Closing the Clamshell on a Martian Curiosity

In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing engulf NASA's Mars Science Laboratory (MSL) as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: NASA/Jim Grossmann

[/caption]

Curiosity’s clamshell has been closed.

And it won’t open up again until a few minutes after she blasts off for the Red Planet in just a little more than 3 weeks from now on Nov. 25, 2011 – the day after Thanksgiving celebrations in America.

The two halves of the payload fairing serve to protect NASA’s next Mars rover during the thunderous ascent through Earth’s atmosphere atop the powerful Atlas V booster rocket that will propel her on a fantastic voyage of hundreds of millions of miles through interplanetary space.

Spacecraft technicians working inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida have now sealed Curiosity and her aeroshell inside the payload fairing shroud. The fairing insulates the car sized robot from the intense impact of aerodynamic pressure and heating during ascent. At just the right moment it will peal open and be jettisoned like excess baggage after the rocket punches through the discernable atmosphere.

Clamshell-like payload fairing about to be closed around Curiosity at KSC. Credit: NASA/Jim Grossmann

The next trip Curiosity takes will be a few miles to the Launch Pad at Space Launch Complex 41 at adjacent Cape Canaveral Air Force Station. She will be gingerly loaded onto a truck for a sojourn in the dead of night.

Curiosity in front of one payload fairing shell. Credit: NASA/Jim Grossmann

“Curiosity will be placed onto the payload transporter on Tuesday and goes to Complex 41 on Wednesday, Nov. 2,” KSC spokesman George Diller told Universe Today. “The logo was applied to the fairing this weekend.”

At Pad 41, the payload will then be hoisted atop the United Launch Alliance Atlas V rocket and be bolted to the Centaur upper stage.

Installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source is one of the very last jobs and occurs at the pad just in the very final days before liftoff for Mars.

The MMRTG will be installed through a small porthole in the payload fairing and the aeroshell (see photo below).

MMRTG power source will be installed on Curiosity through the porthole at right just days before Nov. 25 launch. Credit: NASA/Jim Grossmann

The plutonium dioxide based power source has more than 40 years of heritage in interplanetary exploration and will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to the solar powered rovers Spirit and Opportunity.

After a 10 month voyage, Curiosity is due to land at Gale Crater in August 2012 using the revolutionary sky crane powered descent vehicle for the first time on Mars.

Camera captures one last look at Curiosity before an Atlas V rocket payload fairing is secured around it. Credit: NASA/Jim Grossmann

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Technicians monitor Curiosity about to be engulfed by the two halves of the payload fairing. Credit: NASA/Jim Grossmann
Payload fairing sealed around Curiosity at the Payload Hazardous Servicing Facility at KSC. Credit: NASA/Jim Grossmann
Atlas V rocket at Launch Complex 41 at Cape Canaveral, Florida
An Atlas V rocket similar to this one utilized in August 2011 for NASA’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 25, 2011 from Florida. Credit: Ken Kremer

Phobos-Grunt, Earth’s other mission to Mars courtesy of Russia is due to blast off first from the Baikonur Cosmodrome on November 9, 2011.

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track

The unpiloted ISS Progress 45 cargo craft launches from the Baikonur Cosmodrome in Kazakhstan. Credit: NASA TV

Video caption: Liftoff of unmanned Russian Progress craft atop Soyuz booster on Oct. 30, 2011 from Baikonur Cosmodrome. Credit: NASA TV/Roscosmos.
Photos and rocket rollout video below

The very future of the International Space Station was on the line this morning as the Russian Progress 45 cargo ship successfully launched this morning from the Baikonur Cosmodrome in Kazakhstan at 6:11 a.m. EDT (4:11 p.m. Baikonur time) on Oct. 30, 2011, bound for the ISS.

Today’s (Oct. 30) blastoff of the Soyuz rocket booster that is used for both the Progress cargo resupply missions and the Soyuz manned capsules was the first since the failure of the third stage of the prior Progress 44 mission on August 24 which crashed in Siberia.

[/caption]
The third stage is nearly identical for both the manned and unmanned versions of the normally highly reliable Soyuz booster rocket.

Today’s success therefore opens up the door to resumption of crewed flights to the ISS, which were grounded by Russia after the unexpected loss of the Progress 44 mission.

