from Above And Below Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander color panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander color panorama shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson

Chang’e-3 lander and Yutu rover – from Above And Below
Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander color panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander color panorama shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson
See further composite and panorama views below
Story updated
See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.html[/caption]

China’s Chang’e-3 lander and Yutu moon rover have been imaged from above and below – in one of those rare, astounding circumstances when space probes from Earth are exploring an extraterrestrial body both from orbit and the surface. And it’s even more amazing when these otherworldly endeavors just happen to overlap and involve actual work in progress to expand human knowledge of the unknown.

And it’s even rarer, when those images stem from active space probes built by two different countries on Earth.

Well by combining imagery from America’s space agency, NASA, and China’s space agency, CNSA, we are pleased to present some breathtaking views of ‘Chang’e-3 and the Yutu rover from Above and Below.’

Check out our composite mosaic (above) combining the view from the Moon’s orbit snapped by the hi res camera aboard NASA’s Lunar Reconnaissance Orbiter (LRO) with our new color panoramas from the Moon’s surface, compiling imagery from the landing site of China’s Chang’e-3 lander – with Yutu in transit in mid-Dec. 2013 soon after the successful touchdown.

See below an earlier composite mosaic using the first black and white panorama from the Chang’e-3 Moon lander.

Chang’e-3 lander and Yutu rover – from Above And Below  Composite view shows China’s Chang'e-3 lander and Yutu rover from Above And Below (orbit and surface) - lander panorama (top) and orbital view from NASA’s LRO orbiter (bottom).  Chang'e-3 lander B/W panorama from camera shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama.    Credit: CNSA/NASA/Mark Robinson/Marco Di Lorenzo/Ken Kremer
Chang’e-3 lander and Yutu rover – from Above And Below
Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander B/W panorama from camera shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Mark Robinson/Marco Di Lorenzo/Ken Kremer – kenkremer.com

The composite mosaic combines the efforts of Mark Robinson, Principal Investigator for the LRO camera, and the imaging team of Ken Kremer and Marco Di Lorenzo.

On Christmas eve, Dec. 24, 2013, NASA’s LRO captured it’s first images of China’s Chang’e-3 lander and Yutu moon rover – barely 10 days after the history making touchdown on Mare Imbrium (Sea of Rains) and just 60 meters east of the rim of a 450 meter diameter impact crater.

LRO was orbiting about 150 kilometers above Chang’e-3 and Yutu when the highest resolution orbital image was taken on 24 December 22:52:49 EST (25 December 03:52:49 UT).

Image of Chang'e-3 (top arrow) and Yutu rover captured by NASA's Lunar Reconnaissance Orbiter on Dec. 25 UTC
Image of Chang’e-3 (top arrow) and Yutu rover captured by NASA’s Lunar Reconnaissance Orbiter on Dec. 24, 2013

The orbital imagery was taken by the LRO orbiters high resolution Lunar Reconnaissance Orbiter Camera (LROC) – specifically the narrow angle camera (NAC).

See below my pre-launch cleanroom photo of LRO and the LROC cameras and other science instruments.

The Chang’e-3 lander color panorama shows the Yutu rover after it drove down the ramp to the moon’s surface and began driving a significant distance around the landers right side on its journey heading southwards.

1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander. This 1st color panorama from Chang’e-3 lander shows the view all around the landing site after the ‘Yutu’ lunar rover left impressive tracks behind when it initially rolled all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com
1st 360 Degree Color Panorama from China’s Chang’e-3 Lunar Lander
This 1st color panorama from Chang’e-3 lander shows the view all around the landing site after the ‘Yutu’ lunar rover left impressive tracks behind when it initially rolled all six wheels onto the pockmarked and gray lunar terrain on Dec. 15, 2013. Mosaic Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com

Yellow lines connect craters seen in the lander panorama to those seen in the LROC hi res NAC image from LRO, in the composite view.

Robinson identified the lunar craters and determined the field of view on the LROC image.

The LRO image was taken at a later date (on Christmas eve) after the rover had already moved. Red lines on the orbital image indicate the approximate field of view of what is seen in the Chang’e-3 lander panorama.

Although Yutu is only about 150 cm wide – which is the same as the pixel size – it shows up in the NAC images for two reasons.

