Pardon My Vomit: Zero G Ettiquette In the Age Of Space Tourism

Planning on a little space tourism? Better start training! Credit: barfology.com

It’s a new era for space travel. And if there’s one thing that sets it apart from the previous one, it is the spirit of collaboration that exists between space agencies and between the public and private sector. And with commercial aerospace (aka. NewSpace) companies looking to provide everything from launch services to orbital and lunar tourism, a day is fast-approaching when ordinary people will be able to go into space.

Because of this, many aerospace companies are establishing safety and training programs for prospective clients. If civilians plan on going into space, they need to have the benefit of some basic astronaut training. In short, they will need to learn how to go safely conduct themselves in a zero-gravity environment, with everything from how to avoid blowing chunks to how to relieve oneself in a tidy fashion.

In recent years, companies like Blue Origin, Virgin Galactic, Space Adventures, Golden Spike, and SpaceX have all expressed interest in making space accessible to tourists. The proposed ventures range from taking passengers on suborbital spaceflights – a la Virgin Galactic’s SpaceShipTwo – to trips into orbit (or the Moon) aboard a space capsule – a la Blue Origins’ New Shepard launch system.

Virgin Galactic’s SpaceShipTwo’s performing a glide flight. Credit: Virgin Galactic

And while these trips will not be cheap – Virgin Galactic estimates that a single seat aboard SpaceShipTwo will cost $250,000 – they absolutely have to be safe! Luckily, space agencies like NASA already have a very well-established and time-honored practice for training astronauts for zero-g. Perhaps the most famous involves flying them around in a Zero-Gravity Aircraft, colloquially known as the “Vomit Comet”.

This training program is really quite straightforward. After bringing astronaut trainees to an altitude of over 10,000 meters (32,000 feet), the plane begins flying in a parabolic arc. This consists of it climbing and falling, over and over, which causes the trainees to experience the feeling of weightlessness whenever the plane is falling. The name “vomit comet” (obviously) arises from the fact that passengers tend to lose their lunch in the process.

The Soviet-era space program also conducted weightlessness training, which Roscomos has continued since the collapse of the Soviet Union. Since 1984, the European Space Agency (ESA) has also conducts parabolic flights using a specially-modified Airbus A300 B2 aircraft. The Canadian Space Agency (CSA) has done the same since it was founded in 1989, relying on the Falcon 20 twin-engine jet.

Given the fact that NASA has been sending astronauts into space for nearly 60 years, they have certainly accrued a lot of experience in dealing with the effects of weightlessness. Over the short-term, these include space adaptation syndrome (SAS), which is also known as “space sickness”. True to its name, the symptoms of SAS include nausea and vomiting, vertigo, headaches, lethargy, and an overall feeling of unease.

Hawking has experienced zero gravity before, when he flew on Zero Gravity Corp’s modified Boeing 727 in 2007. Credit: Jim Campbell/Aero-News Network

Roughly 45% of all people who have flown in space have suffered from space sickness. The duration of varies, but cases have never been shown to exceed 72 hours, after which the body adapts to the new environment. And with the benefit of training, which includes acclimating to what weightlessness feels like, both the onset and duration can be mitigated.

Beyond NASA and other space agencies, private companies have also offered reduced gravity training to private customers. In 2004, the Zero Gravity Corporation (Zero-G, based in Arlington, Virginia) became the first company in the US to offer parabolic flights using a converted Boeing 727. In 2008, the company was acquired by Space Adventures, another Virginia-based space tourism company.

Much like Virgin Galactic, Space Adventures began offering clients advance bookings for sub-orbital flights, and has since expanded their vision to include lunar spaceflights. As such, the Zero-G experience has become their training platform, allowing clients the ability to experience weightlessness before going into space. In addition, some of the 700 clients who have already booked tickets with Virgin Galactic have used this same training method to prepare.

Similarly, Virgin Galactic is taking steps to prepare its astronauts for the day when they begin making regular flights into sub-orbit. According to the company, this will consist of astronauts taking part in a three day pre-flight preparation program that will be conducted onsite at Spaceport America – Virgin Galactic’s spaceflight facility, located in New Mexico.

Aside from microgravity, their astronaut training will also emphasize how to function when experiencing macrogravity (i.e. multi-g forces), which occur during periods of acceleration. The training will also include medical check-ups, psychological evaluations, and other forms of pre-flight prepation – much in the same way that regular astronauts are prepared for their journey. As they state on their website:

“Pre-flight preparation will ensure that each astronaut is mentally and physically prepared to savor every second of the spaceflight. Basic emergency response training prescribed by our regulators will be at the forefront. Activities to aid familiarity with the spaceflight environment will follow a close second.”

Blue Origin, meanwhile, has also been addressing concerns with regards to its plan to start sending tourists into suborbit in their New Shepard system. After launching from their pad outside of El Paso, Texas, the rocket will fly customers to an altitude of 100 km (62 mi) above the Earth. During this phase, the passengers will experience 3 Gs of acceleration – i.e. three times what they are used to.

Once it reaches space, the capsule will then detach from the rocket. During this time, the passengers will experience a few minutes of weightlessness. Between the intense acceleration and the feeling of freefall, many have wondered if potential clients should be worried about space sickness. These questions have been addressed by former NASA astronaut Nicholas Patrick, who now serves as Blue Origin’s human integration architect.

During an interview with Geekwire in January of 2017, he indicated that they plan to provide barf bags for customers to tuck into their flight suits, just in case. This is similar to what astronauts do aboard the International Space Station (see video above) and during long-term spaceflights. When asked about what customers could do to prepare for space sickness, he also emphasized that some training would be provided:

“It’s a short flight, so we won’t be asking people to train for a year, the way NASA astronauts trained for a shuttle flight, or three years, the way they train for a long space station mission. We’re going to get this training down to a matter of days, or less. That’s because we don’t have very many tasks. You need to know how to get out of your seat gracefully, and back into your seat safely.

“We’ll teach you a few safety procedures, like how to use the fire extinguisher – and maybe how to use the communication system, although that will come naturally to many people. What we’ll probably spend some time on is training people how to enjoy it. What are they going to take with them and use up there? How are they going to play? How are they going to experiment? Not too much training, just enough to have fun.”