If this Progress flight had failed, the ISS would have had to be left in an uncrewed state for the first time since continuous manned occupation began more than 10 years ago and would have significantly increased the risk for survival of the ISS in the event of a major malfunction and no human presence on board to take swift corrective action.

Liftoff of Soyuz rocket with Progress 45 to ISS from Baikonur Cosmodrome in Kazakhstan.
Credit:RIA Novosti

NASA issued the following statement from Bill Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington, about the launch of the Progress 45 spacecraft.

“We congratulate our Russian colleagues on Sunday’s successful launch of ISS Progress 45, and the spacecraft is on its way to the International Space Station. Pending the outcome of a series of flight readiness meetings in the coming weeks, this successful flight sets the stage for the next Soyuz launch, planned for mid-November. The December Soyuz mission will restore the space station crew size to six and continue normal crew rotations.”

Progress 45 is carrying nearly 3 tons of supplies to the ISS, including food, water, clothing, spare parts, fuel, oxygen and science experiments for use by the resident crews.

The resupply vehicle achieved the desired preliminary orbit after the eight and one half minute climb to space and deployed its solar arrays and communications antennae’s.

After a two day chase, Progress 45 will automatically link up with the ISS at the Pirs Docking Compartment on Nov. 2 at 7:40 a.m (EDT) and deliver 1,653 pounds of propellant, 110 pounds of oxygen and air, 926 pounds of water and 3,108 pounds of spare parts, experiment hardware and other supplies for the Expedition 29 crew.

Progress 45 atop Soyuz-U booster awaits liftoff from Baikonur Cosmodrome in Kazakhstan.
Credit: Roscosmos

The successful launch sets the stage for the launch of the station’s next three residents on Nov. 13. NASA’s Dan Burbank and Russia’s Anton Shkaplerov and Anatoly Ivanishin will arrive at the station Nov. 16, joining NASA’s Mike Fossum, Russia’s Sergei Volkov and Japan’s Satoshi Furukawa for about six days before Fossum, Volkov and Furukawa return home.

Liftoff of Burbank’s crew was delayad from the original date on September 22 following the Progress failure in August. Because of the delayed Soyuz crew launch, the handover period from one crew to the next had to be cut short.

Since the forced retirement of the Space Shuttle, the US has absolutely no way to send human crews to orbit for several years to come at a minimum and is totally reliant on Russia.

The survival of the ISS with humans crews on board is therefore totally dependent on a fully functioning and reliable Soyuz rocket.


Video caption: Rollout of Soyuz rocket and Progress cargo craft to Baikonur launch pad.

Read Ken’s continuing features about Soyuz from South America here:
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Russia Fuels Phobos-Grunt and sets Mars Launch for November 9

The Phobos-Grunt spacecraft is scheduled blastoff on November 9, 2011 from Baikonur Cosmodrome. It will reach Mars orbit in 2012 and eventually land on Phobos and return the first ever soil samples back to Earth in 2014. Credit Roscosmos

[/caption]

Russia’s Space Agency, Roscosmos, has set November 9 as the launch date for the Phobos-Grunt mission to Mars and its tiny moon Phobos. Roscosmos has officially announced that the audacious mission to retrieve the first ever soil samples from the surface of Phobos will blastoff from the Baikonur Cosmodrome in Kazakhstan atop a Zenit-2SB rocket at 00:16 a.m. Moscow time.

Roscosmos said that engineers have finished loading all the propellants into the Phobos-Grunt main propulsion module (cruise stage), Phobos lander and Earth return module at Facility 31 at Baikonur.

Phobos-Grunt is Russia’s first mission to Mars in almost two decades and a prelude to an ambitious program of even more interplanetary Russian science flights.

Russian Phobos-Grunt spacecraft is set to launch to Mars on November 9, 2011.
L-shaped soil sample transfer tube extends from Earth return module ( top -yellow) and solar panel to bottom (left) of lander module. 2 landing legs, communications antenna, sampling arm, propulsion tanks and more are visible. Credit Roscosmos

Technicians also fueled the companion Yinghou-1 mini-satellite, provided by China, that will ride along inside a truss segment between the MDU propulsion module and the Phobos-Grunt lander.

The 12,000 kg Phobos-Grunt interplanetary spacecraft is being moved to an integration and test area at Facility 31 for integration with the departure segments of the Zenit rocket.

The next step is to enclose Phobos-Grunt inside the protective payload fairing and transport it to Facility 42 for mating atop the upper stage of the stacked Zenit-2SB booster rocket.

