NASA Sets July 8 for Mandatory Space Shuttle Grand Finale

NASA officially set July 8 to launch Space Shuttle Atlantis on the Grand Finale of the shuttle program. This photo shows Atlantis at Launch Pad 39A prior to installation of the cargo into the payload bay. Blastoff of the STS-135 mission is scheduled for 11:26 a.m. EDT from the Kennedy Space Center in Florida. Credit: Ken Kremer

[/caption]

NASA Shuttle managers met today (28 June) and officially set July 8 as the launch date for the Grand Finale of the shuttle program by Space Shuttle Atlantis. And the NASA officials also emphasized that the STS-135 mission is absolutely crucial to the future well being and functioning of the International Space Station (ISS).

“This flight is incredibly important,” said Bill Gerstenmaier, NASA associate administrator for space operations. “The cargo that is coming up on this flight is really mandatory for space station. This mission is critical from a resupply standpoint. We will stay on orbit in case of some small orbiter failures.”

Atlantis’ primary goal is to dock with the million pound orbiting outpost and deliver the “Raffaello” logistics module. Raffaello is packed to the gills with some 5 tons of critical spare parts, food, water, provisions and science equipment that will keep the station stocked and the crew fed for a year. About one third of the cargo is food.

The STS 135 mission will buy invaluable time to keep the station running and science experiments continuing full tilt after the shuttles are retired and until replacement cargo vehicles are brought online.

STS-135 crew meets with journalists at base of Launch Pad 39A, Kennedy Space Center. From left; Mission Specialists Rex Walheim and Sandy Magnus; Pilot Doug Hurley and Commander Chris Ferguson. Credit: Ken Kremer

NASA hopes that commercial providers – SpaceX and Orbital Sciences – will soon pick up the slack and fill the supply void created by prematurely shutting down the shuttles now, before the replacement vehicles are functioning and proven. If the private company’s spacecraft are further delayed, then the ISS crew size may have to be reduced from 6 to 3 and station science operations could be significantly curtailed.

NASA announced the unanimous “GO” for the July 8 liftoff following a day long Flight Readiness Review at the Kennedy Space Center involving senior shuttle managers from the NASA and contractor teams.

NASA managers announced “GO” for launch of Atlantis on July 8 at a briefing for reporters at KSC. From left: Bill Gerstenmaier, NASA associate administrator for space operations, Mike Moses, Space Shuttle Program launch integration manager, Mike Leinbach, shuttle launch director. Credit: Chase Clark

“We had a very thorough review,” said Gerstenmaier. Shuttle managers reviewed the shuttle and launch pad systems, the risks associated with the flight as well as the payloads tucked inside the orbiter and an assortment of technical issues and problems that cropped up during the pre-launch processing.

The STS-135 crew comprises of just four astronauts, all veterans, led by Shuttle Commander Ferguson who is joined by Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. They are scheduled to fly back to Kennedy on Independence Day, Monday, July 4, for the final days of launch preparations.

Since there is no back up rescue shuttle, the shuttle astronauts would have to return to Earth aboard Russian Soyuz capsules in the event of an on orbit emergency.

“We’re really looking forward to achieving this mission, putting station where it needs to be and finishing strong with the shuttle program here with STS-135,” said Mike Moses, Space Shuttle Program launch integration manager.

Moses added that NASA very much wants to extend the planned 12 day flight by one more day to give the crew more time to transfer cargo back and forth between Raffaello and the station.

NASA especially wants to fully load Raffaello for the return trip with experiment samples and voluminous no longer needed items of trash to give the station crew additional work and storage space. The extension depends on consumables use and will be decided once on orbit. Without the shuttle, down mass capability will be severely limited until the private providers are ready.

Technicians at the pad worked successfully to swap out a faulty shuttle engine valve and take X-rays of reinforcing joints on the External Tank after the recent tanking test, thus enabling NASA to approve the July 8 launch date.

