Soyuz Poised for High Stakes November 13 Blastoff – Space Stations Fate Hinges on Success

The Soyuz TMA-22 spacecraft and its booster were moved to the launch pad at the Baikonur Cosmodrome in Kazakhstan on a railcar on November 11, 2011, for final preparations prior to launch to the International Space Station on November 14, Baikonur time. Credit: Roscosmos

[/caption]

The stakes could not be higher for the Russian Soyuz rocket now poised at the launch pad at Baikonur in Kazakhstan and which will loft the next trio of space flyers to the International Space Station on Sunday, Nov. 13. This is the first flight of a manned Soyuz rocket since the Space Shuttle was retired in July and the subsequent failure of an unmanned Soyuz booster in August of this year.

The booster was rolled out to the pad on Friday (Nov. 11) and the very fate of the Space Station and the partners $100 Billion investment hinges on a successful blastoff of the venerable Soyuz – which dates back to cosmonaut Yuri Gagarin and the inauguration of human spaceflight 50 years ago. This launch must succeed in order to keep a human presence aboard the ISS and comes in the wake of an upper stage failure days ago that left Russia’s ambitious Phobos-Grunt Mars mission stranded in Earth orbit and potentially doomed. See the Soyuz rollout video and pictures below

The Soyuz rocket and spacecraft were rolled out on a rail car at Baikonur


Video Caption – Rollout of Soyuz TMA-22 spacecraft and booster to Baikonur launch pad in Kazahkstan.

Following the August 24 launch failure and crash of a Soyuz rocket carrying the Progress 44 cargo resupply vehicle to the ISS, Russia’s manned space program was grounded because the third stage of the Soyuz rocket which malfunctioned is virtually identical for both the manned and unmanned versions.

Since NASA was forced to shut down the Space Shuttle program, the Russian Soyuz rocket and capsule are the sole method of transport to the ISS. Thus, American astronauts have no choice but to hitch a ride with the Russians.

No American replacement spacecraft will be ready for humans until 2014 at the very earliest. And significant NASA budget cuts are likely to delay the introduction of the proposed “space taxis” by several more years.

Soyuz TMA-22 rolls on railcar to the launch pad at the Baikonur Cosmodrome. Credit: Roscosmos

Liftoff off the three man crew aboard the Soyuz-TMA 22 capsule from the Baikonur Cosmodrome in Kazakhstan is slated for 11:14 p.m. EST Sunday Nov. 13 (11:14 a.m. Baikonur time Monday, Nov. 14) aboard the Soyuz TMA-22 spacecraft.

Originally, the launch of the Soyuz TMA-22 crew had been scheduled for September 22 but was immediately put on indefinite hold following the August 24 crash.

Russia promptly announced the formation of a special state commission to investigate the failure, which rapidly traced the malfunction to a clogged fuel line and instituted fixes and stricter quality control measures.

Fortunately, the program got back on track 10 days ago when the Soyuz rocket for the unmanned Progress 45 cargo ship successfully blasted off from the Baikonur Cosmodrome on Oct. 30, 2011 and docked two days later at the ISS.

Soyuz TMA-22 rolls on railcar to the launch pad at the Baikonur Cosmodrome. Credit: Roscosmos

Soyuz TMA-22 poised at Baikonur launch pad. Credit: Roscosmos

The international trio of new ISS residents consists of Expedition 29 Flight Engineer Dan Burbank from NASA and Anton Shkaplerov and Anatoly Ivanishin from Russia.

After a 2 day chase, they are due to link up with the ISS when their spacecraft docks to the Poisk mini-research module at 12:33 a.m. Wednesday.

When Burbank, Shkaplerov and Anatoly Ivanishin dock they will join the other trio of Expedition 29 crewmembers already aboard the ISS; Expedition 29 crewmates Commander Mike Fossum (NASA) and Flight Engineers Satoshi Furukawa (Japan) and Sergei Volkov (Russia) – and temporarily restore the ISS to a full complement of 6 crewmembers.

Soyuz TMA-22 crew meet journalists before blastoff. Credit: Roscosmos

But the full ISS staffing will be short-lived, because Fossum, Furukawa and Volkov will hand over all ISS duties to the new crew and undock their Soyuz TMA-02M capsule from the Rassvet research module on Nov. 21 and depart for Earth reentry and landing in Kazakhstan hours later.