“Getting sick to your stomach can be a problem on zero-G airplane flights like NASA’s “Vomit Comet,” but motion sickness typically doesn’t come up until you’ve gone through several rounds of zero-G. Blue Origin’s suborbital space ride lasts only 11 minutes, with a single four-minute dose of weightlessness.”

Bezos also addressed these questions in early April during the 33rd Space Symposium in Colorado Springs, where his company was showcasing the New Shepard crew capsule. Here too, audience members had questions about what passengers should do if they felt the need to vomit (among the other things) in space.

“They don’t throw up right away,” he said, referring to astronauts succumbing to space sickness. “We’re not going to worry about it… It takes about three hours before you start to throw up. It’s a delayed effect. And this journey takes ten or eleven minutes. So you’re going to be fine.”

On April 27th, during a special Q&A session of Twitch Science Week, Universe Today’s own Fraser Cain took part in a panel discussion about the future of space exploration. Among the panelists were and Ariane Cornell, the head of Astronaut Strategy and Sales for Blue Origin. When the subject of training and etiquette came up, she described the compact process Blue Origins intends to implement to prepare customers for their flight:

“[T]he day before flight is when we give you a full – intense, but very fun – day of training. So they are going to teach you all the crucial things that you need. So ingress, how do you get into the capsule, how do you buckle in. Egress, how do you get out of the seat, out of the hatch. We’re going to teach you some emergency procedures, because we want to make sure that you guys are prepared, and feel comfortable. We’re also going to teach you about zero-g etiquette, so then when we’re all up there and we’re doing our somersaults, you know… no Matrix scenes, no Kung Fu fighting – you gotta make sure that everybody gets to enjoy the flight.”

When asked (by Fraser) if people should skip breakfast, she replied:

“No. It’s the most important meal of the day. You’re going to want to have your energy and we’re pretty confident that you’re going to have a good ride and you’re not going to feel nauseous. It’s one parabola. And when we’ve seen people, for example, when they go on rides on NASA’s “Vomit Comet”… What we’ve seen from those types of parabolic flights is that people – if they get sick – its parabola six, seven, eight. It’s a delayed effect, really. We think that with that one parabola – four minutes – you’re going to enjoy every second of it.”

Another interesting issue was addressed during the 33rd Space Symposium was whether or not the New Shepard capsule would have “facilities”. When asked about this, Bezos was similarly optimistic. “Go to the bathroom in advance,” he said, to general laughter. “If you have to pee in 11 minutes, you got problems.” He did admit that with boarding, the entire experience could take up to 41 minutes, but that passengers should be able to wait that long (fingers crossed!)

But in the event of longer flights, bathroom etiquette will need to be an issue. After all, its not exactly easy to relieve oneself in an environment where all things – solid and liquid – float freely and therefore cannot simply be flushed away. Luckily, NASA and other space agencies have us covered there too. Aboard the ISS, where astronauts have to relieve themselves regularly, waste-disposal is handled by “zero-g toilets”.

Similar to what astronauts used aboard the Space Shuttle, a zero-g toilet involves an astronaut fastening themselves to the toilet seat. Rather than using water, the removal of waste is accomplished with a vacuum suction hole. Liquid waste is transferred to the Water Recovery System, where it is converted back into drinking water (that’s right, astronauts drink their own pee… sort of).

Solid waste is collected in individual bags that are stored in an aluminum container, which are then transferred to the docked spacecraft for disposal. Remember that scene in The Martian where Mark Watney collected his crew members solid waste to use as fertilizer? Well, its much the same. Poo in a bag, and then let someone remove it and deal with it once you get home.

When it comes to lunar tourism, space sickness and waste disposal will be a must. And when it comes to Elon Musk’s plan to start ferrying people to Mars in the coming decades – aboard his Interplanetary Transportation System – it will be an absolute must! It will certainly be interesting to see how those who intend to get into the lunar tourism biz, and those who want to colonize Mars, will go about addressing these needs.

In the meantime, keep your eyes on the horizon, keep your barf bags handy, and make sure your zero-g toilet has a tight seal!

Sources:

Cygnus Soars to Space on Atlas Carrying SS John Glenn on Course to Space Station

Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Orbital ATK’s Cygnus supply ship soared to space from the Florida Space Coast at lunchtime today, Tuesday, April 18, drenched in sunshine and carrying the ‘SS John Glenn’ loaded with over three and a half tons of precious cargo – bound for the multinational crew residing aboard the International Space Station (ISS).

Just like clockwork, Orbital ATK’s seventh cargo delivery flight to the station launched right on time at 11:11 a.m. EDT Tuesday at the opening of the launch window atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The ‘SS John Glenn’ Cygnus resupply spacecraft was manufactured by NASA commercial cargo provider Orbital ATK. The vehicle is also known alternatively as the Cygnus OA-7 or CRS-7 mission.

“This was a great launch,” said Joel Montalbano, NASA’s deputy manager of the International Space Station program, at the post launch media briefing at NASA’s Kennedy Space Center.

‘We have a vehicle on its way to the ISS.”

Orbital ATK’s 7th cargo delivery flight to the International Space Station launched at 11:11 a.m. EDT April 18, 2017 carrying the SS John Glenn atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida, as seen from the VAB roof at KSC. Credit: Ken Kremer/kenkremer.com

Huge crowds gathered at public viewing areas ringing Cape Canaveral and offering spectacular views from Playalinda Beach to the north, the inland waterway and more beautiful space coast beaches to the south.

Near perfect weather conditions and extended views of the rocket roaring to orbit greeted all those lucky enough to be on hand for what amounts to a sentimental third journey to space for American icon John Glenn.

The launch was carried live on NASA TV with extended expert commentary. Indeed this launch coverage was the final one hosted by NASA commentator George Diller- the longtime and familiar ‘Voice of NASA’ – who is retiring from NASA on May 31.

The serene sky blue skies with calm winds and moderate temperatures were punctuated with wispy clouds making for a thrilling spectacle as the rocket accelerated northeast up the US East Coast on a carefully choreographed trajectory to the massive orbiting outpost.