“Atlantis is in great shape out at the pad,” said Mike Leinbach, shuttle launch director. “Team Atlantis is feeling good about the flow and the launch countdown and hope we’ll be able to get her off the ground on Friday the 8th as scheduled.”

“We expect between 500,000 and 750,000 visitors for the launch,” added Leinbach. “We have three launch attempts available on July 8, 9 and 10.”

The countdown clocks will start ticking backwards at 1 p.m. on July 5. STS-135 is the 135th and last shuttle mission.

This will be Atlantis’ 33rd flight and the 37th overall to the station.

Atlantis will be the last of NASA’s three shuttle orbiters to be retired.

Side view of Atlantis at Launch Pad 39A during pre-launch processing on June 28. Credit: Chase Clark

Read my prior features about the Final Shuttle mission, STS-135, here:
Final Shuttle Voyagers Conduct Countdown Practice at Florida Launch Pad
Final Payload for Final Shuttle Flight Delivered to the Launch Pad
Last Ever Shuttle Journeys out to the Launch Pad; Photo Gallery
Atlantis Goes Vertical for the Last Time
Atlantis Rolls to Vehicle Assembly Building with Final Space Shuttle Crew for July 8 Blastoff

Space Junk Forces ISS Crew to Takes Shelter in Soyuz

A view of the ISS from a Soyuz spacecraft while space shuttle Endeavour was docked. Credit: NASA/ESA

[/caption]

The six crewmembers on board the International Space Station were told to take shelter in the two Russian Soyuz spacecraft early Tuesday because Space Command predicted a piece of space junk could make a close approach to the station. Radar tracking indicated the debris would make its close pass at 8:08 a.m. EDT (12:08 UTC), coming within about 243 meters (800 feet) of the station and well within the “pizza box” -shaped area around the ISS, but when no impact was detected the crew was told they could reenter the station and resume normal operations.

NASA’s Chief Scientist for Orbital Debris Nicholas L. Johnson told Universe Today during a previous “conjuction” of space debris and the ISS that on average, close approaches to ISS occur about three times a month. An approach of debris is considered “close” only when it enters an imaginary “pizza box” shaped region around the station, measuring 0.75 kilometers above and below the station and 25 kilometers on each side( 2,460 feet above and below and 15.6 by 15.6 miles).

Johnson said that small pieces of debris have already collided with ISS on many occasions, but these debris to date have not affected the safety of the crew or the operation of the mission. “The dedicated debris shields on ISS can withstand particles as large as 1 cm in diameter,” he said.

The piece of space junk was detected too late for the station to perform an evasive maneuver, so the crew was told to “shelter in place” on the two Soyuz spacecrafts. The crew on board is commander Andrey Borisenko, Alexander Samokutyaev and Ronald Garan, who took shelter aboard the Soyuz TMA-21 spacecraft docked to the Poisk module, and Sergei Volkov, Michael Fossum and Furukawa who went on to the Soyuz TMA-02M spacecraft docked to the Rassvet module.

Burt Rutan’s Race To Space: A Primer For Things To Come

Dan Linehan's recent offering entitled "Burt Rutan's Race to Space" is a concise, yet detailed, accounting of how one man revolutionized air and space travel. Photo Credit: Zenith Press

[/caption]

Voyager, Proteus and SpaceShipOne have become aerospace legends. As has the man who established them all – Burt Rutan. Zenith Press has released a chronicle of the man and his machines entitled Burt Rutan’s Race to Space: The Magician of Mojave and His Flying Innovations. The book provides a chronicle of all the air and spacecraft that have soared off of Rutan’s blueprints and into reality.

The book’s first main segment is a large section which is essentially a catalog of the numerous craft that Rutan has produced over the decades. Many of the flying machines have their unique characteristics highlighted within the 160 pages of this book. Fear not, this tome is wallpapered with images – most of which are color (175 color images to 55 black and white).

