Being stuck here on Earth, at the bottom of this enormous gravity well really sucks. The amount of energy it takes to escape into the black would make even Captain Reynolds curse up a gorram storm.
But gravity has a funny way of evening the score, giving and taking in equal measure.
There are special places in the Universe, where the forces of gravity nicely balance out. Places that a clever and ambitious Solar System spanning civilization could use to get a toehold on the exploration of the Universe.
These are known as the Lagrange Points, or Lagrangian Points, or libration points, or just L-Points. They’re named after the French mathematician Joseph-Louis Lagrange, who wrote an “Essay on the Three Body Problem” in 1772. He was actually extending the mathematics of Leonhard Euler.
Euler discovered the first three Lagrangian Points, even though they’re not named after him, and then Lagrange turned up the next two.
But what are they?
When you consider the gravitational interaction between two massive objects, like the Earth and the Sun, or the Earth and the Moon, or the Death Star and Alderaan. Actually, strike that last example…
As I was saying, when you’ve got two massive objects, their gravitational forces balance out perfectly in 5 places. In each of these 5 places you could position a relatively low mass satellite, and maintain its position with very little effort.
For example, you could park a space telescope or an orbital colony, and you’d need very little, or even zero energy to maintain its position.
The most famous and obvious of these is L1. This is the point that’s balanced between the gravitational pull of the two objects. For example, you could position a satellite a little above the surface of the Moon. The Earth’s gravity is pulling it towards the Moon, but the Moon’s gravity is counteracting the pull of the Earth, and the satellite doesn’t need to use much fuel to maintain position.
There’s an L1 point between the Earth and the Moon, and a different spot between the Earth and the Sun, and a different spot between the Sun and Jupiter, etc. There are L1 points everywhere.
L2 is located on the same line as the mass but on the far side. So, you’d get Sun, Earth, L2 point. At this point, you’re probably wondering why the combined gravity of the two massive objects doesn’t just pull that poor satellite down to Earth.
It’s important to think about orbital trajectories. The satellite at that L2 point will be in a higher orbit and would be expected to fall behind the Earth, as it’s moving more slowly around the Sun. But the gravitational pull of the Earth pulls it forward, helping to keep it in this stable position.
You’ll want to play a lot of Kerbal Space Program to really wrap your head around it. Sadly, your No Man’s Sky time isn’t helping you at all, except to teach you that hyperdrives are notoriously finicky and you’ll never have enough inventory space.
L3 is located on the direct opposite side of the system. Again, the forces of gravity between the two masses balance out so that the third object maintains the same orbital velocity. For example, a satellite in the L3 point would always remain exactly hidden by the Sun.
Hold on, hold on, I know there are a million thoughts going through your brain right now, but bear with me.
There are two more points, the L4 and L5 points. These are located ahead and behind the lower mass object in orbit. You form an equilateral triangle between the two masses, and the third point of the triangle is the L4 point, flip the triangle upside down and there’s L5.
Now, it’s important to note that the first 3 Lagrange points are gravitationally unstable. Any satellite positioned there will eventually drift away from stability. So they need some kind of thrusters to maintain this position.
Imagine a tall smooth mountain, with a sharp peak. Put a bowling ball at the very top and you’re not going to need a lot of energy to keep it in that location. But the blowing wind will eventually knock it out of place, and down the mountain. That’s L1, L2 and L3, and it’s why we don’t see any natural objects located in those places.
But L4 and L5 are actually stable. It’s the opposite situation, a deep valley where a bowling ball will tend to fall down into. And we find asteroids in the natural L4 and L5 positions in the larger planets, like Jupiter. These are the Trojan asteroids, trapped in these natural gravity wells though the gravitational interaction of Jupiter and the Sun.
So what can we use Lagrange points for? There are all kinds of space exploration applications, and there are already a handful of satellites in the various Earth-Sun and Earth-Moon points.
Sun-Earth L1 is a great place to station a solar telescope, where it’s a little closer to the Sun, but can always communicate with us back on Earth.
The James Webb Space Telescope is destined for Sun-Earth L2, located about 1.5 million km from Earth. From here, the bright Sun, Earth and Moon are huddled up in a tiny location in the sky, leaving the rest of the Universe free for observation.
Earth-Moon L1 is a perfect place to put a lunar refueling station, a place that can get to either the Earth or the Moon with minimal fuel.
Perhaps the most science fictiony idea is to put huge rotating O’Neill Cylinder space stations at the L4 and L5 points. They’d be perfectly stable in orbit, and relatively easy to get to. They’d be the perfect places to begin the colonization of the Solar System.
Thanks gravity. Thanks for interacting in all the strange ways that you do, and creating these stepping stones that we can use as we reach up and out from our planet to become a true Solar System spanning civilization.
NASA STENNIS SPACE CENTER, MISS – NASA engineers successfully carried out a key developmental test firing of an RS-25 rocket engine along with its modernized ‘brain’ controller at the Stennis Space Center on Thursday, Aug. 18, as part of the ongoing huge development effort coordinating the agency’s SLS Mars mega rocket slated for its maiden blastoff by late 2018.
“Today’s test was very successful,” Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, told Universe Today in an exclusive interview at the conclusion of the exciting RS-25 engine test gushing a huge miles long plume of steam at NASA Stennis on Aug. 18 under sweltering Gulf Coast heat.
“It was absolutely great!”
Thursday’s full thrust RS-25 engine hot fire test, using engine No. 0528, ran for its planned full duration of 7.5 minutes and met a host of critical test objectives required to confirm and scope out the capabilities and operating margins of the upgraded engines ,which are recycled from the shuttle era.
“We ran a full program duration of 420 seconds . And we had no failure identifications pop up.”
“It looks like we achieved all of our data objectives,” Wofford elaborated to Universe Today, after we witnessed the test from a viewing area just a few hundred meters away, with our ears protected by ear plugs.
A cluster of four RS-25 engines will power the Space Launch System (SLS) at the base of the first stage, also known as the core stage.
SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!
NASA’s goal is to send humans to Mars by the 2030s with SLS and Orion.
The primary goal of the development tests is to validate the capabilities of a new controller – or, “brain” – for the engine and to verify the different operating conditions needed for the SLS vehicle.
The test was part of a long continuing and new series aimed at certifying the engines for flight.
“We continue this test series in the fall. Which is a continuing part of our certification series to fly these engines on NASA’s SLS vehicle,” Wofford told me.
What was the primary objective of today’s test?
“Today’s test was mostly about wringing out the new control system. We have a new engine controller on this engine. And we have to certify that new controller for flight.”