“The status of the spacecraft is great!” said Frank Culbertson, a former shuttle and station astronaut and now Orbital ATK’s Space Systems Group president.

Liftoff of Orbital ATK SS John Glenn OA-7 mission atop ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL on April 18, 2017, as seen from VAB roof at KSC. Credit: Julian Leek

The mission is named the ‘S.S. John Glenn’ in tribute to legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.

Glenn was one of the original Mercury Seven astronauts selected by NASA. At age 77 he later flew a second mission to space aboard Space Shuttle Discovery- further cementing his status as a true American hero.

Glenn passed away in December 2016 at age 95. He also served four terms as a U.S. Senator from Ohio.

A picture of John Glenn in his shuttle flight suit and a few mementos are aboard.

After a four day orbital chase Cygnus will arrive in the vicinity of the station on Saturday, April 22.

“It will be captured at about 6 a.m. EDT Saturday,” Montalbano elaborated.

Expedition 51 astronauts Thomas Pesquet of ESA (European Space Agency) and Peggy Whitson of NASA will use the space station’s Canadian-built robotic arm to grapple Cygnus, about 6:05 a.m. Saturday.

They will use the arm to maneuver and berth the unmanned vehicle to the Node-1 Earth-facing nadir port on the Unity module.

Cygnus will remain at the space station for about 85 days until July before its destructive reentry into Earth’s atmosphere, disposing of several thousand pounds of trash.

The countdown for today’s launch of the 194-foot-tall two stage United Launch Alliance (ULA) rocket began when the rocket was activated around 3 a.m. The rocket was tested during a seven-hour long countdown.

This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission. Each Cygnus is named after a deceased NASA astronaut.

“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions. “Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”

“The Atlas V performed beautifully,” said Thorpe at the post launch briefing.

The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.

Cygnus OA-7 is loaded with 3459 kg (7626 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.

The official OA-7 payload manifest includes the following:

TOTAL PRESSURIZED CARGO WITH PACKAGING: 7,442.8 lbs. / 3,376 kg

• Science Investigations 2,072.3 lbs. / 940 kg
• Crew Supplies 2,103.2 lbs. / 954 kg
• Vehicle Hardware 2,678.6 lbs. / 1,215 kg
• Spacewalk Equipment 160.9 lbs. / 73 kg
• Computer Resources 4.4 lbs. / 2 kg
• Russian Hardware 39.7 lbs. / 18 kg

UNPRESSURIZED CARGO (CubeSats) 183 lbs. / 83 kg

The Orbital ATK Cygnus CRS-7 (OA-7) mission launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration (XEPF) to accommodate the enhanced, longer Cygnus variant being used.

“ULA is excited to be a part of the team that delivered such an important payload to astronauts aboard the ISS,” said Gary Wentz, ULA vice president of Human and Commercial Systems, in a statement.

“Not only are we delivering needed supplies as the first launch under our new RapidLaunch™ offering, but we are truly honored to launch a payload dedicated to John Glenn on an Atlas V, helping to signify the gap we plan to fill as we start launching astronauts from American soil again in 2018.”

The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. There are no side mounted solids on the first stage. The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C-1 engine.

Overall this is the 71st launch of an Atlas V and the 36th utilizing the 401 configuration.

The 401 is thus the workhorse version of the Atlas V and accounts for half of all launches.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for April 18 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital ATK SS John Glenn CRS-7 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the United Launch Alliance Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com

SS John Glenn to Debut as World’s 1st Live 360 Degree Video of Rocket Launch April 18

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Imagine watching a real rocket launch in a 360 degree live video broadcast. Well NASA is about to make it happen for the first time in a big way and on a significant mission.

On Tuesday April 18, NASA will broadcast the launch of the ‘S.S. John Glenn’ space station cargo freighter in a feat marking the world’s first live 360-degree stream of a rocket launch – namely the United Launch Alliance (ULA) Atlas V rocket.

The ‘S.S. John Glenn’ is named in honor of legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.

The late morning daytime launch offers the perfect opportunity to debut this technology with the rocket magnificently visible atop a climbing plume of smoke and ash – and with a “pads-eye” view!

The ‘S.S. John Glenn’ is actually a Cygnus resupply spacecraft built by NASA commercial cargo provider Orbital ATK for a cargo mission heading to the International Space Station (ISS) – jam packed with nearly 4 tons or research experiments and gear for the stations Expedition 51 crew of astronauts and cosmonauts.

“NASA, in coordination with United Launch Alliance (ULA) and Orbital ATK, will broadcast the world’s first live 360-degree stream of a rocket launch,” the agency announced in a statement.

“The live 360 stream enables viewers to get a pads-eye view.”

The Cygnus spaceship will launch on a ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Liftoff of the S.S. John Glenn on Orbital ATK’s seventh commercial resupply services mission to the ISS – dubbed OA-7 or CRS-7 – is slated for 11:11 a.m. EDT Tuesday, April 18.

The launch window lasts 30 minutes and runs from 11;11-11:41 a.m. EDT.

You can watch the live 360 stream of the Atlas V/OA-7 cargo resupply mission liftoff to the ISS on the NASA Television YouTube channel starting 10 minutes prior to lift off at:

http://youtube.com/nasatelevision

The sunshine state’s weather outlook is currently very promising with a forecast of an 80% chance of favorable ‘GO’ conditions at launch time Tuesday morning.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The S.S. John Glenn will carrying more than 7,600 pounds of science research, crew supplies and hardware to the orbiting outpost.

How can you watch the streaming 360 video? Read NASA’s description:

“To view in 360, use a mouse or move a personal device to look up and down, back and forth, for a 360-degree view around Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida. Note: not all browsers support viewing 360 videos. YouTube supports playback of 360-degree videos on computers using Chrome, Firefox, Internet Explorer and Opera browsers. Viewers may use the YouTube app to view the launch on a smart phone. Those who own virtual reality headsets will be able to look around and experience the view as if they were actually standing on the launch pad.”