After about an 11 month journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The goal of the bold mission is to retrieve up to 200 grams of soil and rock from Phobos and return them to Earth in August 2014. The samples will help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System.

Scientists hope that bits of Martian soil will be mixed in with Phobos soil.

Phobos-Grunt is equipped with a powerful 50 kg payload of some 20 international science instruments.

The 110 kg Yinghou-1, which translates as Firefly-1, is China’s first spaceship to voyage to Mars. It will be jettisoned by Phobos-Grunt into a separate orbit about Mars. The probe will photograph the Red planet with two cameras and study it with a magnetometer to explore Mars’ magnetic field and science instruments to explore its upper atmosphere.

Earth’s other mission to Mars in 2011, NASA’s Curiosity rover, is set to blast off for Mars on Nov. 25

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here::
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

NASA Issues Report On Commercial Crew as SpaceX’s CEO Testifies About SpaceX’s Progress

NASA has released its third status report concerning the progress of the Commercial Crew Development program (CCDev). Photo Credit: SpaceX

[/caption]
NASA has recently posted the latest update as to how the Commercial Crew Development 2 (CCDev2) program is doing in terms of meeting milestones laid out at the program’s inception. According to the third status report that was released by NASA, CCDev2’s partners continue to meet these objectives. The space agency has worked to provide regular updates about the program’s progress.

“There is a lot happening in NASA’s commercial crew and cargo programs and we want to make sure the public and our stakeholders are informed about the progress industry is making,” said Phil McAlister, NASA’s director of commercial spaceflight development. “It’s exciting to see these spaceflight concepts move forward.”

One of the primary objectives of the Commercial Crew Development program is to cut down the length of time that NASA is forced to rely on Russia for access to the International Space Station. Photo Credit: NASA

Reports on the progress of commercial crew are issued on a bi-monthly basis. The reports are directed toward the primary stakeholder of this program, the U.S. taxpayer. NASA has invested both financial and technical assets in an effort to accelerate the development of commercial access to orbit.

This report came out at the same time as Space Exploration Technologies’ (SpaceX) CEO, Elon Musk, testified before the U.S. House Science, Space, and Technology Committee regarding NASA’s commercial crewed program.

Elon Musk testified before the U.S. House Science, Space, and Technology Committee regarding his company's efforts to provide commercial access to the International Space Station. Photo Credit: SpaceX

SpaceX itself has been awarded $75 million under the CCDev program to develop a launch abort system, known as “DragonRider” that would enable the company’s Dragon spacecraft to transport astronauts. SpaceX was awarded $1.6 billion under the Commercial Orbital Transportation Services or COTS contract with NASA. Under the COTS contract, SpaceX must fly three demonstration flights as well as nine cargo delivery flights to the orbiting outpost. SpaceX is currently working to combine the second and third demonstration flights into one mission, currently scheduled to fly at the end of this year.

During Musk’s comments to the House, he highlighted his company’s efforts to make space travel more accessible.

“America’s endeavors in space are truly inspirational. I deeply believe that human spaceflight is one of the great achievements of humankind. Although NASA only sent a handful of people to the moon, it felt like we all went,” Musk said in a written statement. “We vicariously shared in the adventure and achievement. My goal, and the goal of SpaceX, is to help create the technology so that more can share in that great adventure.”

SpaceX's Falcon 9 launch vehicle is currently being readied for a liftoff date later this year. Photo Credit: Alan Walters/awaltersphoto.com

To date, SpaceX is the only company to have demonstrated the capacity of their launch vehicle as well as a spacecraft. The company launched the first of its Dragon spacecraft atop of its Falcon 9 rocket this past December. The Dragon completed two orbits successfully before splashing down safely off the coast of California.

NASA is relying on companies like SpaceX to develop commercial crew transportation capabilities that could one day send astronauts to and from the International Space Station (ISS). It is hoped that CCDev2 will help reduce U.S. dependence on Russia’s Soyuz spacecraft for access to the ISS. Allowing commercial companies to take over the responsibility of sending crews to the ISS might also allow the space agency focus on sending astronauts beyond low-Earth-orbit for the first time in four decades.