“So to certify it we run it through its paces in ground tests. And we put it through a more stringent set of test conditions than it will ever see in flight.”
“The objectives we tested today required 420 seconds of testing to complete.”
Watch this NASA video of the full test:
Video Caption: RS-25 Rocket Engine Test Firing on 18 Aug. 2016: The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch of NASA’s Space Launch System mega rocket. Credit: NASA
What are the additional objectives from today’s test?
“Well you can’t do all of your objectives in one test. So the certification series are all about technical objectives and total accumulated time. So one thing we did was we accumulated time toward the time we need to certify this control system for the SLS engine,” Wofford explained.
“The other thing we did was you pick some technical objectives you want to put the controller through its paces for. And again you can’t do all of those in one test. So you spread them over a series. And we did some of those on this test.”
Aerojet Rocketdyne is the prime contractor for the RS-25 engine work and originally built them during the shuttle era.
The remaining cache of 16 heritage RS-25 engines are being recycled from their previous use as reusable space shuttle main engines (SSMEs). They are now being refurbished, upgraded and tested by NASA and Aerojet Rocketdyne to power the core stage of the Space Launch System rocket now under full development.
During launch they will fire at 109 percent thrust level for some eight and a half minutes while generating a combined two million pounds of thrust.
The SLS core stage is augmented with a pair of five segment solid rocket boosters (SRBs) generating about 3.3 million pounds of thrust each. NASA and Orbital just completed the QM-2 SRB qualification test on June 28.
Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX).
The first liquid hydrogen (LH2) qualification fuel tank for the core stage was just welded together at NASA’s Michoud Assembly Facility in New Orleans – as I witnessed exclusively and reported here.
The RS-25 engines measure 14 feet tall and 8 feet in diameter.
For SLS they will be operating at 109% of power – a higher power level compared to a routine usage of 104.5% during the shuttle era.
They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.
Why was about five seconds of Thursday’s test run at the 111% power level? Will that continue in future tests?
“We did that because we plan to fly this engine on SLS at 109% of power level. So it’s to demonstrate the feasibility of doing that. On shuttle we were certified to fly these engines at 109%,” Wofford confirmed to Universe Today.
“So to demonstrate the feasibility of doing 109% power level on SLS we ‘overtest’ . So we ran [today’s test] at 2 % above where we are going to fly in flight.”
“We will do more in the future.”
The fully assembled core stage intergrated with all 4 RS-25 flight engines will be tested at the B-2 test stand in Stennis during the first quarter of 2018 – some 6 months or more before the launch in late 2018.
How many more engines tests will be conducted prior to the core stage test?
“After today we will run 7 more tests before the core stage test and the first flight.”
“I’m thrilled. I’ve see a lot of these and it never gets old!” Wofford gushed.
The hardware for SLS and Orion is really coming together now and its becoming more and more real every day.
These are exciting times for NASA’s human deep space exploration strategy.
The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.
Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL — Shortly after midnight today, Sunday, Aug. 14, and under near pristine Florida Space Coast skies, SpaceX dazzled its commercial customers and space enthusiasts alike worldwide with the twin feats of nailing the nighttime launch of the firm’s Falcon 9 carrying a huge Japanese telecommunications satellite to orbit and accomplishing the nailbiting precision touchdown of the first stage on a miniscule droneship at sea.
A virgin SpaceX Falcon 9 rocket carrying the JCSAT-16 telecom satellite roared to life right on time Sunday morning at 1:26 a.m. from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida and streaked to orbit.
Scarcely some nine minutes later the 15 story tall first stage completed a pinpoint and upright soft landing on a prepositioned ocean going platform after carrying the Japanese satellite to its intended Geostationary Transfer Orbit (GTO).
The satellite was launched using the upgraded version of the 229 foot tall Falcon 9 rocket. The first stage generates over 1.71 million pounds of sea level thrust when all nine Merlin 1D engines fire up on the pad.
Check out the expanding gallery of launch photos and videos.
The JCSAT-16 communications satellite was built by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp. It is equipped Ku-band and Ka-band communications services for customers of SKY Perfect JSAT Corp.
SKY Perfect JSAT Corp. ia a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.
Sunday’s launch was the second this year for The sextet of intact and upright landings of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.
The JCSAT-14 satellite was already successfully launched earlier this year atop a SpaceX Falcon 9 on May 6.
JCSAT-16 will primarily serve as an on orbit back up spare for the company’s existing services, a company spokeswomen told Universe Today at the media launch viewing site.
The U.S. Air Force’s 45th Space Wing supported SpaceX’s Falcon 9 launch of JCSAT-16.
“I am very proud of the entire Space Coast team. Their flawless work made this mission a success,” said Col. Walt Jackim, 45th Space Wing vice commander and mission Launch Decision Authority.
“Assured access to space remains a difficult and challenging endeavor. Today’s launch reflects a superb collaborative effort between commercial launch providers, allied customers, and U.S. Air Force range and safety resources. The 45th Space Wing remains a proud member of the Space Coast team and we look forward to continuing our service as the ‘World’s Premier Gateway to Space.”
With today’s event, SpaceX has now successfully soft landed 6 of the spent first stage boosters over the past eight months following successful rocket delivery launches to orbit for NASA and commercial customers – two on land and four at sea.
The sextet of intact and upright landings of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Let yourself imagine a spaceport. I bet you put a grand concourse in the center with a fine selection of rockets descending and ascending together with space planes making their final approaches or taking off to worlds who knows where? Perhaps just behind snaking off toward the horizon is a common asphalt road with autonomous electric cars whizzing their passengers to and from the concourse. And assuredly there’s an above ground or below ground rail system that provides convenient access to those in the nearby city. At least that’s what my imagination pictures.
While my idea of space transportation may seem somewhat farfetched, the idea of a spaceport isn’t. Actually the Federal Aviation Administration (FAA) of the United States of America has already licensed 10 spaceports or Launch Site Operators as they call them. Interestingly the same FAA also licenses 12 Active Launch providers.
Curious that NASA isn’t on the list of licensed Active Launchers. I wonder if they will be allowed to launch their new Space Launch System. Anyway, there’s been another treat for us in that the FAA has recently approved a commercial venture to the Moon. Can this be any more exciting? It seems that we’ve made the grade with space ports launchers and we’ve become a space faring species. There’s nothing farfetched about this reality.
Let’s dig a little deeper. The commercial company is Moon Express. It’s not surprising that they’ve sought approval as their ultimate goal is to win the Google Lunar X Prize. Presumably if they purchase a launch from the United States then they need a licensed one. And the launch company will only loft the Moon Express robot to the Moon with permission.