The Soyuz TMA-22 poised at Baikonur launch pad will carry Soyuz Commander Anton Shkaplerov, Expedition 30 Commander Dan Burbank of NASA and Russian Flight Engineer Anatoly Ivanishin to the complex. The trio will spend almost five months on the station. Credit: Roscosmos

The new crew of three must reach the ISS before the current trio departs or the ISS would be left unmanned for the first time in over 11 years.

Read Ken’s continuing features about Russian Space Programs including Soyuz, Progress, Phobos-Grunt and Soyuz in South America starting here:
Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track
Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Orion Spacecraft to Launch in 2014

NASA has announced that it will conduct an unmanned test flight called the Exploration Flight Test-1 or EFT-1 in 2014. Image Credit: NASA.gov

[/caption]
CAPE CANAVERAL, Fla – NASA has announced its intention to launch an unmanned flight of the Orion Spacecraft atop a United Launch Alliance (ULA) Delta IV Heavy launch vehicle – by 2014. This flight test will be added to the contract that the space agency has with aerospace firm Lockheed Martin. The Orion Multi-Purpose Crew Vehicle or Orion MPCV as it is more commonly known – will test out systems that will be employed on the Space Launch System (SLS). If successful, this will allow astronauts to travel beyond low-Earth-orbit (LEO) for the first time in over four decades.

“This flight test will provide invaluable data to support the deep space exploration missions this nation is embarking upon,” said NASA Associate Administrator for Communications David Weaver.

The flight has been dubbed Exploration Flight Test or EFT-1 and will be comprised of two high-apogee orbits that will conclude with a high-energy reentry into the Earth’s atmosphere. Like the Mercury, Gemini and Apollo capsules before it, the Orion MPCV will conduct a water landing.

The test mission will lift off from Cape Canaveral Air Force Station located in Florida. It is designed to provide the space agency with vital flight data regarding how the vehicle handles re-entry and other performance issues.

The test flight will be comprised of two high-apogee orbits followed by a splash down. This flight will provide NASA with crucial information that could potentially lead to changes in the Orion spacecraft's design. Image Credit: NASA

“The entry part of the test will produce data needed to develop a spacecraft capable of surviving speeds greater than 20,000 mph and safely return astronauts from beyond Earth orbit,” said Associate Administrator for Human Exploration and Operations William
Gerstenmaier. “This test is very important to the detailed design process in terms of the data we expect to receive.”

Presumably the use of a Delta IV Heavy would allow NASA to accelerate its human exploration objectives at an accelerated rate. Since the flight will be unmanned, there is no need to man-rate the launch vehicle and given the current economic issues facing the United States, the use of so-called “legacy” hardware could ensure that costs are kept down.

The past year has seen the development of the Orion spacecraft proceed at an accelerated pace. Photo Credit: NASA/Lockheed Martin

NASA has also stated its intention to release competitive solicitations for design proposals for new, advanced liquid or solid boosters to be used on the SLS. Another contract that will be opened for competition will be for payload adaptors for both crewed as well as cargo missions.

The Orion spacecraft was originally part of the Constellation Program. Its design has since been modified – but its mission to one day fly astronauts to the Moon, Mars and beyond – remains. The EFT-1 test flight will allow technicians and NASA officials to better determine what further changes need to be made to best aid the completion of NASA’s exploration goals.

The EFT-1 test flight could pave the way for flights back to the Moon, to the planet Mars and to other destinations throughout the solar system. Image Credit: NASA.gov

ASF 2011 Autograph Show: To Be the Shoulders of Tomorrow’s Titans

KENNEDY SPACE CENTER, Fla – Every year the Astronaut Scholarship Foundation (ASF) hosts its “Astronaut Autograph Show” at Kennedy Space Center in Florida. This year it was held on Nov. 5-6 at the Kennedy Space Center Visitor Complex’s Debus Center. The ASF coordinated with the operators of the Cocoa Beach Air Show to ensure that the show had a very dramatic ending. Continue reading “ASF 2011 Autograph Show: To Be the Shoulders of Tomorrow’s Titans”

Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise

Russian graphic shows the planned Earth departure trajectory (at right) and two engine burns that failed to ignite from the Fregat upper stage following the launch of the Phobos-Grunt spacecraft from Baikonur Cosmodrome on Nov. 9 at 00:16am Moscow time. Illustration at left shows Phobos-Grunt spacecraft folded for flight inside the payload fairing. Credit: Roscosmos.