SpaceX's Dragon spacecraft recently arrived at the firm's hangar located at Cape Canaveral Air Force Station's Space Launch Complex-40 (SLC-40). Photo Credit: Alan Walters/awaltersphoto.com

First Progress Launch Since Accident Looms Large for Space Station Program

The Soyuz launch sequence, showing the time of the anomaly on August 24, 2011. Credit: ESA

[/caption]

The first launch of a Russian resupply ship since the August failure and crash of the Progress/SoyuzU is scheduled for Sunday, October 30, 2011 at 6:11 a.m. EDT (10:11 GMT). The importance of a successful launch looms large for the future of the International Space Station.

“Because the previous Progress didn’t get to orbit, it is important this launch go as planned,” NASA spokesman Kelly Humphries told Universe Today. “The booster we use to launch the crews, while not identical, is very similar to the one used for Progress — in particular the third stage where the failure was identified, so we do look forward to our Russian partners having a successful launch on Sunday.”

If not, the space station faces the prospect of being de-crewed.


This first post-shuttle era launch of a Progress cargo ship abruptly ended at about six minutes into the flight on August 24, 2011 when an engine anomaly prompted a computer to shutdown an engine, just before the third stage of the Soyuz rocket ignited. The rocket and ship crashed to Earth in eastern Russia.

Progress 45 is now set to launch from the Baikonur Cosmodrome in Kazakhstan on Sunday and hopefully deliver 2.8 tons of food, fuel and supplies to the space station crew members.

Progress M-12M cargo vehicle launches on August 24, 2011. The rocket eventually failed and the rocket and ship crashed. Credit: NASA TV.

If that launch goes as planned, that would allow the Soyuz TMA-22 spacecraft carrying three new station crew members to launch in mid-November. Flight Engineers Dan Burbank, Anton Shkaplerov and Anatoly Ivanishin are scheduled to join the current on-orbit crew of Commander Mike Fossum and Flight Engineers Satoshi Furukawa and Sergei Volkov on Nov. 16.

Fossum and his crew are due to end their stay at the station on Nov. 21, so if the Soyuz TMA-22 can’t launch before then, the ISS will be left crewless.

While the Soyuz rockets and Progress cargo ships have had a long history of successes, this one failure – coming just after the space shuttles were retired – has left the ability to get new crews to the space station in limbo. The Progress cargo ships launch on a Soyuz-U rocket, while the Soyuz crew capsules, — the Soyuz TMA — launches on a Soyuz-FG. The third stages of the two rockets are virtually identical.

A Russian commission investigating the Progress failure said the crash was caused by a malfunction in the rocket’s third stage engine gas generator. The commission the malfunction was the result of an accidental manufacturing flaw. The third stages of all Soyuz-type rockets have been changed out, and a Soyuz rocket did launch successfully on October 21 from the ESA’s new launch facility in French Guiana, carrying new GPS satellites.

The Soyuz-U rocket has had 745 successful launches and just 21 failures over nearly four decades. The Soyuz-FG has had 25 launches, all successful.

“Because of the failure and similarity of the launch vehicles, we have been performing a lot of preliminary planning and work to make sure that in the unlikely event the Progress were to have another problem,” Humphries said, “that we would be able to get the existing crew home safely and be able to operate the International Space Station and conduct research there without the crew on board.”

Humphries said the ISS team has identified many issues so that they would be capable of operating the space station almost indefinitely without a crew.

“Of course that is not the preference because it would have some impacts on our research,” he said. “But we are very confident that our Russian partners have done their due diligence and identified the root cause and taken the right steps to correct this and we are looking forward to having a good launch.”

Humphries said despite the challenges of working with potentially having to de-crew the ISS, the space station program and partnerships are still strong.

“The international partnerships we’ve developed with our colleagues in Russia, Canada, Japan and Euorpe are probably one the greatest achievements of the ISS program,” Humphries said. “We back each other up on a variety of operational and other fronts on a daily basis. For example, our Russian colleagues were instrumental in keeping the space station operational following the Columbia accident in 2003.”

The launch and also the Progress docking to the ISS will be carried live on NASA TV.

Aerojet: Small Space Firm Has Big Space History

In this image an Orion MultiPurpose Crew Vehicle jettison motor or JM, which is produced by Aerojet is test-fired. Photo Credit: Aerojet

[/caption]
When it comes to space flight pedigrees, few companies have one that can compare to Aerojet’s. The California-based company has a resume on space operations that is as lengthy as it is impressive. Universe Today sat down with Julie Van Kleeck – the firm’s vice-president of space and launch systems business unit.