Now this is where things get a bit interesting. Moon Express has mentioned that they will use Rocket Lab to hurl their robot to the Moon. But Rocket Lab launches from New Zealand and they aren’t on the FAA list of Active Launchers. You may understand more by perusing the licensing. It seems that any United States citizen must comply with the rules wherever in the world they launch. Nevertheless it seems that we can sleep with warm hearts as apparently our space faring dreams are coming to fruition.
Yet I wonder if all really is the lotus lands that it seems. For one, why does the FAA or any government on Earth have any jurisdictional rights on accessing the Moon? Did the Chang’e 3 team need permission before they flew? I think not.
Further, does granting permission make the granter liable? Do you have any memories of the furor over the Skylab vessel re-entering on top of Australia in 1979? And whether the United States was found liable? I guess this is where 51 USC Code 50914 comes in. It shows that the licensing is apparently all about managing the risk. Does this imply that the existing judicial structure on Earth is inappropriate for space? Can you imagine the fun that journalists would have if they heard of a theft occurring on the International Space Station? Who would investigate? Who would oversee the trial and make judgement? There are some big questions remaining to be answered before people can sit idly watching rockets roar up from a spaceport with their loved ones safely tucked in.
Nevertheless while uncertainties remain, we are seeing progress. We see the basis of an international legal system. We see space transportation infrastructure that serves the customer rather than the scientist. We see individuals achieving feats that previously were the sole domain of governments. So I say, “Yes imagine your spaceport! Believe in the ability to travel far above Earth and into the furthest reaches of our solar system. Believe in a future of our making.”
KENNEDY SPACE CENTER, FL – SpaceX founder Elon Musk’s daring dream of rocket recycling and reusability is getting closer and closer to reality with each passing day. After a breathtaking series of experimental flight tests aimed at safely landing the firms spent Falcon 9 first stages on land and at sea over the past half year the bold effort achieved another major milestone by just completing the first full duration test firing of one of those landed boosters.
On Thursday, July 28, SpaceX engineers successful conducted a full duration static engine test firing of the 156-foot-tall (47-meter) recovered Falcon 9 first stage booster while held down on a test stand at the company’s rocket development test facility in McGregor, Texas. The engines fired up for about two and a half minutes.
The SpaceX team has been perfecting the landing techniques by adopting lessons learned after each landing campaign attempt.
What are the lessons learned so far from the first stage landings and especially the hard landings? Are there any changes being made to the booster structure? How well did the landing burn scenario perform?
During SpaceX’s recent CRS-9 launch campaign media briefings at NASA’s Kennedy Space Center on July 18, I asked SpaceX VP Hans Koenigsmann for some insight.
“We learned a lot … from the landings,” Hans Koenigsmann, SpaceX vice president of Flight Reliability, told Universe Today during the recent media briefings for the SpaceX CRS-9 space station cargo resupply launch on July 18.
“There are no structural changes first of all.”
“The key thing is to protect the engines,” Koenigsmann elaborated, while they are in flight and “during reentry”.
The SpaceX Falcon 9 first stage is outfitted with four landing legs at the base and four grid fins at the top to conduct the landing attempts.
“In general I think the landing concept with the legs, and the number of burns and the way we perform those seems to work OK,” Koenigsmann told Universe Today.
After separating from the second stage at hypersonic speeds of up to some 4000 mph, the first stage engines are reignited to reverse course and do a boost backburn back to the landing site and slow the rocket down for a soft landing, via supersonic retropulsion.
Proper engine performance is critical to enabling a successful touchdown.
“The key thing is to protect the engines – and make sure that they start up well [in space during reentry],” Koenigsmann explained. “And in particular the hot trajectory, so to speak, like the ones that comes in after a fast payload, like the geo-transfer payload basically.”
“Those engines need to be protected so that they start up in the proper way. That’s something that we learned.”
Elon Musk’s goal is to radically slash the cost of launching rockets and access to space via rocket reuse – in a way that will one day lead to his vision of a ‘City on Mars.’
SpaceX hopes to refly a once flown booster later this year, sometime in the Fall, using the ocean landed Falcon from NASA’s CRS-8 space station mission launched in April, says Koenigsmann.
But the company first has to prove that the used vehicle can survive the extreme and unforgiving stresses of the violent spaceflight environment before they can relaunch it.
The July 28 test firing is part of that long life endurance testing and involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.
The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.
Watch the engine test in this SpaceX video:
Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX
Just 10 minutes after launching the JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO), the used first stage relit a first stage Merlin 1D engine.
It conducted a series of three recovery burns to maneuver the rocket to a designated landing spot at sea or on land and rapidly decelerate it from supersonic speeds for a propulsive soft landing, intact and upright using a quartet of landing legs that deploy in the final moments before a slow speed touchdown.
However, although the landing was upright and intact, this particular landing was also classed as a ‘hard landing’ because the booster landed at a higher velocity and Merlin 1D first stage engines did sustain heavy damage as seen in up close photos and acknowledged by Musk.
“Most recent rocket took max damage, due to v high entry velocity. Will be our life leader for ground tests to confirm others are good,” Musk tweeted at the time.
Nevertheless it all worked out spectacularly and this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.
Indeed prior to liftoff, Musk had openly doubted a successful landing outcome, since this first stage was flying faster and at a higher altitude at the time of separation from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform compared to ISS missions, for example.
So although this one cannot be reflown, it still serves another great purpose for engineers seeking to determining the longevity of the booster and its various components – as now audaciously demonstrated by the July 28 engine test stand firing.
“We learned a lot even on the missions where things go wrong with the landing, everything goes well on the main mission of course,” said Koenigsmann.
Altogether SpaceX has successfully soft landed and recovered five of their first stage Falcon 9 boosters intact and upright since the history making first ever land landing took place just seven months ago in December 2015 at Cape Canaveral Air Force Station in Florida.
See the stupendous events unfold in up close photos and videos herein.
Following each Falcon 9 launch and landing attempt, SpaceX engineers assess the voluminous and priceless data gathered, analyze the outcome and adopt the lessons learned.
CRS-9 marks only the second time SpaceX has attempted a land landing of the 15 story tall first stage booster back at Cape Canaveral Air Force Station – at the location called Landing Zone 1 (LZ 1).