[/caption]

Teams of Russian engineers are in a race against time to save the ambitious and unprecedented Phobos-Grunt sample return mission from crashing back to Earth following the post launch failure of the upper stage rocket firings essential to propel the probe onward to destination Mars and scooping up dirt and dust from the tiny moon Phobos.

Roscomos, the Russian Federal Space Agency says they have perhaps two weeks to salvage the spacecraft – now stuck in Earth orbit – before its batteries run out and its orbit would naturally decay leading to an ignominious and uncontrollable reentry and earthly demise. Vladimir Popovkin, head of Roscosmos Chief had initially indicated a survival time limited to only 2 days in a briefing to Russian media.

“I give them a good chance — better than even — of recovering the mission and making the Mars insertion burn in a day or two, said James Oberg, a renowned expert on Russian and US spaceflight in commentary to Universe Today.

But Oberg also told me that having such problems so early in the mission was not a good sign. It all depends on whether the root cause is related to a simple software patch or serious hardware difficulties.

Following yesterday’s eerie midnight blastoff of Phobos-Grunt at 00:16 a.m. Moscow time atop an upgraded Zenit- 2SB booster and the apparently flawless performance of the first and second stages, the situation turned decidedly negative some 5 hours later when the pre-planned ignition burns of the Fregat upper stage failed to ignite twice.

Blastoff of Phobos-Grunt spacecraft atop Zenit-2 rocket from Baikonur Cosmodrome on Nov. 9. Credit: Roscosmos

The 13,000 kg Phobos-Grunt (which means Phobos-Soil) spacecraft was to embark on an 11 month interplanetary cruise and arrive in the vicinity of Mars around October 2012, along with a piggybacked mini-satellite from China named Yinghuo-1, the nation’s first ever probe to orbit the Red Planet, and the Phobos-LIFE experiment from the Planetary Society.

“It has been a tough night for us because we could not detect the spacecraft [after the separation],” Vladimir Popovkin said according to the Ria Novosti Russian news agency. “Now we know its coordinates and we found out that the [probe’s] engine failed to start.”

“It is a complex trajectory, and the on-board computers could have simply failed to send a “switch on” command to the engine,” Popovkin added.

Fortunately, the engine ignition malfunction was one of the anticipated failure scenarios and a corrective action plan already exists for it – but only if it can be implemented to save the $163 million mission and Russian hopes to revive their long dormant interplanetary forays.

“But it’s an old old superstition that when leaving your house for a long voyage, if you trip on the door step, you better just lay down your suitcases and go back inside,” Oberg said.

“Seriously, on a mission so complex and innovative as this one is, with so much stuff that has to be done RIGHT the first time they’ve ever tried it, having this kind of error — even if it’s only a coding mishap — right at the start, is NOT a good omen about the quality of work on preparing the later steps,” Oberg warned.

The goal of the complicated and first of its-kind 3 year round trip mission is to deploy a lander to the surface of Phobos, grab up to 200 grams of pristine regolith and rocks, and then take off and sail back to Earth with the precious samples for analysis by the most scientifically advanced instruments available to humankind. Watch the detailed mission animation in my article here.

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos will retrieve 200 grams of soil from the surface of Martian moon Phobos and fly the samples back to Earth by August 2014. Credit: Roscosmos

Another serious problem was a lengthy gap in tracking coverage and thus two way communications with the spacecraft which minimized and seriously delayed Russian controller’s ability to diagnose and correct the malfunction.

Roscosmos stated today that after two communications sessions all necessary parameters of the spacecrafts motion have been determined and they hoped to regain contact sometime Wednesday afternoon through a ground station at Baikonur and upload new software to orient the vehicle and commands for an engine firing at some point soon. Luckily the hydrazine filled propellant tank had not been jettisoned – or all would be lost.

It appears that the earliest day the Fregat engines can be fired is sometime Thursday. The Fregat would also journey all the way to Mars and conduct the critical braking maneuver to insert Phobos-Grunt and Yinghuo-1 into separate Mars orbits.