“The solar panels are very effective at reflecting light so the rover shows up as two bright pixels, and the Sun is setting thus the rover casts a distinct shadow (as does the lander),” says NASA in a statement.

In a historic first for China, the Chang’e-3 spacecraft safely touched down on the Moon at Mare Imbrium near the Bay of Rainbows nearly seven weeks ago on Dec. 14, 2013.

Seven hours later, the piggybacked 140 kg Yutu robot drove off a pair of ramps, onto the Moon and into the history books.

Yutu was about 10 meters away from the 1200 kg stationary lander when the lander panoramic images were taken.

The lander and Yutu were just completing their 1st Lunar Day of explorations when the LROC images were taken, and entered their first period of hibernation soon thereafter on Dec. 25 (Christmas Day) and Dec 26 respectively coinciding with the start of their 1st Lunar Night.

Both spacecraft awoke and functioned well during their 2nd Lunar Day, which just ended.

However, Yutu’s future mission is now in jeopardy following a serious mechanical anomaly this past weekend as both vehicles entered their 2nd hibernation period.

Apparently one of the solar panels did not fold back properly – perhaps due to dust accumulation – and its instruments may not survive.

Read my full story for complete details – here.

Yutu’s fate will remain unknown until the 3rd Lunar Day starts around Feb. 8 or 9.

So, What’s the terrain like at the Mare Imbrium landing site?

Chang’e-3 landed on a thick deposit of volcanic material.

“A large scale wrinkle ridge (~100 km long, 10 km wide) cuts across the area and was formed as tectonic stress caused the volcanic layers to buckle and break along faults. Wrinkle ridges are common on the Moon, Mercury and Mars,” says Robinson.

“The landing site is on a blue mare (higher titanium) thought to be about 3.0 billion years old.”

Older red mare about from 3.5 billion years is only 10 km to the north, he notes.

See our Chang’e-3 color panoramas now featured at NBC News and Space.com

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

LRO LROC Wide angle camera (WAC) color (689 nm, 415 nm, 321 nm) overlain on WAC sunset BW image. Note the proximity of the landing site to a contact between red and blue maria.  Credit: NASA/GSFC/Arizona State University
NASA’s Lunar Reconnaissance Orbiter (LRO) LROC Wide angle camera (WAC) color (689 nm, 415 nm, 321 nm) overlain on WAC sunset BW image. Note the proximity of the landing site to a contact between red and blue maria. Credit: NASA/GSFC/Arizona State University
LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. Payload fairing in background protects the spacecraft during launch and ascent. Credit: Ken Kremer
NASA’s LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. LRO is piggybacked atop NASA’s LCROSS spacecraft. Payload fairing in background protects the spacecraft during launch and ascent on Atlas V rocket. Credit: Ken Kremer

Rosetta Is Happily Awake, But Comet Lander Will Slumber Until March

Artist's impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.

Now that Rosetta has (leisurely) arose from a 31-month slumber in space, the next step is to figure out how prepared the spacecraft is for its close encounter with a comet. Early indications show that the orbiting spacecraft is ready to go. Its lander, Philae, is still asleep and the plan isn’t to wake it up until March, ESA added.

In the initial wake-up stage for Rosetta, “We were most concerned about power, and seeing if the solar arrays were generating sufficient electricity to support the planned recommissioning activities,” stated Andrea Accomazzo, spacecraft operations manager. “But even though we were still 673 million km [418 million miles] from the Sun , we were getting enough power and the arrays appear to have come through hibernation with no degradation.”

An artist concept of the Philae lander on comet 67P/Churyumov-Gerasimenko.  Credit: Astrium - E. Viktor/ESA
An artist concept of the Philae lander on comet 67P/Churyumov-Gerasimenko. Credit: Astrium – E. Viktor/ESA

Other systems are happily coming online as planned. Three of the four reaction wheels, which control Rosetta’s position in space, are working perfectly (with the fourth expected to be reactivated in a few weeks.) Next up is making sure Rosetta’s memory storage is working well enough to shelve science and operations information, and pinning down the spacecraft’s orbit.

So Rosetta is doing well after 31 months. With that hurdle leapt, technicians will begin to think about waking up Philae and making sure that its 10 instruments are working. By February, you can follow updates regularly on the Rosetta blog (as well as on Universe Today, of course!)