Watch this exquisitely detailed up close video showing the CRS-9 first stage landing at LZ 1, as shot by space colleague Jeff Seibert from the ITL causeway at CCAFS- which dramatically concluded with multiple shockingly loud sonic booms rocketing across the Space Coast and far beyond and waking hordes of sleepers:
Video caption: This was the second terrestrial landing of a SpaceX Falcon 9 booster on July 18, 2016. It had just launched the CRS9 Dragon mission towards the ISS. The landing took place at LZ1, formerly known as Pad 13, located on CCAFS and caused a triple sonic boom heard 50 miles away. Credit: Jeff Seibert
The history making first ever ground landing successfully took place at Landing Zone 1 (LZ 1) on Dec. 22, 2015 as part of the ORBCOMM-2 mission. Landing Zone 1 is built on the former site of Space Launch Complex 13, a U.S. Air Force rocket and missile testing range.
SpaceX also successfully recovered first stages three times in a row at sea this year on an ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.
OCISLY is generally stationed approximately 400 miles (650 kilometers) off shore and east of Cape Canaveral, Florida in the Atlantic Ocean. The barge arrives back in port at Port Canaveral several days after the landing, depending on many factors like weather, port permission and the state of the rocket.
The rocket apparently ran out of liquid oxygen fuel in the final moments before touchdown, hit hard, tipped over and pancaked onto the deck.
“Looks like early liquid oxygen depletion caused engine shutdown just above the deck,” Musk explained via twitter at the time.
“Looks like thrust was low on 1 of 3 landing engines. High g landings v sensitive to all engines operating at max.”
“We learned a lot even on the mission where things go wrong with the landing,” Koenigsmann explained. “Everything goes well on the main mission of course.”
“That’s actually something where you have successful deploy and the landing doesn’t quite work- and yet its the landing that gets all the attention.”
“But even on those landings we learned a lot. In particular on the last landing [from Eutelsat launch] we learned a lot.”
“We believe we found a way to operationally protect these engines and to make it safer for them to start up – and to come up to full thrust and stay at full thrust.”
What exactly does “protecting the engines” mean “in flight?”
“Yes I mean protecting the engines during reentry,” Koenigsmann told me.
“That’s when the engines get hot. We enter with the engines facing the flow. So its basically the engines directly exposed to the hot flow. And that’s when you need to protect the engines and the gases and liquids that are in the engines. To make sure that nothing boils off and does funny things.”
“So all in all these series of drone ship landings has been extremely successful, even when we didn’t recover all the first stages [fully intact].”
Watch for Ken’s continuing SpaceX and CRS-9 mission coverage where he reported onsite direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Video caption: SpaceX Falcon 9 lifts off with Dragon CRS-9 resupply ship bound for the International Space Station on July 18, 2016 at 12:45 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com
Watch this CRS-9 launch and landing video compilation from space colleague Mike Wagner:
Video caption: SpaceX CRS-9 Launch and Landing compilation on 7/18/2016. Local papers reported 911 calls for a loud explosion up to 75 miles away. This sonic boom seemed louder than the first landing at the Cape in Dec. 2015. Credit: USLaunchReport
MICHOUD ASSEMBLY FACILITY, NEW ORLEANS, LA – NASA has just finished welding together the very first fuel tank for America’s humongous Space Launch System (SLS) deep space rocket currently under development – and Universe Today had an exclusive up close look at the liquid hydrogen (LH2) test tank shortly after its birth as well as the first flight tank, during a tour of NASA’s New Orleans rocket manufacturing facility on Friday, July 22, shortly after completion of the milestone assembly operation.
“We have just finished welding the first liquid hydrogen qualification tank article …. and are in the middle of production welding of the first liquid hydrogen flight hardware tank [for SLS-1] in the big Vertical Assembly Center welder!” explained Patrick Whipps, NASA SLS Stages Element Manager, in an exclusive hardware tour and interview with Universe Today on July 22, 2016 at NASA’s Michoud Assembly Facility (MAF) in New Orleans.
“We are literally putting the SLS rocket hardware together here at last. All five elements to put the SLS stages together [at Michoud].”
This first fully welded SLS liquid hydrogen tank is known as a ‘qualification test article’ and it was assembled using basically the same components and processing procedures as an actual flight tank, says Whipps.
“We just completed the liquid hydrogen qualification tank article and lifted it out of the welding machine and put it into some cradles. We will put it into a newly designed straddle carrier article next week to transport it around safely and reliably for further work.”
And welding of the liquid hydrogen flight tank is moving along well.
“We will be complete with all SLS core stage flight tank welding in the VAC by the end of September,” added Jackie Nesselroad, SLS Boeing manager at Michoud. “It’s coming up very quickly!”
“The welding of the forward dome to barrel 1 on the liquid hydrogen flight tank is complete. And we are doing phased array ultrasonic testing right now!”
SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!
The LH2 ‘qualification test article’ was welded together using the world’s largest welder – known as the Vertical Assembly Center, or VAC, at Michoud.
And it’s a giant! – measuring approximately 130-feet in length and 27.6 feet (8.4 m) in diameter.
See my exclusive up close photos herein documenting the newly completed tank as the first media to visit the first SLS tank. I saw the big tank shortly after it was carefully lifted out of the welder and placed horizontally on a storage cradle on Michoud’s factory floor.
Finishing its assembly after years of meticulous planning and hard work paves the path to enabling the maiden test launch of the SLS heavy lifter in the fall of 2018 from the Kennedy Space Center (KSC) in Florida.
The qual test article is the immediate precursor to the actual first LH2 flight tank now being welded.
“We will finish welding the liquid hydrogen and liquid oxygen flight tanks by September,” Whipps told Universe Today.
Technicians assembled the LH2 tank by feeding the individual metallic components into NASA’s gigantic “Welding Wonder” machine – as its affectionately known – at Michoud, thus creating a rigid 13 story tall structure.
The welding work was just completed this past week on the massive silver colored structure. It was removed from the VAC welder and placed horizontally on a cradle.
I watched along as the team was also already hard at work fabricating SLS’s first liquid hydrogen flight article tank in the VAC, right beside the qualification tank resting on the floor.
Welding of the other big fuel tank, the liquid oxygen (LOX) qualification and flight article tanks will follow quickly inside the impressive ‘Welding Wonder’ machine, Nesselroad explained.
The LH2 and LOX tanks sit on top of one another inside the SLS outer skin.
The SLS core stage – or first stage – is mostly comprised of the liquid hydrogen and liquid oxygen cryogenic fuel storage tanks which store the rocket propellants at super chilled temperatures. Boeing is the prime contractor for the SLS core stage.
To prove that the new welding machines would work as designed, NASA opted “for a 3 stage assembly philosophy,” Whipps explained.