The engine ignition failure has left Phobos-Grunt stuck in an elliptical orbit ranging from about 207 by 347 kilometers and inclined 51 degrees. The engine firings would have placed the ship into a higher altitude elliptical orbit of 250 by 4150 km and then cruising to Mars.

The Russianspaceweb website reported that “the editor of this web site received a message from the director of Moscow-based Space Research Institute, IKI, Lev Zeleny, informing that tracking facilities of the US military provided significant help in establishing exact orbital parameters of the Phobos-Grunt spacecraft. This data was to be used during the previous night to send commands to the spacecraft as it was passing within range of ground control stations. Zeleny reassured that the mission team still had had “few days for reprogramming before the end of the Mars accessibility window for 2011.”

Alexey Kuznetsov, Head of the Roskosmos Press Office told me previously that, “The Phobos-Grunt launch window extends until November 25.” So theoretically, there is still some time to propel Phobos-Grunt to Mars but there are also many unknowns.

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter. Main propulsion is the Fregat upper stage that failed to ignite twice following flawless liftoff on Nov. 9. Credit: Roskosmos

Further details will be reported as they emerge.

Meanwhile, NASA’s car sized Curiosity Mars Science Laboratory (MSL) Rover is posied atop an Atlas V rocket at her Florida launch pad awaiting a Nov. 25 liftoff.

Read Ken’s continuing features about Phobos-Grunt here:
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – VideoAwesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

NASA Test-Fires Key Engine for New Launch System

NASA successfully test-fired the J2-X rocket engine on Wednesday, a key component of the Space Launch System, NASA’s giant new rocket that is slated to take cargo and crew beyond low Earth orbit. A deafening 500-second firing test at the Stennis Space Center showed the engine is ready for the next steps in building the SLS rocket.

“What you heard to today is the sound of the front end of the critical path to the future,” said Stennis Director Patrick Scheuermann, speaking at a press conference immediately after the test fire, which began at 4:04 p.m. EST (2104 GMT).

Continue reading “NASA Test-Fires Key Engine for New Launch System”

Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos blasts off atop a Zenit-2SB rocket from the Baikonur Cosmodrome, Kazakhstan on November 9, 2011 at 00:16 a.m. Moscow time (Nov. 8, 3:16 p.m. EST) from Launch Pad 45. Credit: Roscosmos/Spaceflight Now

Russia has successfully launched the Phobos-Grunt sample return mission to Mars aiming to return a soil sample from Phobos, the first time in history such a bold and complicated feat has been attempted.

The ambitious mission lifted off just past midnight at 00:16 Moscow time atop an upgraded version of the Zenit-2 rocket from the Baikonur Cosmodrome in Kazakhstan.

[/caption]

Phobos-Grunt is now in a parking orbit around Earth and further burns are required by the modified Fregat upper stage by 8:20 p.m. tonight to put the probe of course for Earth departure and an interplanetary cruise to the Red Planet. Watch for updates later.

The liftoff of the $163 million robotic spacecraft marks Russia’s first attempt to conduct an interplanetary mission in some 15 years since the launch failure of the Mars 96 probe back in 1996. Phobos-Grunt translates as Phobos-Soil.

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos liftoff off on top of a Zenit-2SB rocket from the Baikonur Cosmodrome, Kazakhstan on November 9, 2011 at 00:16 a.m. Moscow time (Nov. 8, 3:16 p.m. EST) from Launch Pad 45. Credit: Roscosmos

The mission goal is to deploy a lander to Phobos and bring back up to 200 grams of pristine regolith and rocks from the surface of Phobos.

Also along for the ride is China’s first Mars mission named Yinghuo-1 (which means means Firefly-1) which will be jettisoned into Mars orbit as Phobos-Grunt inserts into a different orbit about Mars. Additionally, the Planetary Society’s Phobos LIFE biomodule is also on board.

The 12,000 kg Phobos-Grunt spacecraft should arrive in the vicinity of Mars around October 2012 after an 11 month interplanetary cruise. Following several months of orbital science investigations of Mars and its two moons and searching for a safe landing site, Phobos-Grunt will attempt history’s first ever touchdown on Phobos in February 2013. It will conduct a comprehensive analysis of Phobos surface and gather up to 200 grams of soil and rocks with a pair of robotic arms and a scoop device.