SpaceShipOne now hangs in the Smithsonian's Air & Space Museum in Washington D.C. - between the Spirit of St. Louis and the Bell X-1. Photo Credit: Scaled Composites

Some of the most interesting of these images are not the glossy stills of air or spacecraft in action but rather the simple drawings that are done by the man himself. These sketches, some little more than cartoons others just simplistic line-drawings, highlight the genius that is Rutan and provide an insight into how his mind works.

The nature of the book changes somewhat when one reaches the chapter entitled, “The Scaled Composites Years.” From this point on, the book’s focus narrows to concentrate on Rutan’s X-PRIZE efforts – and beyond.

Rutan's dreams of flight started at an early age. He was a child when he first began crafting airplanes out of wood. Photo Credit: Virgin Galactic

The book was written by Dan Linehan and is his second detailing the efforts of Rutan and Scaled Composites (the first was SpaceShipOne: An Illustrated History). In short, the freelance writer is steeped in all things Rutan. Whereas his first work on the subject covered the history-making flight of SpaceShipOne, this effort is a general overview of Rutan and his legacy. But be forewarned, there are many projects that span the entire realm of aerospace that Rutan and company have been involved with that might surprise you.

Given that the Mojave “magician” has retired recently – this book is timely, enjoyable and acts as a wonderful window into the mind of the man that has revolutionized flight. SpaceShipTwo continues to successfully complete test after test – making Burt Rutan’s Race to Space a primer for things to come. The book retails for $30, and it is well-worth the price and will be a welcome addition to any space buff’s collection.

SpaceShipTwo being carried underneath White Knight Two is currently being tested in preparation to send average citizens into suborbital space. Photo Credit: Virgin Galactic

End of the Shuttle Era: Q & A With Shuttle Launch Director Mike Leinbach

NASA's Shuttle Launch Director Mike Leinbach has been with NASA since 1984 and took a moment to share his thoughts about the future. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL Fla. – He has been with the shuttle program for the past three decades and has witnessed both its tragedies and its triumphs. NASA’s Shuttle Launch Director Mike Leinbach reflected on the end of the shuttle era when interviewed this week. He talked a bit about his plans for the future as well as what he thinks people can expect from both him and his team on launch day.

Q: The Terminal Countdown Demonstration Test (TCDT) for STS-135 has just wrapped up, is this is a period of accelerated work for you and your team or is this a time when you can catch your breath?

Leinbach: “This TCDT was a little different; we had a very busy period getting the crew
ready for this mission. On July 4 we’ll have a bit of a break and then things
will pick right back up again as we get ready for launch.”

Q: What do you think you will be feeling when that final launch occurs?

Leinbach: “I don’t know, I mean I have thought a lot about this…I don’t know what it’s
going to be like. For the last flight of Discovery we had one more launch for
both Endeavour and Atlantis, well now this really and truly the last flight of
the shuttle program… so it’s going to be a very reflective time.”

Leinbach gestures toward his former secretary before the start of the interview. Photo Credit: Jason Rhian

Q: Do you think anything will be special about this mission?

Leinbach: “The launch itself will be very much any other launch. When the guy’s are
working on the consoles they are very serious about what they are doing.
They won’t be distracted by the fact that it is the last one.

Q: Speaking of your job – it keeps you very busy, have you had any time to reflect?

Leinbach: “For the moment I still have a lot to do concluding TCDT, but this Saturday I
am planning on driving out to the launch pad and just looking up at Atlantis
and just soaking it all in, all by myself.”

Leinbach started working for NASA as a structural engineer in 1984, his words are softly spoken which tends to lend them even more weight. His first mission as launch director was STS-114. This was the first shuttle launch after the loss of the space shuttle Columbia in 2003. Leinbach led the recovery team searching for Columbia’s debris in Texas. A year later in 2004 Leinbach was awarded the Presidential Rank Award, which is given in recognition of long-term accomplishments.

Atlantis will carry the four person crew of STS-135 to the International Space Station on a resupply flight designed to keep the orbiting outpost well stocked after the shuttles are decommissioned. The mission is scheduled to last twelve days, launching on July 8 at 11:26 a.m. EDT. The crew consists of Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim.