Rosetta should reach Comet 67P/Churyumov-Gerasimenko in August, and will start snapping pictures of the comet in May if all goes to plan. Astronomers are eager to see what the comet will teach us about the early years of the solar system, since comets are considered leftovers of when our neighborhood formed.

Source: ESA

How Do You Stop A Spacecraft Microbe From Attacking Mars?

An artist's conception of the European Space Agency's ExoMars rover, scheduled to launch in 2018. Credit: ESA

When you have a Mars mission that is designed to search for life or life-friendly environments, it would be several shades of awkward if something biological was discovered — and it ended up being an Earth microbe that clung on for the ride. Beyond that, there’s the worry that an Earth microbe could contaminate the planet’s environment, altering or perhaps wiping out anything that was living there.

A recent European Space Agency post highlighted that agency’s efforts to keep Mars safe from its forthcoming ExoMars missions in 2016 or 2018. (And it also should be noted that NASA has its own planetary protection protocols, as well as other agencies.)

“We have a long-term programme at ESA – and also NASA – to regularly monitor and evaluate biological contamination in cleanrooms and on certain type of spacecraft,” stated Gerhard Kminek, ESA’s planetary protection officer. “The aim,” he added, “is to quantify the amount of biological contamination, to determine its diversity – finding out what is there using gene sequence analysis, and to provide long-term cold storage of selected samples.”

The process isn’t perfect, ESA admits, but the biological contamination that these scrutinized missions have is extraordinarily low compared to other Earthly manufacturing processes. There is, in fact, an obligation on the part of space-faring nations to keep planets safe if they signed on to the United Nations Outer Space Treaty. (That said, enforcement is a tricky legal issue as there is no international court for this sort of thing and that would make it hard to levy penalties.)

The NASA Curiosity rover in this undated photo inside the Jet Propulsion Laboratory's spacecraft assembly facility. The team did around 4,500 samplings during assembly for contamination.  Credit: NASA
The NASA Curiosity rover in this undated photo inside the Jet Propulsion Laboratory’s spacecraft assembly facility. The team did around 4,500 samplings during assembly for contamination. Credit: NASA

Spacefaring nations have international standards for biological contamination limits, and they also must monitor the “impact probability” of an orbital spacecraft smacking into the planet or moon below when they do maneuvers. Sometimes this means that spacecraft are deliberately crashed in one spot to prevent contamination elsewhere. A famous example is the Galileo mission to Jupiter, which was thrown into the giant planet in 2003 so it wouldn’t accidentally hit the ice-covered Europa moon.

Moving forward to ExoMars — the Mars orbiting and landing missions of 2016 and 2018 — ESA plans to perform about 4,500 samplings of each spacecraft to monitor biological contamination. This estimate came from the number performed at NASA on the Curiosity rover, which is trundling around Mars right now. Changes in processing, though, mean the ESA checks will take less time (presumably making it less expensive.)

For the curious, yes, planetary protection protocols would also apply during a “sample return” mission where soil or other samples are sent back to Earth. While that’s a little ways off, ESA also elaborated on the procedures it takes to keep spacecraft it creates safe from contamination.

A technician does a check for contamination on the ExoMars 2016 descent camera in December 2013. The test took place at the European Space Agency's European Space Research and Technology Centre in the Netherlands. Credit: ESA
A technician does a check for contamination on the ExoMars 2016 descent camera in December 2013. The test took place at the European Space Agency’s European Space Research and Technology Centre in the Netherlands. Credit: ESA

“Samples are acquired in various ways: air samplers collect a certain amount of air on a filter, while wipes dampened with ultra-pure water are run across space hardware or cleanroom surfaces. Swabs are used to sample smaller items such as payloads or electronics,” ESA stated.

“To quantify the biological contamination, the samples are then filtered onto culture plates and incubated for between seven hours and three days depending on the specific method used, to see how much turns up. Statistical analysis is used to assess the overall cleanroom or flight hardware ‘bioburden’, and check whether it falls within the required standard or if further measures are needed to reduce it.”

Sometimes a hardy survivor is found, which is scientifically interesting because investigators want to know how it made it. ESA has a database of these microbes, and NASA has records as well. In November, the agencies announced a new bacterium, Tersicoccus phoenicis, that so far has only been found in “cleanrooms” for NASA’s Mars Phoenix lander (near Orlando, Florida) and ESA’s Herschel and Planck observatories (in Kourou, French Guiana).