“While virtual reality and 360 technology have been increasing in popularity, live 360 technology is a brand new capability that has recently emerged. Recognizing the exciting possibilities opened by applying this new technology to spaceflight, NASA, ULA, and Orbital ATK seized this opportunity to virtually place the public at the base of the rocket during launch. Minimum viewing distance is typically miles away from the launch pad, but the live 360 stream enables viewers to get a pads-eye view.”

A ULA Atlas V rocket carrying the EchoStar 19 high speed internet satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

The naming announcement for the ‘S.S. John Glenn’ was made by spacecraft builder Orbital ATK during a ceremony held inside the Kennedy Space Center (KSC) clean room facility when the cargo freighter was in the final stages of flight processing – and attended by media including Universe Today on March 9.

“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony inside the Payload Hazardous Servicing Facility (PHFS) high bay at NASA’s Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the SS John Glenn/ULA Atlas V launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Apr 17-19: “SS John Glenn/ULA Atlas V launch to ISS, SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

In this Oct. 23, 2016 image, the International Space Station’s Canadarm2 robotic arm captures Orbital ATK’s Cygnus cargo spacecraft on its sixth mission to the station. The company’s seventh cargo resupply mission is targeted for launch April 18 from NASA’s Kennedy Space Center. Credits: NASA

Take a Peek Inside Blue Origin’s New Shepard Crew Capsule

Take a peek inside Blue Origin's New Shepard crew capsule. Credit: Blue Origin.

Blue Origin founder Jeff Bezos provided a sneak peek today into the interior of the New Shepard crew capsule, the suborbital vehicle for space tourism. He released a few images which illustrate what the flight experience might be like on board.

“Our New Shepard flight test program is focused on demonstrating the performance and robustness of the system,” Bezos said via an email release. “In parallel, we’ve been designing the capsule interior with an eye toward precision engineering, safety, and comfort.”

Take a look:

A view of the interior of the New Shepard crew capsule from Blue Origin. Credit: Blue Origin.

The interior has six seats with large windows for a great view of our planet.

“Every seat’s a window seat,” Bezos said.

What looks like a console in the center of the capsule is actually the escape motor to protect future passengers from any anomaly during launch. Unlike the Apollo escape system that used an escape “tower” motor located on top of the capsule to ‘pull’ the crew cabin away from a failing booster, New Shepard’s escape system is mounted underneath the capsule, to ‘push’ the capsule away from a potentially exploding booster. Blue Origin successfully tried out this escapes motor in October 2016 during an in-flight test.

Blue Origin touts the view from the New Shepard crew capsule as ‘the largest windows ever in space.’ Credit: Blue Origin.

Blue Origin’s suborbital rocket is named after Alan Shepard, the first NASA astronaut to take a suborbital trip to space in 1961. Their orbital rocket will be named New Glenn, named for John Glenn, the first American in orbit. Blue Origin is also developing a larger rocket to bring payloads beyond Earth orbit, and they’ve named that vehicle after Neil Armstrong, the first human to walk on the Moon.

Blue Origin hasn’t released a timeline yet of when they will be flying their first paying passengers; all Bezos has said is that he hopes to fly as soon as possible.

The commercial company describes the experience this way:

Following a thrilling launch, you’ll soar over 100 km above Earth—beyond the internationally recognized edge of space. You’ll help extend the legacy of space explorers who have come before you, while pioneering access to the space frontier for all.

Sitting atop a 60-foot-tall rocket in a capsule designed for six people, you’ll feel the engine ignite and rumble under you as you climb through the atmosphere. Accelerating at more than 3 Gs to faster than Mach 3, you will count yourself as one of the few who have gone these speeds and crossed into space.

Blue Origin’s black feather logo on the New Shepard rocket is ‘a symbol of the perfection of flight,’ says founder Jeff Bezos. Credit: Blue Origin.

“We are building Blue Origin to seed an enduring human presence in space, to help us move beyond this blue planet that is the origin of all we know,” Bezos said in the press release after a successful test flight of the New Shepard rocket in 2015. “We are pursuing this vision patiently, step-by-step. Our fantastic team in Kent, Van Horn and Cape Canaveral is working hard not just to build space vehicles, but to bring closer the day when millions of people can live and work in space.”

Blue Origin’s black feather logo on the New Shepard rocket is ‘a symbol of the perfection of flight,’ says founder Jeff Bezos, and “flight with grace and power in its functionality and design.”

Their moto, “Gradatim Ferociter” is Latin for “Step by Step, Ferociously.” Bezos has said that is how they are approaching their goals in spaceflight.

Find out more about the Blue Origin “Astronaut Experience” on their website.

If you’re lucky enough to be attending the 33rd Space Symposium in Colorado Springs April 3-6, 2017, you can see the New Shepard capsule for yourself. “The high-fidelity capsule mockup will be on display alongside the New Shepard reusable booster that flew to space and returned five times.” Bezos said.

What’s the Difference Between a Rocket and Space Plane? Amazing Hand-Drawn Animations Explain It All

You gotta love Earth’s atmosphere. It basically makes life (as we know it) possible on our planet by providing warmth and air to breathe, as well as protecting us from nasty space things like radiation and smaller asteroids. But for studying space (i.e., astronomy) or coming back to Earth from space, the atmosphere is a pain.

Last year, we introduced you to freelance animator and storyboard artist Stanley VonMedvey, who started creating short, hand-drawn videos to explain a complex topic: how spacecraft work. These videos are wonderfully concise, clear and easy to understand. Plus Stan’s hand-drawn animations are incredible.

His series, “Stan Draws Spaceships” now has a new video that shows the complexities of how spacecraft return to Earth through our atmosphere, comparing the partially reusable Falcon 9 and fully reusable Skylon. Take a look below. Again, the hand-drawn animations are impeccable and Stan’s explanations are just captivating.

I was trying to think of sufficient accolades for Stan’s work, but I can’t do any better than one commentor on Stan’s YouTube Channel. MarsLettuce said, “The attention to detail here is insane. The air intake being shorn off by drag was especially great. The sequence of her hands making the paper plane was subdued, but it added a lot. The characters were really well done, too. I love the reaction of Stan being hit by the paper airplane. It’s hilarious.”