The Launch Control Center or LCC is where the final "go" "no-go" for launch is determined. Photo Credit: Jason Rhian

Final Shuttle Voyagers Conduct Countdown Practice at Florida Launch Pad

STS-135 crew at TCDT Q&A session with journalists at base of Launch Pad 39A, Kennedy Space Center. From left; Mission Specialists Rex Walheim and Sandy Magnus; Pilot Doug Hurley and Commander Chris Ferguson

[/caption]

KENNEDY SPACE CENTER – The “Final Four” shuttle astronauts who will ever voyage to Earth orbit aboard a NASA Space Shuttle Orbiter jetted into the Kennedy Space Center (KSC) this week for their final simulated countdown training at the seaside Florida Launch Pad.

The all veteran crew for the STS-135 mission arrived at Kennedy’s Shuttle Landing Facility (SLF) on twin T-38 jets for four days of comprehensive flight training for what’s known as the Terminal Countdown Demonstration Test (TCDT). Along with all other shuttle flight related activities, it’s the very last time this training will ever occur.

The TCDT is part of the ritual of training for all shuttle crews that takes place in the last few weeks preceding a liftoff and that concludes with a full countdown dress rehearsal from inside Atlantis at the launch pad.

The last ever shuttle crew jets into KSC for TCDT training at KSC aboard T-38 jets. From left; Sandy Magnus, Doug Hurley, Commander Chris Ferguson and Rex Walheim. Credit: Ken Kremer

Chris Ferguson is leading the STS-135 mission and he will be recorded in history as the final Space Shuttle Commander. This will be Ferguson’s third shuttle flight and second one as Commander. Also aboard are Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim.

The quartet of space flyers are due to blast off aboard Space Shuttle Atlantis on July 8 at 11:26 a.m. EDT for the “Grand Finale” of NASA’s thirty year old Space Shuttle Program. If all goes according to plan the end of the Shuttle Era is less than 1 month away.

It’s a bittersweet moment for everyone working on the shuttle program. Proud to be part of a magnificent adventure with the most complicated machine ever built by humans, but simultaneously sad that the program is ending well before its true flight time is up and with no concrete timetable to replace the trio of majestic spaceships.

“We are incredibly proud to represent this, the final flight,” said STS-135 Commander Chris Ferguson after touchdown to dozens and dozens of journalists gathered at the shuttle landing strip to greet the astronauts.

“I speak on behalf of the crew, everyone in the astronaut office, and I’m sure everybody here at KSC in saying that we are just trying to savor the moment,” Ferguson added. “As our children and our children’s children ask us, we want to be able to say, ‘We remember when there was a space shuttle.”

The first order of business for Ferguson and Hurley was to practice shuttle landings in the Shuttle Training Aircraft (STA), which is a modified Gulfstream II jet.

During the TCDT period, the crew engaged in mission briefings at the Launch Control Center which is the brain of shuttle launch operations, payload familiarization and training at the Space Station Processing Facility, fire suppression training, range safety and security briefings and emergency escape training in an M113 armored personnel carrier near Launch Pad 39A. Read more in my upcoming features.

On the last day of TCDT, the astronauts donned their orange launch and entry suits, journeyed to the pad in the Astrovan and were strapped to their assigned seated inside the orbiter exactly as will occur on launch day for a full dress rehearsal of the launch countdown.

STS-135 Crew at TCDT pad emengency training at Pad 39A. From left are Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim. Credit: NASA/Kim Shiflett

The crew also met with over 100 reporters for a Q & A session at the base of Launch Pad 39A which was back dropped by a thrilling view of Shuttle Atlantis atop the Mobile Launch Platform and the gigantic Flame Duct which directs the rocket exhaust way from the shuttle stack during launch.

“We’re very honored to be in this position,” Ferguson said to reporters at the foot of the pad. “There are many people who could be here. When the dice fell our names were facing up. We consider ourselves fortunate and lucky.”