Van Kleeck spoke extensively about the company’s rich history, its legacy of accomplishments – as well as what it has planned for space missions of the future.

Universe Today: Hi Julie, thanks for taking the time to chat with us today.

Van Kleeck: “My pleasure!”

Universe Today: How long has Aerojet been in business and what exactly is it that your company produces?

Van Kleeck: “We’ve been in the space business – since there was a space program – so since at least the 50s. We’ve dealt with both launch systems as well as space maneuvering systems, those components that enable spacecraft to move while in space.”

Aerojet propulsion systems have helped many of NASA's deep-space probes explore the solar system. Image Credit: NASA.gov

Universe Today: What about in terms of human space flight, when did Aerojet get involved with that?

Van Kleeck: “We first started working on the manned side of the house back during the Gemini Program, from there we progressed to Apollo, then shuttle and we hope to be involved with SLS (Space Launch System) as well.”

Universe Today: I understand that your company also has an extensive history when it comes to unmanned missions as well, care to tell us a bit about that?

Van Kleeck: “We have been on every discovery mission that has ever been launched, we have touched every part of space that you can touch.”

It is Aerojet's solid rocket motors that provide that extra-added “punch” to the versions of the Atlas V launch vehicle that utilize them. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: Some aerospace companies only produce one product or service, why is Aerojet’s list of offerings so diversified?

Van Kleeck: “We’re quite different than our competitors in that we provide a very wide-range of products to our customers. We’ve provided the liquid engines that went on Titan and now we provide the solids that go on the Atlas V launch vehicle as well as the small chemical and electrical propulsion systems that are utilized on some satellites.”

An Aerojet AJ26 rocket engine is prepared for testing in this image. These engines, as well as a license to produce them, were purchased from Russia and were originally designated the NK-33. Picture Credit: Aerojet

Universe Today: Does this mean that Aerojet places more importance on one space flight system over others?

Van Kleeck: “We view each of the products that we produce as equally important. Having said that, the fact that Aerojet offers a diversity of products and understands each of them well – sets us apart from our competitors. Firms that only produce one type of product tend to work to sell just that one product, whereas Aerojet’s extensive catalog of services allows us to be more objective when offering those services to our customers.”

During a tour of the Vertical Integration Facility, Aerojet's Solid Rocket Motors or SRms -were on full display attached to the Atlas V rocket that is set to send the Mars Science Laboratory rover "Curiosity" to Mars. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: When you look back, what is one of the most interesting projects that Aerojet has been involved with?

Van Kleeck: “I think as I look back over the past decade, New Horizons comes to mind, it was the first Atlas to launch with five solids on it. I look at that mission in particular as a major accomplish for not just us – but the country as well.”

In this image an AJ26 liquid rocket engine is tested. These engines are utilized as part of Orbital Science's Taurus II program. Photo Credit: Aerojet

Universe Today: What does the future hold for Aerojet?

Van Kleeck: ”We’re working on the Orion crew capsule right now with both liquid propulsion for it as well as solid propulsion for the abort test motor. We’re very much looking forward to seeing Orion fly in the coming years. We are currently putting into place the basic infrastructure to support human space exploration. We are working with both commercial crewed as well as Robert Bigelow to provide propulsion systems that work with their individual system – because no one system fits everyone. We are pleased to be offer systems for a wide variety of space exploration efforts.”

Universe Today: Julie, thanks for taking the time to chat with us today!

Van Kleeck: “No problem at all – it was my pleasure!”

Aerojet’s products will be on full display Nov. 25 as, if everything goes as planned the Mars Science Laboratory (MSL) rover Curiosity is set to launch on that day. Four of the company’s solid rocket motors or SRMs will help power the Curiosity rover on its way to the red planet.

For a taste of what Aerojet’s SRMs provide – please view the NASA video below.

Virgin Galactic Taps Test Flight Veteran As Pilot

Virgin Galactic has tapped U.S. Air Force test pilot Keith Colmer as a pilot for the private space company. Photo Credit: Clay Center Observatory/Virgin Galactic

[/caption]
From a pool of 500 potential applicants, Virgin Galactic has found their man. The NewSpace firm chose from some of the greatest pilots the world has to offer to work to be a pilot for their company. U.S. Air Force test pilot Keith Colmer rose to the top of the list and was selected by Virgin Galactic to join the team that is working to allow private citizens a flight into space.