The samples will be transferred by a long tube onto the return vehicle mounted atop the lander. By March 2013 the ascent vehicle will take off for the trip back back to Earth.

Phobos-Grunt is equipped with a 50 kg array of 20 sophisticated science instruments including lasers, spectrometers, cameras and a microscope provided by an international team of scientists and science institutions from across Europe and Asia.

The entire voyage will last just under 3 years with the capsule plummeting through the Earth’s atmosphere in August 2014. These would represent the first macroscopic samples returned from another body in the solar system since Russia’s Luna 24 returned soil from the Moon back in 1976.

Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – Video

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos poised on top of Zenit-2SB rocket at Baikonur Cosmodrome, Kazakhstan. Liftoff is slated for November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST] from Launch Pad 45. Credit: Roscosmos. See Zenit Rocket rollout Video and Images below

[/caption]

After an absence of almost two decades, Russia is at last on the cusp of resuming an ambitious agenda of interplanetary science missions on Tuesday Nov. 8 3:16 p.m. EST (Nov. 9, 00:16 a.m. Moscow Time) by taking aim at Mars and scooping up the first ever soil and rocks gathered from the mysterious moon Phobos. Russia’s space program was hampered for many years by funding woes after the breakup of the former Soviet Union and doubts stemming from earlier mission failures. The Russian science ramp up comes just as US space leadership fades significantly due to dire NASA budget cutbacks directed by Washington politicians.

Russia’s daring and highly risky Phobos-Grunt soil sampling robot to the battered Martian moon Phobos now sits poised at the launch pad at the Baikonur Cosmodrome in Kazahkstan atop a specially upgraded booster dubbed the “Zenit-2SB” rocket according to Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interveiw with Universe Today. Roscosmos is the Russian Federal Space Agency. Watch the awesome Mars mission animation in my article here. See Zenit Rocket rollout video and images below.

“The Phobos-Grunt automatic interplanetary station will launch on November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST],” Kuznetsov confirmed to Universe Today.

The Roscosmos video and photos here show the Zenit rocket rollout starting from Building 45 where the final prelaunch processing was conducted late last week mounting the nose cone holding the Phobos-Grunt and companion Yinghuo-1 spacecraft to the upgraded Fregat upper stage.

Russia’s Phobos-Grunt automatic interplanetary station - lander. Credit: Roscosmos

If successful, Phobos Grunt will complete the Earth to Mars round trip voyage in some 34 months and the history making soil samples will plummet through the Earth’s atmosphere in August 2014 to waiting Russian military helicopters.

Following an 11 month interplanetary journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The probe is due to touchdown very gently on Phobos surface in Feb. 2013 using radar and precision thrusters accounting for the moon’s extremely weak gravity. After gathering samples with two robotic arms, the soil transferred to the Earth return capsule will take off in the ascent vehicle for the trip back home.

“The Zenit can launch spacecraft from Baikonur into LEO, MEO, HEO and elliptical near-Earth orbits (including GTO and geostationary orbit) and to escape trajectories as well,” Kuznetsov explained.

Zenit-2SB rocket rollout from Building 45 at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

The Zenit-2SB booster with Phobos-Grunt and the piggybacked Yinghuo-1 Mars orbiter from China were rolled out horizontally by train on a railed transporter on Nov. 6, raised and erected vertically into launch position at Launch Pad 45 at Baikonur.

“The ‘Zenit-2SB’ rocket belongs to the rocket family using nontoxic fuel components – liquid oxygen and kerosene,” Kuznetsov elaborated. “The Zenit was manufactured by the A.M. Makarov Yuzhny Machine-Building Plant in Ukraine.”

“This “Zenit-2” rocket modification has significant improvements,” Kuznetsov told me. “The improvements include a new navigation system, a new generation on-board computer, and better performance by mass reduction and increase in thrust of the second stage engine.”

Zenit-2SB rocket rollout on train car to Baikonur launch pad with Phobos-Grunt sampling return mission to Mars and Phobos. Credit: Roscosmos

Likewise the upper stage was upgraded for the historic science flight.

“The Zenit’s Fregat upper stage has also been modified. The “Phobos Grunt” automatic interplanetary station cruise propulsion system was built onto the base of the “Fregat-SB” upper stage. Its main task is to insert the automatic interplanetary station onto the Mars flight path and accomplish the escape trajectory.”