Source: ESA

UPDATE: Six-Hour Spacewalk Yields Success for UrtheCast Cameras

Expedition 38 cosmonaut Oleg Kotov during a January 2014 spacewalk, outside the Zvezda service module. Credit: NASA TV

UPDATE: As of Tuesday morning (Eastern time), UrtheCast announced that telemetry was successfully received, “contrary to the online broadcast of the installation.” CEO Scott Larson added that his company “can now focus on the routine commissioning of the cameras in preparation for the unveiling of our Ultra HD, color video of Earth.” Below is the report from Monday.

A second crack at installing the UrtheCast cameras on the International Space Station also ran into data trouble, according to a press release from NASA, although the company involved with the cameras says it is still waiting for more information about the telemetry.

Expedition 38 spacewalkers Oleg Kotov and Sergey Ryazanskiy were again trying to put the cameras outside the station for UrtheCast to provide live views of Earth to subscribers. The cosmonauts’ first attempt on Dec. 27 showed telemetry problems, at which point the spacewalkers were instructed to bring the cameras back inside.

“The duo translated to the Zvezda service module and installed a high-resolution camera and a medium-resolution camera to capture Earth imagery. However, the medium resolution camera again experienced telemetry issues,” NASA stated.

On Twitter, however, UrtheCast stated that it is still awaiting confirmation on the status of the telemetry. We’ll keep you posted when they issue an update.

Kotov and Ryazanskiy spent six hours, eight minutes outside performing this and other routine tasks, marking the fourth spacewalk in about a month for Expedition 38. Besides the other Russian spacewalk in late December, two American astronauts ventured out close to Christmas to make a contingency swap on a faulty ammonia pump.

‘Obviously A Major Malfunction’: Today Is Anniversary of Challenger’s Explosion

The crew of Challenger, lost on January 28, 1986. Credit: NASA.

It was on this day (Jan. 28) in 1986 that stunned viewers across the world saw the Challenger space shuttle explode on television. The broadcast (you can see CNN’s above) was being carried all over the place because the crew included the first teacher in space, Christa McAuliffe. The planned six-day mission, however, lasted just over a minute before catastrophe occurred.

Flying aboard mission 51-L were commander Francis “Dick” Scobee, pilot Michael Smith, mission specialists Judith Resnik, Ellison Onizuka and Ronald McNair, and payload specialists Gregory Jarvis and McAuliffe. The physical cause of the explosion was traced back to a faulty O-ring on one of the shuttle’s external boosters, which weakened in the cold before launch and then failed, leading to the explosion about 72 seconds after launch.

Other factors were cited as well by journalists and the Rogers Commission, such as NASA’s desire to keep to what outsiders said was an unrealistic, quick-moving launch schedule that saw shuttles leave the ground every few weeks to carry commercial and military payloads. NASA and contractor Morton Thiokol made changes to the boosters, and NASA further changed the flight rules and other procedures in response to the disaster.

There are many memorials to the fallen crew, but one of the most cited in education is the 40 Challenger Learning Centers that are located in the United States, Canada, United Kingdom and South Korea. The network was founded by June Scobee Rogers (the widow of commander Scobee) and includes participation from other Challenger family members. Their goal is to “give students the chance to become astronauts and engineers and solve real-world problems as they share the thrill of discovery on missions through the Solar System,” the website states.

Challenger’s anniversary comes in a week that includes other tragic anniversaries, including the Apollo 1 pad fire that claimed three astronauts’ lives (Jan. 27, 1967) and Columbia shuttle breakup that killed seven (Feb. 1, 2003). Other astronauts have died in training accidents; you can see a list at the Astronaut Memorial Foundation. Additionally, four cosmonauts died in spaceflight: Vladimir Komarov (Soyuz 1 on April 24, 1967) and Georgi Dobrovolskiy, Viktor Patsayev, and Vladislav Volkov (Soyuz 11 on June 30, 1971).

The Challenger space shuttle a few moments after the rupture took place in the external tank. Credit: NASA
The Challenger space shuttle a few moments after the rupture took place in the external tank. Credit: NASA