Virgin Galactic announced Colmer’s addition to the company’s space flight team on Oct. 26. He will join Virgin Galactic’s Pilot David Mackay as they work to get the company’s carrier aircraft, WhiteKnightTwo and its spacecraft SpaceShipTwo into service. They will be joined by more pilots as the company works to begin operations in 2013.

Colmer brings 12 years of operational, developmental and experimental aircraft test flight experience plus more than 10 years of combined military experience in USAF spacecraft operations and flying. Photo Credit: Virgin Galactic

“Keith brings the kind of tremendous multi-dimensional talent and skill set that we are looking for in our astronaut pilots,” said Virgin Galactic’s President and CEO George Whitesides. “But equally important to us are his impeccable character and his outstanding record of high caliber performance in highly demanding environments. He sets the bar very high for others to come.”

“This team in Mojave is second to none,” said Mackay about Scaled Composite’s test pilots. “Keith and I are indeed fortunate to have their expertise and body of work to build on as we enter the final phases of the test program and prepare to open space to all.”

Colmer is a veteran pilot, with 12 years worth of experience in testing experimental aircraft. He has over 5,000 hours logged in more than 90 different types of aircraft.

Virgin Galactic is preparing to launch private citizens into space, potentially as early as 2013. Photo Credit: Virgin Galactic/Mark Greenberg

Former NASA Space Shuttle Manager Mike Moses recently left NASA to work as Virgin Galactic’s Vice President of Operations. Virgin Galactic is working to begin powered test flights, and after that the company will try to begin commercial operations.

“I am extremely honored to have been the first astronaut pilot selected through competition to join the team,” said Colmer. “Virgin Galactic is truly revolutionizing the way we go to space and I am looking forward to being a part of that.”

Colmer has served as a combat pilot, flying an F-16 in two tours in Iraq with the Colorado Air National Guard. According to information provided in a Virgin Galactic press release he is the first Air National Guard pilot to ever be selected to attend the USAF Test Pilot School, at Edwards Air Force Base.

With the dedication of its spaceport located near Las Cruces, New Mexico; additions to its team such as former NASA Space Shuttle Program Manager Mike Moses and others, Virgin Galactic is working to have the needed infrastructure in place to begin flight operations within the next two years. Photo Credit: Virgin Galactic/Jeffrey Vock

Colmer has a Bachelor of Science in Aeronautics and Astronautics from the Massachusetts Institute of Technology. He holds a Masters degree in Aerospace Engineering and a Masters degree in Telecommunications from the University of Colorado, Boulder. He is a graduate of the USAF Undergraduate Space Training program, the Euro-NATO Joint Jet Pilot Training Program and USAF Test Pilot School, Class 02A.

Virgin Galactic recently dedicated its Space Port in Las Cruces, New Mexico. The company is part of the London-based Virgin Group which is owned by Sir Richard Branson. The company formed after Scaled Composites one the $10 million Ansari X-PRIZE back in 2004. The flights of WhiteKnightOne and SpaceShipOne paved the way for the development of the vehicles that Virgin Galactic is planning on utilizing to begin suborbital space flight operations. Tickets for flights on the commercial space plane are set to cost approximately $200,000.

China’s Shenzhou-8 Mission Poised For Launch

Visualization of Chinese Space Station: Credit: Xinhua News Agency

[/caption]

What’s new in space flight? With only days to go, China is ready to launch an unmanned spacecraft that will attempt to dock with an experimental space station module – Tiangong 1. The Shenzhou 8 mission is the latest step in what will be a decade-long effort to place a manned permanent space station in orbit.

The official Xinhua News Agency announced the craft is ready to embark on a series of maneuvers to connect with the Tiangong 1 module. The orbiting craft was launched in the latter half of September and continuing to perform as expected. The unmanned craft and its modified Long March-2F launch rocket were transferred via a 20-meter-wide railway early Wednesday. Here they are poised to go at the launch pad located at Jiuquan space base on the edge of the Gobi desert in northern China. The launch pad is located a scant 1,500 meters away from the assembling and testing center and it took nearly two hours to complete the transfer.

“Technicians completed testing on the assembling of Shenzhou-8 and the rocket after they were delivered to the launch center at the end of August.” said Lu Jinrong, the launch center’s chief engineer. “In the next few days, the launch center will continue testing the spacecraft and the rocket, and inject propellent before the final launch in early November.”