“The “Phobos Grunt” automatic interplanetary station mission was constructed by the Russian Academy of Sciences Space Research Institute in Moscow and the spacecraft was manufactured by NPO Lavochkin in Moscow,” Kuznetsov told me.

The 12,000 kg Phobos-Grunt automatic interplanetary station is equipped with a powerful 50 kg payload of some 20 science instruments provided by a wide ranging team of international scientists and science institutions from Europe and Asia.

The audacious goal is to bring back up to 200 grams of pristine regolith and rocks that help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System

Zenit-2SB rocket rollout on train to launch pad at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

Zenit-2SB rocket erected vertically to launch position at Baikonur launch pad with Russia’s Phobos-Grunt Mars spacecraft. Credit: Roscosmos

Russia’s Phobos-Grunt sample return mission to Mars and Phobos poised atop Zenit rocket at Pad 45 at Baikonur Cosmodrome. Kazakhstan. Liftoff set for November 9, 2011 at 00:26 a.m. Moscow time - Nov. 8, 3:36 p.m. EST. Credit: Roscosmos.

NASA’s Curiosity Mars Science Laboratory (MSL) Rover has also arrived at her Florida launch pad awaiting Nov. 25 liftoff.

Join me in wishing all the best to Roscosmos and NASA for this duo of fabulous Mars missions in 2011 that will help unravel our place in the Universe – like never before!

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos

Artist concept of Russia’s Phobos-Grunt spacecraft. Credit Roscosmos.

[/caption]

In less than 48 hours, Russia’s bold Phobos-Grunt mechanized probe will embark on a historic flight to haul humanities first ever soil samples back from the tiny Martian moon Phobos. Liftoff from the Baikonur Cosmodrome remains on target for November 9 (Nov 8 US 3:16 p.m. EDT).

For an exquisite view of every step of this first-of-its-kind robot retriever, watch this spectacular action packed animation (below) outlining the entire 3 year round trip voyage. The simulation was produced by Roscosmos, Russia’s Federal Space Agency and the famous IKI Space Research Institute. It’s set to cool music – so don’t’ worry, you don’t need to understand Russian.

Another video below shows the arrival and uncrating of the actual Phobos-Grunt spacecraft at Baikonur in October 2011.

The highly detailed animation begins with the blastoff of the Zenit booster rocket and swiftly progresses through Earth orbit departure, Phobos-Grunt Mars orbit insertion, deployment of the piggybacked Yinghuo-1 (YH-1) mini satellite from China, Phobos-Grunt scientific reconnaissance of Phobos and search for a safe landing site, radar guided propulsive landing, robotic arm manipulation and soil sample collection and analysis, sample transfer to the Earth return capsule and departure, plummeting through Earth’s atmosphere and Russian helicopter retrieval of the precious cargo carrier.


Video Caption: Every step of Russia’s Phobos-Grunt soil retrieval mission. Credit: Roscosmos/IKI


Video Caption: On October 21, the Phobos-Grunt spacecraft arrived at the Baikonur Cosmodrome and was uncrated and moved to assembly building 31 for fueling, final preflight processing and encapsulation in the nose cone. Credit: Roscosmos

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter. Credit: Roskosmos

Read Ken’s continuing features about Phobos-Grunt upcoming Nov. 9 launch here:
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats

The payload fairing containing Curiosity, NASA's Mars Science Laboratory (MSL) rover rises from the transporter below as it is lifted up the side of the Vertical Integration Facility At Space Launch Complex 41. The fairing, which protects the payload during launch, was attached to the Atlas V rocket already stacked inside the facility. Credit: NASA/Kim Shiflett

[/caption]

Only time now stands in the way of Curiosity’s long awaited date with the Red Planet. NASA’s next, and perhaps last Mars rover was transported to the launch pad at Cape Canaveral Air Force Station and then hoisted on top of the mighty Atlas V rocket that will propel her on a 10 month interplanetary journey to Mars to seek out the potential habitats of Extraterrestrial life.

In less than three weeks on November 25 – the day after Thanksgiving – the Curiosity Mars Science Laboratory (MSL) rover will soar to space aboard the Atlas V booster. Touchdown astride a layered mountain at the Gale Crater landing site is set for August 2012.