Engineers first “welded confidence articles for each of the tank sections” to prove out the welding techniques “and establish a learning curve for the team and test out the software and new weld tools. We learned a lot from the weld confidence articles!”
“On the heels of that followed the qualification weld articles” for tank loads testing.
“The qualification articles are as ‘flight-like’ as we can get them! With the expectation that there are still some tweaks coming.”
“And finally that leads into our flight hardware production welding and manufacturing the actual flight unit tanks for launches.”
“All the confidence articles and the LH2 qualification article are complete!”
What’s the next step for the LH2 tank?
The test article tank will be outfitted with special sensors and simulators attached to each end to record reams of important engineering data, thereby extending it to about 185 feet in length.
Thereafter it will loaded onto the Pegasus barge and shipped to NASA’s Marshall Space Flight Center in Huntsville, Alabama, for structural loads testing on one of two new test stands currently under construction for the tanks. The tests are done to prove that the tanks can withstand the extreme stresses of spaceflight and safely carry our astronauts to space.
“We are manufacturing the simulators for each of the SLS elements now for destructive tests – for shipment to Marshall. It will test all the stress modes, and finally to failure to see the process margins.”
The SLS core stage builds on heritage from NASA’s Space Shuttle Program and is based on the shuttle’s External Tank (ET). All 135 ET flight units were built at Michoud during the thirty year long shuttle program by Lockheed Martin.
“We saved billions of dollars and years of development effort vs. starting from a clean sheet of paper design, by taking aspects of the shuttle … and created an External Tank type generic structure – with the forward avionics on top and the complex engine section with 4 engines (vs. 3 for shuttle) on the bottom,” Whipps elaborated.
“This is truly an engineering marvel like the External Tank was – with its strength that it had and carrying the weight that it did. If you made our ET the equivalent of a Coke can, our thickness was about 1/5 of a coke can.”
“It’s a tremendous engineering job. But the ullage pressures in the LOX and LH2 tanks are significantly more and the systems running down the side of the SLS tank are much more sophisticated. Its all significantly more complex with the feed lines than what we did for the ET. But we brought forward the aspects and designs that let us save time and money and we knew were effective and reliable.”
The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank (LOX), the intertank, the liquid hydrogen tank (LH2) and the engine section.
The LH2 and LOX tanks feed the cryogenic propellants into the first stage engine propulsion section which is powered by a quartet of RS-25 engines – modified space shuttle main engines (SSMEs) – and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.
The tanks are assembled by joining previously manufactured dome, ring and barrel components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.
The LH2 tank is the largest major part of the SLS core stage. It holds 537,000 gallons of super chilled liquid hydrogen. It is comprised of 5 barrels, 2 domes, and 2 rings.
The LOX tank holds 196,000 pounds of liquid oxygen. It is assembled from 2 barrels, 2 domes, and 2 rings and measures over 50 feet long.
The material of construction of the tanks has changed compared to the ET.
“The tanks are constructed of a material called the Aluminum 2219 alloy,” said Whipps. “It’s a ubiquosly used aerospace alloy with some copper but no lithium, unlike the shuttle superlightweight ET tanks that used Aluminum 2195. The 2219 has been a success story for the welding. This alloy is heavier but does not affect our payload potential.”
“The intertanks are the only non welded structure. They are bolted together and we are manufacturing them also. It’s much heavier and thicker.”
Overall, the SLS core stage towers over 212 feet (64.6 meters) tall and sports a diameter of 27.6 feet (8.4 m).
NASA’s Vehicle Assembly Center is the world’s largest robotic weld tool. The domes and barrels are assembled from smaller panels and piece parts using other dedicated robotic welding machines at Michoud.
The total weight of the whole core stage empty is 188,000 pounds and 2.3 million pounds when fully loaded with propellant. The empty ET weighed some 55,000 pounds.
Considering that the entire Shuttle ET was 154-feet long, the 130-foot long LH2 tank alone isn’t much smaller and gives perspective on just how big it really is as the largest rocket fuel tank ever built.
“So far all the parts of the SLS rocket are coming along well.”
“The Michoud SLS workforce totals about 1000 to 1500 people between NASA and the contractors.”
Every fuel tank welded together from now on after this series of confidence and qualification LOX and LH2 tanks will be actual flight article tanks for SLS launches.
“There are no plans to weld another qualification tank after this,” Nesselroad confirmed to me.
What’s ahead for the SLS-2 core stage?
“We start building the second SLS flight tanks in October of this year – 2016!” Nesselroad stated.
The world’s largest welder was specifically designed to manufacture the core stage of the world’s most powerful rocket – NASA’s SLS.
The Vertical Assembly Center welder was officially opened for business at NASA’s Michoud Assembly Facility in New Orleans on Friday, Sept. 12, 2014.
NASA Administrator Charles Bolden was personally on hand for the ribbon-cutting ceremony at the base of the huge VAC welder.
The state-of-the-art welding giant stands 170 feet tall and 78 feet wide. It complements the world-class welding toolkit being used to assemble various pieces of the SLS core stage including the domes, rings and barrels that have been previously manufactured.
The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.
Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.
The exact launch dates fully depend on the budget NASA receives from Congress and who is elected President in the November 2016 election – and whether they maintain or modify NASA’s objectives.
“If we can keep our focus and keep delivering, and deliver to the schedules, the budgets and the promise of what we’ve got, I think we’ve got a very capable vision that actually moves the nation very far forward in moving human presence into space,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, during the post QM-2 SRB test media briefing in Utah last month.
“This is a very capable system. It’s not built for just one or two flights. It is actually built for multiple decades of use that will enable us to eventually allow humans to go to Mars in the 2030s.”
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about SLS and Orion crew vehicle, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Juno at Jupiter, Orbital ATK Antares & Cygnus, Boeing, Space Taxis, Mars rovers, NASA missions and more at Ken’s upcoming outreach events:
July 27-28: “ULA Atlas V NRO Spysat launch July 28, SpaceX launch to ISS on CRS-9, SLS, Orion, Juno at Jupiter, ULA Delta 4 Heavy NRO spy satellite, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
If new rocket engines being developed by the European Space Agency (ESA) are successful, they could revolutionize rocket technology and change the way we get to space. The engine, called the Synergistic Air-Breathing Rocket Engine (SABRE), is designed to use atmospheric air in the early flight stages, before switching to conventional rocket mode for the final ascent to space. If all goes well, this new air-breathing rocket could be ready for test firings in about four years.