According to spokeswoman Wu Ping: “The first space docking for China will be conducted when the Tiangong-1 drops from a 350-kilometer-high orbit to a 343-kilometer-high orbit to rendezvous with the Shenzhou-8. The Tiangong-1 and Shenzhou-8 will fly for about 12 days after the first docking, and will conduct another docking test at an appropriate time in flight, Wu said.0 After the two docking tests, the Shenzhou-8 will return to Earth’s surface and the Tiangong-1 will rise to its original orbit to wait for the next docking test.”

Rock on, China!

Original Story Source: Yahoo News.

Astronaut Scholarship Foundation Raising Funds, Awareness With Autograph Show

A light-hearted moment is shared between Apollo 12 Lunar Module Pilot Alan Bean (standing) and Apollo 11 Lunar Module Pilot Buzz Aldrin. Photo Credit: ASF

[/caption]
CAPE CANAVERAL, Fla – It all started – with seven. The original seven Mercury astronauts that is. They wanted to give back to the nation that had allowed them to reach the heights that they had achieved, while at the same time inspiring the nation’s young to follow in their footsteps. What arose was the Astronaut Scholarship Foundation (ASF).

There are more than 80 astronauts that are working with the ASF to ensure that the United States maintains its role as leader in terms of science and technology. The ASF accomplishes this by providing scholarships to students studying engineering, science and math.

Apollo 14 Lunar Module Pilot Edgar Mitchell poses with a guest during a previous ASF astronaut autograph show. Just over his shoulder is former shuttle astronaut Fred Gregory. Photo Credit: ASF

In 1984, the then six surviving Mercury astronauts established the 501 (c) 3 organization along with the widow of the seventh (Betty Grissom, widow of astronaut Virgil “Gus” Grissom. Astronauts Malcolm Scott Carpenter, L. Gordon Cooper Jr., John H. Glenn Jr., Walter M. Schirra, Alan B. Shepard Jr., and Donald K. (Deke) Slayton were also joined by the Mercury Program’s flight surgeon William Douglas M.D. as well as a local business man, Henry Landwirth.

What started with scholarships of only $1,000 has grown to $10,000 each. Twenty-six of these scholarships are handed out every year for a grand total of $260,000. All total? The ASF has handed out $3 million in scholarships to worthy students. The ASF’s current Chairman of its Board of Directors is Apollo 16 Command Module Pilot Charlie Duke; his vice-chair is shuttle veteran Dan Brandenstein.

Apollo 15 Commander Dave Scott poses with a young guest at the ASF's astronaut autograph show. Photo Credit: ASF

The ASF raises funds by a number of means. Astronaut guest appearance, fund-raisers, donations from different entities both public and private and autograph shows. The next of these is scheduled to take place at the Kennedy Space Center Visitor Complex located in Florida from Nov. 4-6. The annual show contains a wide range of events and tours to allow guests the opportunity to learn about the location’s history while picking up a signed item from an astronaut.

Former shuttle astronaut Robert Springer flew twice on the space shuttle and is a current member of the Astronaut Scholarship Foundation. Photo Credit: NASA.gov

Universe Today recently sat down with two-time shuttle veteran Robert C. Springer about his thoughts regarding ASF. Here is what he had to say:

Universe Today: Hi Bob thanks for chatting with us today.

Springer: “My pleasure, thanks for having me!”

Universe Today: How long have you been affiliated with the ASF and how do you view its activities?

Springer: “I have been associated with the Astronaut Scholarship Foundation for the past ten years. The foundation has had phenomenal success, increasing the number of scholarships to the current level of 26 scholarships, each in the amount of $10,000 awarded annually to young men and women who are pursuing degrees in engineering and scientific fields that are related to space exploration.”

Universe Today: What do you find most rewarding or interesting regarding the ASF’s efforts?

Springer: “One of the most interesting aspects of the fund raising effort, is the diversity of individuals who have contributed to the foundation. It has been both a national and international group of individuals who truly believe that we need to continue to invest in our future by providing funding assistance to talented and motivated students to enable them to continue their studies in selected fields.”

Universe Today: So your experience with these folks is rewarding?