Collage showing transport of Curiosity inside nose cone to Space Launch Complex 41 at Cape Canaveral, Florida. Credit: NASA

The $2.5 Billion rover must liftoff by Dec. 18 at the latest, when the launch window to Mars closes for another 26 months. Any delay would cost hundreds of millions of dollars.

Curiosity represents a quantum leap in science capabilities and is by far the most advanced robotic emissary sent to the surface of another celestial body. MSL will operate for a minimum of one Martian year, equivalent to 687 days on earth.

After years of meticulous design work and robotic construction by dedicated scientists and engineers at NASA’s Jet Propulsion Laboratory in California and months of vigilant final assembly and preflight processing at the Payload Hazardous Servicing Facility (PHSF) at NASA’s Kennedy Space Center in Florida, Curiosity was finally moved the last few miles (km) she’ll ever travel on Earth – in the dead of night – to Space Launch Complex 41 at the Cape.

Curiosity inside the Nose Cone to Mars. In the Payload Hazardous Servicing Facility at the Kennedy Space Center in Florida, the Atlas V rocket's payload fairing containing the Mars Science Laboratory (MSL) spacecraft stands securely atop the transporter that will carry it to Space Launch Complex 41. Credit: NASA/Kim Shiflett

The robo behemoth was tucked inside her protective aeroshell Mars entry capsule and clamshell-like nose cone, gingerly loaded onto the payload transporter inside the PHSF and arrived – after a careful drive – at Pad 41 at about 4:35 a.m. EDT on Nov. 3. The move was delayed one day by high winds at the Cape.

Employees at Space Launch Complex 41 keep watch as the payload fairing containing NASA's Mars Science Laboratory (MSL) spacecraft is lifted up the side of the Vertical Integration Facility. Credit: NASA/Kim Shiflett

Teams from rocket builder United Launch Alliance then hoisted MSL by crane on top of the Atlas V rocket already assembled inside the launch gantry known as the Vertical Integration Facility, or VIF, and bolted it to the venerable Centaur upper stage. Technicians also attached umbilicals for mechanical, electrical and gaseous connections.

Curiosity’s purpose is to search for evidence of habitats that could ever have supported microbial life on Mars and determine whether the ingredients of life exist on Mars today in the form of organic molecules – the building blocks of life.

We are all made of organic molecules – which is one of the essential requirements for the genesis of life along with water and an energy source. Mars harbors lots of water and is replete with energy sources, but confirmation of organics is what’s lacking.

Curiosity, inside the payload fairing at Pad 41, has been attached to a lifting device in order to be raised and attached to the Atlas V rocket inside the Vertical Integration Facility. The fairing will protect the payload from heat and aerodynamic pressure generated during ascent. Credit: NASA/Kim Shiflett

The Atlas V will launch in the configuration known as Atlas 541. The 4 indicates a total of four solid rocket motors (SRM) are attached to the base of the first stage. The 5 indicates a five meter diameter payload fairing. The 1 indicates use of a single engine Centaur upper stage.

One of the last but critical jobs remaining at the pad is installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source about a week before launch around Nov. 17. Technicians will install the MMRTG through small portholes on the side of the payload fairing and aeroshell.

The nuclear power source will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to other solar powered landed surface explorers like Pathfinder, Spirit, Opportunity, Phoenix and Phobos-Grunt.

The minivan sized rover measures three meters in length, roughly twice the size of the MER rovers; Spirit and Opportunity. MSL is equipped with 10 science instruments for a minimum two year expedition across Gale crater. The science payload weighs ten times more than any prior Mars rover mission.

The Atlas V rocket and Curiosity will roll out to the launch pad on Wednedsay, November 23, the day before Thanksgiving.

Meanwhile, Russia’s Phobos-Grunt mission to Mars and Phobos is on target to blast off on November 9, Moscow time [Nov 8, US time].

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

Read Ken’s continuing features about Curiosity starting here:
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos

Phobos-Grunt spacecraft being encapsulated inside the nose cone for November 9 launch to Mars and its tiny moon Phobos. Credit: Roscosmos

[/caption]

Phobo-Grunt, Russia’s first interplanetary mission in nearly two decades, has now been encapsulated inside the payload fairing and sealed to the payload adapter for mating to the upper stage of the Zenit booster rocket that will propel the probe to Mars orbit and carry out history’s first ever landing on the petite Martian moon Phobos and eventually return pristine samples to Earth for high powered scientific analysis.