Stan’s earlier videos explain expendable launch vehicles and the space shuttle.

He describes himself as “completely obsessed with and fascinated by space exploration,” and he wants to share what he’s learned over the years about spaceflight.

Stan would like the opportunity and resources to make more videos, and has started a Patreon page to help in this process. Right now, he creates the videos on his own (he told us he uses the time-honored home-recording technique of draping a blanket over his head) in his home office. It takes him roughly 2.5 months to produce a 5 minute episode.

“I’d like to make a lot more videos,” he writes on Patreon, “explaining things like Hohmman transfers and laser propulsion and the construction techniques of O’Neill cylinders. I want to make long form videos (2-3 minutes) that explain a general idea, and short form videos (30 seconds) that cover a single word, like “ballistics” or “reaction control.”

An artist’s conception of Reaction Engines’ Skylon spacecraft. Credit: Reaction Engines

So, check out Stan’s videos and his Patreon page. If you’d like to see more, consider supporting his work. See more of his drawings at his website.

NASA Twins Study Researchers Take Genetic Data To Next Level

NASA is beginning to integrate the results of its twin study on astronauts Mark and Scott Kelly. Image: NASA

People who plan and conduct space missions never tire of telling us how hard it is to do things in space.

Our next big goal is getting humans to Mars, and establishing a colony there. There are a multitude of technical and engineering hurdles to be overcome, but we think we can do it.

But the other side of the coin is the physiological hurdles to be overcome. Those may prove to be much more challenging to deal with. NASA’s twins study is poised to add an enormous amount of data to our growing body of knowledge on the effects of space travel on human beings.

NASA's astronauts twins, Scott Kelly (l) and Mark Kelly (r). Image: NASA
NASA’s astronaut twins, Scott Kelly (l) and Mark Kelly (r). Image: NASA

Astronaut twins Scott and Mark Kelly are the basis of NASA’s study. Scott spent a year in space, returning to Earth on March 1st 2016, after spending 340 days aboard the ISS. Mark, himself a retired astronaut, remained on Earth during Scott’s year in space, providing a baseline for studying the effects on the human body of such a prolonged period of time away from Earth.

In February of 2016, NASA released preliminary results of the study. Now, the team studying the results of the twins study has started integrating the data. The way they’re doing this sets it apart from other studies.

“No one has ever looked this deeply at a human subject and profiled them in this detail.” – Tejaswini Mishra, Ph.D., Stanford University School of Medicine.

Typically, individual studies are released to appropriate journals more or less one at a time. But in the twins study, the data will be integrated and summarized before individual papers are published on separate themes. The idea is that taken together, their impact on our understanding of prolonged time in space will be much greater.

“The beauty of this study is when integrating rich data sets of physiological, neurobehavioral and molecular information, one can draw correlations and see patterns,” said Tejaswini Mishra, Ph.D., research fellow at Stanford University School of Medicine, who is creating the integrated database, recording results and looking for correlations. “No one has ever looked this deeply at a human subject and profiled them in this detail. Most researchers combine maybe two to three types of data but this study is one of the few that is collecting many different types of data and an unprecedented amount of information.”

“Each investigation within the study complements the other.” – Brinda Rana, Ph.D., U of C, San Diego School of Medicine

Mike Snyder, Ph.D, is the head of a team of people at Stanford that will work to synthesize the data. There are roughly three steps in the overall process:

  1. Individual researchers in areas like cognition, biochemistry, and immunology will analyze and compile their data then share their results with the Stanford team.
  2. The Stanford team will then further integrate those results into larger data sets.
  3. Those larger data sets will then be reviewed and analyzed to confirm and modify the initial findings.

“There are a lot of firsts with this study and that makes it exciting,” said Brinda Rana, Ph.D., associate professor of psychiatry, University of California San Diego School of Medicine. “A comparative study with one twin in space and one on Earth has never been done before. Each investigation within the study complements the other.”

NASA compares the twins study, and the new integrated method of handling all the results, to conducting a symphony. Each study is like an instrument, and instead of each one playing a solo, they will be added into a greater whole. The team at Stanford is like the conductor. If you’ve ever listened to an orchestra, you know how powerful that can be.

“The human systems in the body are all intertwined which is why we should view the data in a holistic way,” said Scott M. Smith, Ph.D., NASA manager for nutritional biochemistry at the Johnson Space Center. He conducts biochemical profiles on astronauts and his research is targeted to specific metabolites, end products of various biological pathways and processes.

“It is a more comprehensive way to conduct research.” – Chris Mason, Ph.D., associate professor, Department of Physiology and Biophysics Weill Cornell Medicine

Chris Mason Ph.D., at Weill Cornell Medicine said, “Both the universe and the human body are complicated systems and we are studying something hard to see. It’s like having a new flashlight that illuminates the previously dark gears of molecular interactions. It is a more comprehensive way to conduct research.”

Scientists involved with the twins study are very clearly excited about this new approach. Having twin astronauts is an extraordinary opportunity, and will advance our understanding of spaceflight on human physiology enormously.

“There is no doubt, the learnings from integrating our data will be priceless,” said Emmanuel Mignot, M.D., Ph.D., director of Center for Sleep Science and Medicine, Stanford University School of Medicine. He studies the immune system and is enthusiastic to study specific immune cell populations because many of the other immune studies focus only on general factors.

A summary of the early results should be out by early 2018, or possible late 2017. Individual papers on more detailed themes will follow shortly.

Canada To Get Its Own Spaceport

8 Ukrainian-built Cyclone 4 rockets will be launched each year from Maritime Launch Services' planned spaceport in Nova Scotia, Canada. Image: Maritime Launch Services

Canada is getting its own rocket-launching facility. Maritime Launch Services (MLS) has confirmed its plans to build and operate a commercial launch facility in Nova Scotia, on Canada’s east coast. The new spaceport should begin construction in 1 year, and should be in operation by 2022.

The facility will be built near Canso, in the province of Nova Scotia. Maritime Launch Services hopes to launch 8 rockets per year to place satellites in orbit. The Ukrainian Cyclone 4M medium-class rockets that will lift-off from Canso will have a payload of up to 3,350 kg.