Conventional rockets have to carry an on-board oxidizer such as liquid oxygen, which is combined with fuel in the rocket’s combustion chamber. This means rockets can require in excess of 250 tons of liquid oxygen in order to function. Once this oxygen is consumed in the first stages, these used up stages are discarded, creating massive waste and expense. (Companies like SpaceX and Blue Origin are developing re-usable rockets to help circumvent this problem, but they’re still conventional rockets.)
Conventional rockets carry their own oxygen because its temperature and pressure can be controlled. This guarantees the performance of the rocket, but requires complicated systems to do so. SABRE will eliminate the need for carrying most on-board oxygen, but this is not easy to do.
SABRE’s challenge is to compress the atmospheric oxygen to about 140 atmospheres before introducing it into the engine’s combustion chambers. But compressing the oxygen to that degree raises its temperature so much that it would melt the engines. The solution to that is to cool the air with a pre-cooling heat exchanger, to the point where it’s almost a liquid. At that point, a turbine based on standard jet engine technology can compress the air to the required operating temperature.
This means that while SABRE is in Earth’s atmosphere, it uses air to burn its hydrogen fuel, rather than liquid oxygen. This gives it an 8 x improvement in propellant consumption. Once SABRE has reached about 25 km in altitude, where the air is thinner, it switches modes and operates as a standard rocket. By the time it switches modes, it’s already about 20% of the way into Earth orbit.
Like a lot of engineering challenges, understanding what needs to be done is not the hard part. Actually developing these technologies is extremely difficult, even though many people just assume engineers will be successful. The key for Reaction Engines Ltd, the company developing SABRE, is to develop the light weight heat exchangers at the heart of the engine.
Heat exchangers are common in industry, but these heat exchangers have to cool incoming air from 1000 Celsius to -150 Celsius in less than 1/100th of a second, and they have to do it while preventing frost from forming. They are extremely light, at about 100 times lighter than current technology, which will allow them to be used in aerospace for the first time. Some of the lightness factor of these new heat exchanges stems from the wall thickness of the tubing, which is less than 30 microns. That’s less than the thickness of a human hair.
Reaction Engines Limited says that these heat exchangers will have the same impact on aerospace propulsion systems that silicone chips had on computing.
A new funding agreement with the ESA will provide Reaction Engines with 10 million Euros for continued development of SABRE. This will add to the 50 million Pounds that the UK Space Agency has already contributed. That 50 million Pound investment was the result of a favorable viability review of SABRE that the ESA performed in 2010.
IN 2012, the pre-cooler and the heat exchangers were tested. After that came more R&D, including the development of altitude-compensating rocket nozzles, thrust chamber cooling, and air intakes.
Now that the feasibility of SABRE has been strengthened, Reaction Engines wants to build a ground demonstrator engine by 2020. If the continued development of SABRE goes well, and if testing by 2020 is successful, then these Air Breathing rocket engines will be in a position to truly revolutionize access to space.
In ESA’s words, “ESA are confident that a ground test of a sub-scale engine can be successfully performed to demonstrate the flight regime and cycle and will be a critical milestone in the development of this program and a major breakthrough in propulsion worldwide.”
A flawless shakedown mission from Russia’s newly modified Soyuz capsule successfully delivered a new multinational crew to the Space Station early Saturday, July 9 after a two day orbital chase.
The upgraded Soyuz MS-01 spacecraft launching on its maiden flight successfully docked to the International Space Station at 12:06 a.m. EDT Saturday, July 9, while soaring 254 statute miles over the South Pacific.
“Docking confirmed,” said a commentator from Russian mission control at Korolev outside Moscow. “Contact and capture complete.”
The Soyuz was ferrying the new multinational trio of astronauts and cosmonauts comprising Kate Rubins of NASA, Soyuz Commander Anatoly Ivanishin of the Russian space agency Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency on the Expedition 48/49 mission.
The three person crew of two men and one woman had launched flawlessly into picture perfect skies two days earlier from the Baikonur Cosmodrome in Kazakhstan at 9:36 p.m. EDT Wednesday, July 6 (7:36 a.m. Baikonur time, July 7), in the brand new version of the Russian Soyuz capsule that has been significantly upgraded and modified.
NASA’s Kate Rubins was strapped into the right seat, Ivanishin in the center and Onishi on the left.
It was a textbook approach on the shakedown mission that culminated in a flawless docking at the Earth-facing Russian Rassvet module on the Russian side of the massive orbiting outpost.
NASA TV carried the whole operation live with beautiful color video imagery streaming from the ISS showing the Soyuz approach and black and white video streaming from the Soyuz.
The Soyuz performed magnificently. All of the upgraded and modified systems checked out perfectly on this maiden flight of the new version of Russias venerable Soyuz, said NASA commentator Rob Navias.
“All new systems functioning perfectly,” said Navias. “This has been a perfect shakedown mission for the new Soyuz crew docking at the ISS.”
The Soyuz had slowed to an approach velocity of just 0.1 m/s at docking with the forward docking probe extended.
The approach was fully automated under Russian mission control as Ivanishin carefully monitored all spacecraft systems with steady update calls back to ground control.
The fully automated approached utilized the upgraded KURS NA automated rendezvous radar system.
During final approach, the Soyuz conducted a fly around maneuver starting at a distance of 400 meters. It moved 57 degress around the station while closing in to about 250 meters.
After station keeping for about 2 minutes while ground controllers conducted a final evaluation and no issues were detected, Russian mission control at last gave the GO for final approach and the GO command for docking was given.
The Soyuz made contact and completed a perfect docking at Rassvet. The hook and latches were then closed in for a tight grasp onto the station.
The crews then conducted a series of leak and pressurization checks.
After everything checked out, the hatches were finally opened about two and a half hours later at 2:26 a.m. EDT.
The new crew members of Expedition 48 officially floated aboard the International Space Station at about 2:50 a.m. EDT, July 9 with the hatches opened between their Soyuz MS-01 and the space station and after a live video transmission link had been established to show the festivities.
They were welcomed aboard with hugs and joined the Expedition 48 Commander Jeff Williams of NASA and Flight Engineers Oleg Skripochka and Alexey Ovchinin of Roscosmos.
With the arrival of Rubins, Ivanishin and Onishi, the stations resident crew is beefed up to its normal six person crew complement.
They soon held the traditional video telecon for well wishes and congratulations from family, friends and mission officials.
The new trio will spend at least four months at the orbiting lab complex conducting more than 250 science investigations in fields such as biology, Earth science, human research, physical sciences, and technology development.