“I think each of us feels a little extra burden to make sure we put on the best possible face forward for the last go around of this. The crew’s very prepared and we’re going to do a fantastic job.”

“I don’t think that the full magnitude of the moment will really hit us until the wheels have stopped on the runway,” said Ferguson, reflecting on the significance of the grand finale of all shuttle missions. “I’m not sure words will really be able to capture for the crew and for the entire shuttle workforce just how much the shuttle program has meant to us for the last 30 years.”

“TDCT is very comprehensive, hands on and invaluable training at the place you’re going to do it,” said Hurley. “Everything is a just a little bit different when you are in the real vehicle so this is a great way to get you ready for launch day – when it counts!”

Tucked inside Atlantis cargo bay is the Italian- built “Raffaello” logistics module, the primary payload. Raffaello is loaded full with some five tons of critical spare parts, crew supplies and science experiments that will be delivered to the International Space Station (ISS) during the 12 day flight.

The secondary payload is the Robotic Refueling Mission (RRM) which will demonstrate tools and techniques to refuel satellites in orbit.

The STS-135 crew arrive at KSC aboard a wave of T-38 jets for countdown, payload and emergency training. Credit: Ken Kremer

“Sandy Magnus is our ‘transfer czar’ in charge of emptying and filling Raffaello,” said Ferguson. Magnus is an ideal choice for the mission since she lived for months aboard the orbiting outpost and is familiar with its nook and crannies.

“We feel very honored to be on this flight and are very focused to perform it well,” said Magnus. “We are just the tip of the iceberg of a huge group of people who plan and get the hardware ready and prepare all our procedures.”

“I often think about how we will launch from the exact same launch pad that Apollo 11 launched at to go to the moon. It gives you goose bumps,” said Walheim.

Media with STS-135 astronuats at TCDT Q&A session at Launch Pad 39A. Credit: Ken Kremer

Watch the TDCT Launch Pad press conference here:

Read my prior features about the Final Shuttle mission, STS-135, here:
Final Payload for Final Shuttle Flight Delivered to the Launch Pad
Last Ever Shuttle Journeys out to the Launch Pad; Photo Gallery
Atlantis Goes Vertical for the Last Time
Atlantis Rolls to Vehicle Assembly Building with Final Space Shuttle Crew for July 8 Blastoff

Dramatic New NASA Animation Depicts Next Mars Rover in Action

NASA's Mars Science Laboratory Curiosity rover. Curiosity is a mobile robot for investigating Mars' past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of. Credit: NASA/JPL-Caltech. New NASA High Resolution Curiosity Animations below

[/caption]

NASA’s next Mars rover, the Curiosity Mars Science Laboratory, will soon embark on a quantum leap in humankind’s scientific exploration of the Martian surface -the most Earthlike planet in our Solar System.

To get a birds eye understanding of Curiosity’s magnificent capabilities, check out the dramatic new high resolution animation below which depicts NASA’s next Mars rover traversing tantalizing terrain for clues to whether Martian microbial life may have existed, evolved and been sustained in past or present times.


The new action packed animation is 11 minutes in length. It depicts sequences starting with Earth departure, smashing through the Martian atmosphere, the nail biting terror of the never before used rocket-backpack sky crane landing system and then progressing through the assorted science instrument capabilities that Curiosity will bring to bear during its minimum two year expedition across hitherto unseen and unexplored Martian landscapes, mountains and craters.

Curiosity is equipped with 10 science instruments. The three meter long robot is five times the weight of any previous Mars rover.

Those who closely follow the adventures of NASA’s Spirit and Opportunity rovers, like myself, will quickly recognize several of the panoramic scenes which have been included to give a realistic feeling of vistas to expect from the car sized Curiosity rover.

Here is a shorter 4 minute animation with expert narration


Along the way you’ll experience Curiosity zapping rocks with a laser, deftly maneuvering her robotic arm and camera mast and retrieving and analyzing Martian soil samples.