The red marker in the map above shows the location of the Maritime Launch Services spaceport. Image: Google

Spaceports have certain requirements that make some locations more desirable. They need to be near transportation infrastructure so that rockets, payloads, and other materials can be transported to the site. They need to be away from major population centres in case of accidents. And they need to provide trajectories that give them access to desirable orbits.

The Nova Scotia site isn’t the only location considered by MLS. They evaluated 14 sites in North America before settling on the Canso, NS site, including ones in Mexico and the US. But it appears that interest and support from local governments helped MLS settle on Canso.

The Ukrainian Cyclone M4 rockets have an excellent track record for safety. The company who builds it, Yuzhnoye, has been in operation for 62 years and has launched 875 vehicles and built and launched over 400 spacecraft. Cyclone rockets have launched successfully 221 times.

The Cyclone 4. The Cyclone family of rockets have over 200 successful launches to their credit. Image: Yuzhnoye Design Office
The Cyclone 4. The Cyclone family of rockets have over 200 successful launches to their credit. Image: Yuzhnoye Design Office

MLS is a group of American aerospace experts including people who have worked with NASA. They are working with the makers of the Cyclone 4 rocket, who have wanted to open up operations in North America for some time.

The Cyclone rocket family first started operating in 1969. The Cyclone 4 is the newest and most powerful rocket in the Cyclone family. It’s a 3-stage rocket that runs on UDMH fuel and uses nitrogen tetroxide for an oxidizer.

There have been other proposals for a Canadian spaceport. The Canadian Space Agency was interested in Cape Breton, also in Nova Scotia, as a launch site for small satellites in 2010. A Canadian-American consortium called PlanetSpace also looked at a Nova Scotia site for a launch facility, but they failed to get the necessary funding from NASA in 2008. Fort Churchill, in the Province of Manitoba, was the site of over 3,500 sub-orbital flights before being shut down in 1985.

The Canso launch facility is an entirely private business proposal. Neither the Canadian government nor the Canadian Space Agency are partners. It’s not clear if having a launch facility on Canadian soil will impact the CSA’s activities in any way.

But at least Canadians won’t have to leave home to watch rocket launches.

Next Cygnus Cargo Ship Christened the SS John Glenn to Honor First American in Orbit

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA's original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com
The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The next Cygnus cargo ship launching to the International Space Station (ISS) has been christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The naming announcement was made by spacecraft builder Orbital ATK during a ceremony with the ‘S.S. John Glenn’, held inside the Kennedy Space Center (KSC) clean room facility where the cargo freighter is in the final stages of flight processing – and attended by media including Universe Today on Thursday, March 9.

“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony in the inside the Payload Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center in Florida.

The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The S.S. John Glenn is scheduled to liftoff as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

The space station resupply mission dubbed Cygnus OA-7 is dedicated to Glenn and his landmark achievement as the first American to orbit the Earth on Feb. 20, 1962 and his life promoting science, human spaceflight and education.

“John Glenn was probably responsible for more students studying math and science and being interested in space than anyone,” said former astronaut Brian Duffy, Orbital ATK’s vice president of Exploration Systems, during the clean room ceremony on March 9.

“When he flew into space in 1962, there was not a child then who didn’t know his name. He’s the one that opened up space for all of us.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

Glenn’s 3 orbit mission played a pivotal role in the space race with the Soviet Union at the height of the Cold War era.

“He has paved the way for so many people to follow in his footsteps,” said DeMauro.

All of Orbital ATK’s Cygnus freighters have been named after deceased American astronauts.

Glenn is probably America’s most famous astronaut in addition to Neil Armstrong, the first man to walk on the moon during Apollo 11 in 1969.

John Glenn went on to become a distinguished U.S. Senator from his home state of Ohio on 1974. He served for 24 years during 4 terms.

He later flew a second mission to space aboard the Space Shuttle Discovery in 1998 as part of the STS-95 crew at age 77. Glenn remains the oldest person ever to fly in space.

“Glenn paved the way for America’s space program, from moon missions, to the space shuttle and the International Space Station. His commitment to America’s human space flight program and his distinguished military and political career make him an ideal honoree for the OA-7 mission,” Orbital ATK said in a statement.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

“The OA-7 mission is using the Enhanced Cygnus Pressurized Cargo Module (PCM) to deliver cargo to the International Space Station,” said DeMauro.

Cygnus will carry 7,700 pounds (3500 kg) of cargo to the station with a total volumetric capacity of 27 cubic meters.

“All these teams have worked extremely hard to get this mission to this point and we are looking forward to a great launch.”

Orbital ATK Cygnus OA-7 supply ship named the SS John Glenn undergoes processing inside the Payload Hazardous Servicing Facility at KSC on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission.

“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions.

“Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Overall this is Orbital ATK’s seventh commercial resupply services mission (CRS) to the space station under contract to NASA.

OA-7 also counts as NASA’s second supply mission of the year to the station following last month’s launch of the SpaceX Dragon CRS-10 capsule on Feb. 19 and which is currently berthed to the station at a Earth facing port on the Harmony module.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 mission will launch again from NASA Wallops in the summer of 2017, DeMauro told me.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Posing with the newly christened SS John Glenn for the Cygnus OA-7 resupply mission to the ISS are Vern Thorp, United Launch Alliance Program program manager for Commercial Missions, Ken Kremer, Universe Today and Frank DeMauro, Orbital ATK vice president and general manager of Orbital ATK’s Advanced Programs division inside the Payload Hazardous Servicing Facility cleanroom at NASA’s Kennedy Space Center on March 9, 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Are Fast Radio Bursts Evidence Of Alien Activity?

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. Could the part of the beam that misses the sail be our mysterious Fast Radio Bursts? Image Credit: M. Weiss/CfA

The extremely energetic events that we see out there in the Universe are usually caused by cataclysmic astrophysical events and activities of one sort or another. But what about Fast Radio Bursts? A pair of astrophysicists at Harvard say that the seldom seen phenomena could, maybe, possibly, be evidence of an advanced alien technology.