Rubins is on her rookie space mission. She holds a bachelor’s degree in molecular biology and a doctorate in cancer biology which will be a big focus of her space station research activities.
The new trio will join Expedition 48 Commander Jeff Williams of NASA and Flight Engineers Oleg Skripochka and Alexey Ovchinin of Roscosmos.
“The approximately 250 research investigations and technology demonstrations – not possible on Earth – will advance scientific knowledge of Earth, space, physical, and biological sciences. Science conducted on the space station continues to yield benefits for humanity and will enable future long-duration human and robotic exploration into deep space, including the agency’s Journey to Mars,” says NASA.
The newly upgraded Soyuz offers increased reliability and enhanced performance.
Many changes were instituted including enhanced structural performance to minimize chances of micrometeoroid penetration. Engineers also added a fifth battery for more power and storage capacity. The solar arrays are also about one square meter larger and the efficiency of the solar cells increased about 2 percent.
Also a more modern command and telemetry system to interact with a new series of new Russian communications satellites that will offer greatly increased the coverage by ground control. This was previously only about 20 minutes per orbit while over Russian ground stations and will now increase up to 45 to 90% of orbital coverage via the Russian comsat system.
A phased array antenna was also added with increased UHF radio capability in the Soyuz descent module that now also include a GPS system to improve search and rescue possibilities.
The newly upgraded KURS rendezvous radar system will weigh less, use less power and overall will be less complicated. For example it doesn’t have to be moved out of the way before docking. Weighs less and uses less power.
New approach and attitude control thrusters were installed. The new configuration uses 28 thrusters with a redundant thruster for each one – thus two fully redundant manifolds of 28 thrusters each.
All of these modification were tested out on the last two progress vehicles.
Multiple unmanned cargo ships carrying tons of essential supplies and science experiments are also scheduled to arrive from Russia, the US and Japan over the next few months.
A SpaceX Dragon is scheduled to launch as soon as July 18 and an Orbital ATK Cygnus should follow in August.
The SpaceX Dragon CRS-9 mission is slated to deliver the station’s first International docking adapter (IDA) to accommodate the future arrival of U.S. commercial crew spacecraft, including the Boeing built Starliner and SpaceX built Crew Dragon.
A Japanese HTV cargo craft will carry lithium ion batteries to replace the nickel-hydrogen batteries currently used on station to store electrical energy generated by the station’s huge rotating solar arrays.
Two Russian Progress craft with many tons of supplies are also scheduled to arrive.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
An international trio of astronauts and cosmonauts representing the United States, Russia and Japan blasted off in the early morning Kazakh hours today, July 7, for a new mission of science and discovery on the International Space Station (ISS).
The three person crew of two men and one woman launched flawlessly into picture perfect skies from the Baikonur Cosmodrome in Kazakhstan at 9:36 p.m. EDT Wednesday, July 6 (7:36 a.m. Baikonur time, July 7), and in a brand new version of the Russian Soyuz capsule that has been significantly upgraded and modified.
The launch of the Soyuz MS-01 spacecraft was carried live on NASA TV starting approximately an hour before the usual on time liftoff from Baikonur. The three stage Soyuz booster generates 930,000 pounds of liftoff thrust.
The trio comprises Kate Rubins of NASA, Soyuz Commander Anatoly Ivanishin of the Russian space agency Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency on the Expedition 48/49 mission.
They safely reached orbit at about 9:46 p.m. after the eight minute climb delivered them to the preliminary orbit of 143 x 118 mi. The Soyuz separated from the third stage and the solar arrays deployed as planned. NASA’s Kate Rubins was strapped into the left seat, Ivanishin in the center and Onishi on the right.
And precisely because it’s a heavily modified Soyuz, they will take the slow road to the ISS.
The crew will spend the next two days and 34 Earth orbits inside in order to fully check out and test the upgraded Soyuz spacecraft systems.
That’s in contrast to missions in recent years that took a vastly sped up 4 orbit 6 hour route to the space station.
Three carefully choreographed orbital adjustment burns will raise the orbit and propel the crew to the ISS over the next 2 days.
They expect to rendezvous and dock at the space station’s Russian Rassvet module at 12:12 a.m. EDT Saturday, July 9. After conducting leak and safety check they expect to open the hatch to the ISS at about 2:50 a.m. Saturday, July 9.
You can watch all the hatch opening action live on NASA TV with coverage starting at 2:30 a.m.
They will spend about four months at the orbiting lab complex conducting more than 250 science investigations in fields such as biology, Earth science, human research, physical sciences, and technology development.
With the arrival of Rubins, Ivanishin and Onishi, the station is beefed up to its normal six person crew complement.
Rubins is on her rookie space mission. She holds a bachelor’s degree in molecular biology and a doctorate in cancer biology which will be a big focus of her space station research activities.
The new trio will join Expedition 48 Commander Jeff Williams of NASA and Flight Engineers Oleg Skripochka and Alexey Ovchinin of Roscosmos.
The Expedition 48 crew members will spend four months contributing to more than 250 experiments in fields such as biology, Earth science, human research, physical sciences and technology development.
“The approximately 250 research investigations and technology demonstrations – not possible on Earth – will advance scientific knowledge of Earth, space, physical, and biological sciences. Science conducted on the space station continues to yield benefits for humanity and will enable future long-duration human and robotic exploration into deep space, including the agency’s Journey to Mars,” says NASA.
The newly upgraded Soyuz offers increased reliability and enhanced performance. Many changes were instituted including enhanced structural performance to minimize chances of meteorite penetration. Engineers also added a fifth battery for more power and storage capacity. The solar arrays are also about one square meter larger and the efficiency of the solar cells increased about 2 percent.
Also a more modern command and telemetry system to interact with a new series of new Russian communications satellites that will offer greatly increased the coverage by ground control from only about 20 minutes per orbit up to from 45 to 90% of orbital coverage.
A phased array antenna was also added with increased UHF radio capability in the Soyuz descent module that now also include a GPS system to improve search and rescue possibilities.
The newly upgraded KURS rendezvous radar system will weigh less, use less power and overall will be less complicated. For example it doesn’t have to be moved out of the way before docking. Weighs less and uses less power.
New approach and attitude control thrusters were installed. The new configuration uses 28 thrusters with a redundant thruster for each one – thus two fully redundant manifolds of 28 thrusters each.
All of these modification were tested out on the last two progress vehicles.
Multiple unmanned cargo ships carrying tons of essential supplies and science experiments are also scheduled to arrive from Russia, the US and Japan over the next few months.