Springer: “They are great, but it’s really wonderful to meet the recipients of these scholarships – each year we have the opportunity to hear from some of the individuals who have been awarded the scholarships, and it is remarkable to hear their stories and to understand the kinds of contributions they are making today and have the potential to make in the future.”

Universe Today: I bet that must be really gratifying. It seems we have to wrap, but I wanted to thank you for telling us a bit about your experiences.

Springer: “It was great talking with you!”

For more information regarding the Astronaut Scholarship Foundation’s annual autograph show visit: astronautscholarship.org or call: 321-455-7016.

The ASF astronaut autograph show is normally held during the first week in November and serves to raise funds for scholarships. Photo Credit: ASF

Here There Be Dragons: SpaceX’s Spacecraft Arrives at Launch Complex 40

The next Dragon spacecraft, the one that is set to launch to the International Space Station has arrived at Cape Canaveral Air Force Station's Space Luanch Complex 41 (SLC-41) for processing. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla – Space Exploration Technologies (SpaceX) welcomed a new guest to Space Launch Complex 40 (SLC-40) on Sunday – the next Dragon spacecraft that is set to launch later this year. Members of the media were invited to a photo opportunity to chronicle the Dragon spacecraft’s arrival which had been delayed a day due to issues with travel permits.

The Dragon that arrived on Sunday is destined to fly to the International Space Station (ISS). It will be the first time that a private firm docks with the space station. The COTS Demo 2 Dragon was shipped from SpaceX’s facilities in Hawthorne, California to Cape Canaveral in Florida.

SpaceX's next Dragon spacecraft, the one set to fly to the International Space Station, was delivered to Cape Canaveral Air Force Station's Space Launch Complex 40 on Sunday. Photo Credit: SpaceX

The Falcon 9 rocket, with its Dragon spacecraft payload, is currently scheduled to launch from Cape Canaveral Air Force Station’s SLC-40 on Dec. 19. If all goes as it is currently planned the Dragon will maneuver along side of the orbiting laboratory where the space station’s robot Canadarm 2 will grapple the unmanned spacecraft it and dock it with the station.

“When it comes to the launch day, NASA will determine that, we’re pushing to launch on Dec. 19, but the final “go” date is set by NASA and the range,” said SpaceX’s Vice-President for Communications Bobby Block. “We are currently working to conduct a wet dress rehearsal on November 21st.”

The Dragon spacecraft that is bound for the ISS will ride this Falcon 9 rocket to orbit. The launch date is tentatively set for Dec. 19. Photo Credit: Alan Walters/awaltersphoto.com

SpaceX recently passed a Preliminary Draft Review (PDR) of the Dragon’s Launch Abort System (LAS). This system, which pulls astronauts and their spacecraft to safety in case of some problem with the Falcon 9 launch vehicle, is unlike other systems of its type. Normal abort systems are essentially small rockets affixed to the top of the spacecraft (which is normally on top of the rocket). Not so with SpaceX’s design, dubbed DragonRider – it will be built into the walls of the spacecraft.

The reason for the difference in the abort system’s design is twofold. First, it will drive the costs down (Dragon is being developed as a reusable spacecraft) -whereas traditional abort systems are not capable of being reused. Secondly the system could one day be used as a potential means of landing spacecraft on other terrestrial worlds, such as the planet Mars.

SpaceX has been working with NASA to get the Dragon spacecraft ready for its historic mission. This will mark the first time that many of the systems have been used on an actual mission. Photo Credit: Alan Walters/awaltersphoto.com

This will mark the second demonstration flight that SpaceX will have flown to accomplish the objectives laid out in the Commercial Orbital Transportations Services or COTS contract. The $1.6 billion contract is an effort to ensure that needed cargo is delivered to the station safely and in a timely fashion.

SpaceX so far has launched two of its Falcon 9 rockets – both in 2010. The first flight occurred on June 4, 2010 with the second being launched on Dec. 8, 2010. It was on this second flight that SpaceX became the first private entity to launch a spacecraft into orbit and then safely recover it after it had successfully orbited the Earth twice. Before this only nations were capable of achieving this feat.

“This is very exciting, our last launch was about a year ago, so to have a fully-operational Dragon up-and-ready to make a historic docking to the International Space Station it’s terrifically exciting.” Block said.

SpaceX is working toward expanding the role of not only the Falcon 9 rocket - but the Dragon spacecraft as well. Photo Credit: Alan Walters/awaltersphoto.com