Fast radio bursts (FRBs) are short-lived radio pulses that last only a few milliseconds. It’s been assumed that they have some astrophysical cause. Fewer than 2 dozen of them have been detected since their discovery in 2007. They’re detected by our huge radio telescopes like the Arecibo Observatory in Puerto Rico, and the Parkes Observatory in Australia. They’re extremely energetic, and their source is a great distance from us.

The NSF’s Arecibo Observatory, which is located in Puerto Rico, is the world largest radio telescope. Arecibo detected 11 FRBs over the course of 2 months. Credit: NAIC

The two astrophysicists, Avi Loeb at the Harvard-Smithsonian Center for Astrophysics, and Manasvi Lingam at Harvard University, decided to investigate the possibility that FRBs have an alien technological origin.

“Fast radio bursts are exceedingly bright given their short duration and origin at great distances, and we haven’t identified a possible natural source with any confidence. An artificial origin is worth contemplating and checking.” – Avi Loeb, Harvard-Smithsonian Center for Astrophysics

I’ll Take ‘Alien Signals’ For $200 Alex

Loeb and Lingam began by calculating how much energy would be needed to send a signal that strong across such an enormous distance. They found that doing so with solar energy requires a solar array with an area twice the surface area of Earth. That would be enough energy, if the alien civilization was as close as we are to a star similar to our Sun.

Obviously, such a massive construction project is well beyond us. But however unlikely it sounds, it can’t be ruled out.

The pair also asked themselves questions about the viability of such a project. Would the heat and energy involved in such a solar array melt the structure itself? Their answer is that water-cooling would be sufficient to keep an array like this operating.

Their next question was, “Why build something like this in the first place?”

I’ll Take ‘Alien Spacecraft Propulsion Systems’ For $400 Alex”

The thinking behind their idea is based on an idea that we ourselves have had: Could we power a spacecraft by pushing on it with lasers? Or Microwaves? If we’ve thought of it, why wouldn’t other existing civilizations? If another civilization were doing it, what would the technology look like?

Their investigation shows that the engineering they’re talking about could power a spacecraft with a payload of a million tons. That would be about 20 times bigger than our largest cruise ship. According to Lingam, “That’s big enough to carry living passengers across interstellar or even intergalactic distances.”

If FRBs are indeed the result of an alien propulsion system, here’s how it would work: Earth is rotating and orbiting, which means the alien star and galaxy are moving relative to us. That’s why we would only see a brief flash. The beam sweeps across the sky and only hits us for a moment. The repeated appearance of the FRB could be a clue to its alien, technological origin.

The authors of the study outlining this thinking know that it’s speculative. But it’s their job to speculate within scientific constraints, which they have done. As they say in the conclusion of their paper, “Although the possibility that FRBs are produced by extragalactic civilizations is more speculative than an astrophysical origin, quantifying the requirements necessary for an artificial origin serves, at the very least, the important purpose of enabling astronomers to rule it out with future data.”

There are other interpretations when it comes to FRBs, of course. The others of another paper say that for at least one group of FRBs, known as FRB 121102, the source is likely astrophysical. According to them, FRBs likely come from “a young, highly magnetized, extragalactic neutron star.”

Lurking behind these papers are some intriguing questions that are also fun to ponder.

If the system required a solar array twice the size of Earth, where would the materials come from? If the system required water-cooling to avoid melting, where would all the water come from? It’s impossible to know, or to even begin speculating. But a civilization able to do something like this would have to be master engineers and resource exploiters. That goes without saying.

Why they might do it is another question. Probably the same reasons we would: curiosity and exploration, or maybe to escape a dying world.

Either that or they ran out of beer.

Curiosity Watches a Dust Devil Go Past

Curiosity rover raises robotic arm high while scouting the Bagnold Dune Field and observing dust devils inside Gale Crater on Mars on Sol 1625, Mar. 2, 2017, in this navcam camera mosaic stitched from raw images and colorized. Note: Wheel tracks at right, distant crater rim in background. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Curiosity rover raises robotic arm high while scouting the Bagnold Dune Field and observing dust devils inside Gale Crater on Mars on Sol 1625, Mar. 2, 2017, in this navcam camera mosaic stitched from raw images and colorized. Note: Wheel tracks at right, distant crater rim in background. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Tis a season of incredible wind driven activity on Mars like few before witnessed by our human emissaries ! Its summer on the Red Planet and the talented scientists directing NASA’s Curiosity rover have targeted the robots cameras so proficiently that they have efficiently spotted a multitude of ‘Dust Devils’ racing across across the dunes fields of Gale Crater– see below.

The ‘Dust Devils’ are actually mini tornadoes like those seen on Earth.

But in this case they are dancing delightfully in the Bagnold Dune fields on Mars, as Curiosity surpassed 1625 Sols, or Martian days of exciting exploration and spectacular science and discovery.

This sequence of images shows a dust-carrying whirlwind, called a dust devil, on lower Mount Sharp inside Gale Crater, as viewed by NASA’s Curiosity Mars Rover during the summer afternoon of Sol 1613 (Feb. 18, 2017). The navcam camera images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. Contrast has been modified to make frame-to-frame changes easier to see. A black frame provides a marker between repeats of the sequence. Credit: NASA/JPL-Caltech/TAMU

Furthermore they whip up the dust more easily in the lower gravity field on Mars compared to Earth. Mars gravity is about one third of Earth’s.

Right now it’s summer inside the rovers southern hemisphere landing site at Gale Crater. And summer is the windiest time of the Martian year.

“Dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere,” as described by researchers.

So now is the best time to observe and photograph the dusty whirlwinds in action as they flitter amazingly across the craters surface carrying dust in their wake.

This sequence of images shows a dust-carrying whirlwind, called a dust devil, scooting across ground inside Gale Crater, as observed on the local summer afternoon of NASA’s Curiosity Mars Rover’s 1,597th Martian day, or sol (Feb. 1, 2017). Set within a broader southward view from the rover’s Navigation Camera, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated in this animation. Credits: NASA/JPL-Caltech/TAMU

Therefore researchers are advantageously able to utilize Curiosity in a new research campaign that “focuses on modern wind activity in Gale” on the lower slope of Mount Sharp — a layered mountain inside the crater.