A SpaceX Dragon could launch as soon as July 18 and an Orbital ATK Cygnus could follow in August.
The Dragon CRS-9 mission is slated to deliver the station’s first International docking adapter (IDA) to accommodate the future arrival of U.S. commercial crew spacecraft, including the Boeing built Starliner and SpaceX built Crew Dragon.
A Japanese HTV cargo craft will carry lithium ion batteries to replace the nickel-hydrogen batteries currently used on station to store electrical energy generated by the station’s huge rotating solar arrays.
Two Russian Progress craft with many tons of supplies are also scheduled to arrive.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
The world’s most powerful booster that will one day propel NASA astronauts on exciting missions of exploration to deep space destinations including the Moon and Mars was successfully ignited this morning, June 28, during an awesome ground test firing on a remote mountainside in Utah, that qualifies it for an inaugural blastoff in late 2018.
The two-minute-long, full-duration static test for NASA’s mammoth Space Launch System (SLS) rocket involved firing the new five-segment solid rocket booster for its second and final qualification ground test as it sat restrained in a horizontal configuration at Orbital ATK’s test facilities at a desert site in Promontory, Utah.
The purpose was to provide NASA and prime contractor Orbital ATK with critical data on 82 qualification objectives. Engineers will use the data gathered by more than 530 instrumentation channels on the booster to certify the booster for flight.
The 154-foot-long (47-meter) booster was fired up on the test stand by the Orbital ATK operations team at 11:05 a.m. EDT (9:05 a.m. MT) for what is called the Qualification Motor-2 (QM-2) test.
“We have ignition of NASA’s Space Launch System motor powering us on our Journey to Mars,” said NASA commentator Kim Henry at ignition!
A gigantic plume of black smoke and intense yellow fire erupted at ignition spewing a withering cloud of ash into the Utah air and barren mountainside while consuming propellant at a rate of 5.5 tons per second.
It also sent out a shock wave reverberating back to excited company, NASA and media spectators witnessing the event from about a mile away as well as to another 10,000 or so space enthusiasts and members of the general public gathered to watch from about 2 miles away.
“What an absolutely amazing day today for all of us here to witness this test firing. And it’s not just a test firing. It’s really a qualification motor test firing that says this design is ready to go fly and ready to go do the mission which it’s designed to go do,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, during the post QM-2 test media briefing today.
The critically important test marks a major milestone clearing the path to the first SLS launch that could happen as soon as September 2018, noted Gerstenmaier
“The team did a tremendous professional job to get all this ready for the firing. We will get over 500 channels of data on this rocket. They will pour over the data to ensure it will perform exactly the way we intended it to at these cold conditions.”
The QM-2 booster had been pre-chilled for several weeks inside a huge test storage shed to conduct this so called ‘cold motor test’ at approximately 40 degrees Fahrenheit (5 C) – corresponding to the colder end of its accepted propellant temperature range.
NASA’s Space Launch System (SLS) rocket with lift off using two of the five segment solid rocket motors and four RS-25 engines to power the maiden launch of SLS and NASA’s Orion deep space manned spacecraft in late 2018.
The SLS boosters are derived from the four segment solid rocket boosters (SRBs) originally delevoped for NASA’s space shuttle program and used for 3 decades.
“This final qualification test of the booster system shows real progress in the development of the Space Launch System,” said NASA associate administrator Gerstenmaier.
“Seeing this test today, and experiencing the sound and feel of approximately 3.6 million pounds of thrust, helps us appreciate the progress we’re making to advance human exploration and open new frontiers for science and technology missions in deep space.”
Despite being cooled to 41 F (5 C) for the cold motor test the flames emitted by the 12-foot-diameter (3.6-meter) booster are actually hot enough at some 6000 degrees Fahrenheit to boil steel.
The internal pressure reaches about 900 psi.
The first ground test called QM-1 was conducted at 90 degrees Fahrenheit, at the upper end of the operating range, in March 2015 as I reported earlier here.
This second ground test firing took place about 1 hour later than originally planned due to a technical issue with the ground sequencing computer control system.
The next time one of these solid rocket boosters fire will be for the combined SLS-1/Orion EM-1 test flight in late 2018.
Each booster generates approximately 3.6 million pounds of thrust. Overall they will provide more than 75 percent of the thrust needed for the rocket and Orion spacecraft to escape Earth’s gravitational pull, says NASA.
“It was awesome to say the least,” space photographer and friend Julian Leek who witnessed the test first hand told Universe Today.
“Massive fire power released over the Utah mountains. There was about a five second delay before you could hear the sound – that really got everyone’s attention!”
“It was absolutely magnificent,” space photographer friend Dawn Taylor told me. “Can’t wait to see it at the Cape when it goes vertical.”
To date Orbital ATK has cast 3 of the 10 booster segments required for the 2018 launch, said Charlie Precourt, vice president and general manager of Orbital ATK’s Propulsion Systems Division in Promontory, Utah.
I asked Precourt about the production timing for the remaining segments.
“All of the segments will be delivered to NASA at the Kennedy Space Center (KSC) in Florida by next fall,” Precourt replied during the media briefing.
“They will be produced at a rate of roughly one a month. We also have to build the nozzles up and so forth.”
When will booster stacking begin inside the Vehicle Assembly Building (VAB) at KSC?
Booster shipments start shipping from Utah this fall. Booster stacking in the VAB starts in the spring of 2018,” Alex Priskos, manager of the NASA SLS Boosters Office at Marshall Space Flight Center in Huntsville, Alabama, told me.
Furthermore a preliminary look at the data indicates that all went well.
“What an outstanding test. After a look at some very preliminary data everything looks great so far,” Priskos said at the briefing. “We’re going to be digging into the data a lot more as we go forward.”
Meanwhile the buildup of US flight hardware continues at NASA and contractor centers around the US, as well as the Orion service module from ESA.
The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.
The core stage fuel tank holding the cryogenic liquid oxygen and hydrogen propellants is being welded together at NASA’s Michoud Assembly Facility in New Orleans, LA.
Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.
It all depends on the budget NASA receives from Congress and who is elected President in the election in November 2016.
“If we can keep our focus and keep delivering, and deliver to the schedules, the budgets and the promise of what we’ve got, I think we’ve got a very capable vision that actually moves the nation very far forward in moving human presence into space,” Gerstenmaier explained at the briefing.
“This is a very capable system. It’s not built for just one or two flights. It is actually built for multiple decades of use that will enable us to eventually allow humans to go to Mars in the 2030s.
One forerunner to the Mars mission could be a habitation module around the Moon perhaps five years from now.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.