Phobos-Grunt will launch on November 9, 2011 at 00:16 a.m. Moscow time [Nov. 8 3:16 p.m. EST],” said Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interview with Universe Today. Roscosmos is the Russian Federal Space Agency, equivalent to NASA and ESA.

“The launch window extends until November 25.”

“At this moment we are preparing the “Zenit-2SB” launch vehicle, the cruise propulsion system and the “Phobos Grunt” automatic interplanetary station at the Baikonur Cosmodrome,” Kuznetzov told me. Phobos-Grunt translates as Phobos-Soil.

Phobos-Grunt spacecraft attached to payload adapter prior to encapsulation. Note folded solar panels, gold colored sample transfer tube leading to return capsule, landing legs, antennae and propulsion tanks. Credit: Roscosmos

China’s first ever mission to Mars, the Yinghuo-1 micro-satellite, is also encased inside the nose cone and is tucked in a truss segment between the lander and interplanetary propulsion stage.

Yinghuo-1 follows closely on the heels of China’s stunning success in demonstrating the nation’s first ever docking in space between two Chinese spacecraft earlier this week on November 3.

Sealing up Phobos-Grunt. Credit: Roscosmos

Technicians completed the two vehicles enclosure inside the protective fairing at Building 31 at the Baikonur Cosmodrome and have now transported the spaceships to Building 41 where the payload is now being stacked to the upgraded “Fregat-SB” upper stage atop the Zenit-2SB rocket.

Martian moon Phobos imaged by Mars Express Orbiter from ESA. Credits: ESA/DLR/FU Berlin (G. Neukum)

The payload fairing protects the Phobos-Grunt and Yinghuo-1 spacecraft during the first few minutes of flight from the intense frictional heating and buildup of aerodynamic pressures. After the rocket soars through the discernable atmosphere the fairing splits in half and is jettisoned and falls back to Earth.

The nose cone sports a beautiful mission logo painted on the side of the fairing along with the logos of various Russian and International partner agencies and science institutes.

Phobos-Grunt payload fairing. Credit: Roscosmos

Propellants have already been loaded aboard the cruise stage, Phobos-Grunt lander and Earth return vehicle.

“The Phobos Grunt automatic interplanetary station was built, prepared and tested at NPO Lavochkin [near Moscow]. They were also responsible for inspection of the devices, instruments and systems integration,” Kuzntezov explained.

“Significant improvements and modifications and been made to both the “Fregat-SB” upper stage and the “Zenit-2SB” rocket,” said Kuznetzov.

View inside nose cone and preparing to encapsulate Phobos-Grunt. Click to enlarge. Credit: Roscosmos

Phobos-Grunt will blastoff from Launch Pad 45 at Baikonur,

Following an 11 month journey, the spaceship will enter Mars orbit in October 2012, spend several months investigating Phobos and then land around February 2013.

The goal is to snatch up to 200 grams of soil and rock from Phobos and fly them back to Earth in a small capsule set to plummet through the atmosphere in August 2014.

ESA, the European Space Agency, is assisting Russia determine a safe landing site by targeting their Mars Express Orbiter to collect high resolution images of Phobos. Look at 2 D and 3 D images and an animation here.

The regolith samples will help teach volumes about the origin and evolution of Phobos, Mars and the Solar System. Scientists would be delighted if miniscule bits of Martian soil were mixed in with Phobos soil.

Phobos-Grunt , Earth’s next mission to Mars, is equipped with an advanced 50 kg payload array of some 20 science instruments.

NASA’s Curiosity Mars rover was also enclosed in her payload fairing a few days ago and is on course for liftoff on November 25.

The Phobos-Grunt spacecraft is scheduled to blastoff on November 9, 2011 from Baikonur Cosmodrome. It will reach Mars orbit in 2012 and eventually land on Phobos and return the first ever soil samples back to Earth in 2014. Credit Roscosmos

Read Ken’s continuing features about Phobos-Grunt here:
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Read Ken’s continuing features about Curiosity & Nov. 25 launch starting here:
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action