NASA’s Curiosity rover explores sand dunes inside Gale Crater with Mount Sharp in view on Mars on Sol 1611, Feb. 16, 2017, in this navcam camera mosaic stitched from raw images and colorized. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Indeed, this past month Curiosity began her second sand dune campaign focusing on investigating active dunes on the mountain’s northwestern flank that are ribbon-shaped linear dunes.

“In these linear dunes, the sand is transported along the ribbon pathway, while the ribbon can oscillate back and forth, side to side,” said Nathan Bridges, a Curiosity science team member at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, in a statement.

The left side of this 360-degree panorama from NASA’s Curiosity Mars rover shows the long rows of ripples on a linear shaped dune in the Bagnold Dune Field on the northwestern flank of Mount Sharp. The rover’s Navigation Camera recorded the component images of this mosaic on Feb. 5, 2017. Credits: NASA/JPL-Caltech

These new dunes are different from those investigated during the first dune campaign back in late 2015 and early 2016 that examined crescent-shaped dunes, including Namib Dune in our mosaic below.

The initial dune campaign actually involved the first ever up-close study of active sand dunes anywhere other than Earth, as I reported at the time.

Curiosity explores Red Planet paradise at Namib Dune during Christmas 2015 – backdropped by Mount Sharp. Curiosity took first ever self-portrait with Mastcam color camera after arriving at the lee face of Namib Dune. This photo mosaic shows a portion of the full self portrait and is stitched from Mastcam color camera raw images taken on Sol 1197, Dec. 19, 2015. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

By snapping a series of targeted images pointed in just the right direction using the rovers mast mounted navigation cameras, or navcams, the researchers have composed a series of ‘Dust Devil’ movies – gathered together here for your enjoyment.

“We’re keeping Curiosity busy in an area with lots of sand at a season when there’s plenty of wind blowing it around,” said Curiosity Project Scientist Ashwin Vasavada of NASA’s Jet Propulsion Laboratory, Pasadena, California.

“One aspect we want to learn more about is the wind’s effect on sorting sand grains with different composition. That helps us interpret modern dunes as well as ancient sandstones.”

The movies amply demonstrate that Mars is indeed an active world and winds are by far the dominant force shaping and eroding the Red Planets alien terrain – despite the thin atmosphere less than 1 percent of Earth’s.

Indeed scientists believe that wind erosion over billions of years of time is what caused the formation of Mount Sharp at the center of Gale Crater by removing vast amounts of dust and sedimentary material — about 15,000 cubic miles (64,000 cubic kilometers) — as Mars evolved from a wet world to the dry, desiccated planet we see today.

Gale crater was originally created over 3.6 billion years ago when a gigantic asteroid or comet smashed into Mars. The devastating impact “excavated a basin nearly 100 miles (160 kilometers) wide. Sediments including rocks, sand and silt later filled the basin, some delivered by rivers that flowed in from higher ground surrounding Gale.”

Winds gradually carved away so much sediment and dirt that we are left with the magnificent mountain in view today.

The whirlwinds called “dust devils” have been recorded moving across terrain in the crater, in sequences of afternoon images taken several seconds apart.

The contrast has been enhanced to better show the dust devils in action.

Watch this short NASA video showing Martian Dust Devils seen by Curiosity:

Video Caption: Dust Devils On Mars Seen by NASA’s Curiosity Rover. On recent summer afternoons on Mars, navigation cameras aboard NASA’s Curiosity Mars rover observed several whirlwinds carrying Martian dust across Gale Crater. Dust devils result from sunshine warming the ground, prompting convective rising of air. All the dust devils were seen in a southward direction from the rover. Timing is accelerated and contrast has been modified to make frame-to-frame changes easier to see. Credit: NASA/JPL

The team is also using the probes downward-looking Mars Descent Imager (MARDI) camera for a straight down high resolution up-close view looking beneath the rover. The purpose is to check for daily movement of the dunes she is sitting on to see “how far the wind moves grains of sand in a single day’s time.”

This pair of images shows effects of one Martian day of wind blowing sand underneath NASA’s Curiosity Mars rover on a non-driving day for the rover. Each image was taken just after sundown by the rover’s downward-looking Mars Descent Imager (MARDI). The area of ground shown in the images spans about 3 feet (about 1 meter) left-to-right. The images were taken on Jan. 23, 2017 (Sol 1587) and Jan. 24, 2017 (Sol 1588). The day-apart images by MARDI were taken as a part of investigation of wind’s effects during Martian summer, the windiest time of year in Gale Crater. Credit: NASA/JPL-Caltech/MSSS

These dune investigations have to be done now, because the six wheeled robot will soon ascend Mount Sharp, the humongous layered mountain at the center of Gale Crater.

Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.

“Before Curiosity heads farther up Mount Sharp, the mission will assess movement of sand particles at the linear dunes, examine ripple shapes on the surface of the dunes, and determine the composition mixture of the dune material,” researchers said.

NASA’s Curiosity rover extends robotic arm to investigate sand dunes inside Gale Crater on Mars on Sol 1619, Feb. 24, 2017. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Curiosity is also using the science instruments on the robotic arm turret to gather detailed research measurements with the cameras and spectrometers.

As of today, Sol 1625, March 2, 2017, Curiosity has driven over 9.70 miles (15.61 kilometers) since its August 2012 landing inside Gale Crater, and taken over 391,000 amazing images.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This map shows the two locations of a research campaign by NASA’s Curiosity Mars rover mission to investigate active sand dunes on Mars. In late 2015, Curiosity reached crescent-shaped dunes, called barchans. In February 2017, the rover reached a location where the dunes are linear in shape. Credits: NASA/JPL-Caltech/Univ. of Arizona
This map shows the route driven by NASA’s Mars rover Curiosity through Sol 1612 (February 17, 2017) of the rover’s mission on Mars. The base image from the map is from the High Resolution Imaging Science Experiment Camera (HiRISE) in NASA’s Mars Reconnaissance Orbiter. Image Credit: NASA/JPL-Caltech/Univ. of Arizona