“It is a treat for the 2,000 or more people who have worked on the Mars Science Laboratory during the past eight years to watch these action scenes of the hardware the project has developed and assembled,” said Mars Science Laboratory Project Manager Pete Theisinger at NASA’s Jet Propulsion Laboratory, Pasadena, Calif, in a NASA statement. “The animation also provides an exciting view of this mission for any fan of adventure and exploration.”

Curiosity - The Next Mars Rover analyzes Martian rocks
Curiosity rover examines a rock on Mars with a set of tools at the end of the rover's arm, which extends about 2 meters (7 feet). Two instruments on the arm can study rocks up close. Also, a drill can collect sample material from inside of rocks and a scoop can pick up samples of soil. The arm can sieve the samples and deliver fine powder to instruments inside the rover for thorough analysis. Credit: NASA/JPL-Caltech

Curiosity was flown this week from her birthplace at NASA’s Jet Propulsion Laboratory in California to her future launch site in Florida aboard a C-17 military cargo transport aircraft.

She arrived at the Shuttle Landing Facility (SLF) at the Kennedy Space Center on June 22. The SLF is the same landing strip where I watched the STS-135 crew arrive for NASA’s final shuttle mission just days earlier days for their final launch countdown training.

NASA has scheduled Curiosity to blast off for the red planet on Nov. 25, 2011 from Cape Canaveral Air Force Station aboard an Atlas V rocket. Curiosity will touchdown in August 2012 at a landing site that will be announced soon by Ed Weiler, NASA Associate Administrator for the Science Mission Directorate in Washington, D.C.

Curiosity rover traverses new Martian terrain in search of habitats for microbial life. Credit: NASA/JPL-Caltech

Read my prior features about Curiosity
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth
Curiosity Mars Rover Almost Complete
Curiosity Rover Testing in Harsh Mars-like Environment

Packing a Mars Rover for the Trip to Florida

Check out this way cool time-lapse movie of NASA’s Curiosity Mars rover as its being packed up for her trip to Florida.

The video covers a 4 day period from June 13 to 17 and is condensed to just 1 minute. Watch the JPL engineers and technicians prepare Curiosity and the descent stage for shipping to the Kennedy Space Center in Florida and place it inside a large protective shipping container. Continue reading “Packing a Mars Rover for the Trip to Florida”

Is This a Scene from Star Wars or a Real Image from the ISS?

An X-Wing fighter in space? Actually the ATV2 (Johannes Kepler) as it departs the ISS in 2011. Credit: NASA/Ron Garan

[/caption]

What an amazing image! The ATV-2 Johannes Kepler looks like an X-Wing fighter from Star Wars as it departed from the International Space Station. Astronaut Ron Garan posted the image on his Twitpic page, asking viewers if they thought the spacecraft looked like the fictional fighter jets of the Alliance.

The ATV-2 left the ISS and entered Earth’s atmosphere on June 21. The spacecraft had a “blackbox” on board, a Re-Entry Breakup Recorder (REBR) to monitor temperature, acceleration, rotation rate, and other data as it tumbled and disintegrated through the atmosphere. The data was sent down via a “phone call” to an Iridium satellite to help scientists better understand the physics of what happens to a spacecraft when it breaks up on re-entry.

So, enjoy one last beautiful look at the ATV-2 in this stunning image.

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

MESSENGER Unveiling Mercurys Hidden Secrets

Spectacular view of the Degas crater from MESSENGER in Mercury orbit. This high-resolution view of Degas crater was obtained as a targeted observation (90 m/pixel). Impact melt coats its floor, and as the melt cooled and shrank, it formed the cracks observed across the crater. For context, Mariner 10’s view of Degas is shown at left. Degas is 52 km in diameter and is centered at 37.1° N, 232.8° E. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

[/caption]
NASA’s MESSENGER probe to Mercury, the scorched, innermost planet of our solar system, is sending back so much startling and revolutionary data and crystal clear images that the results are forcing scientists to toss out previously cherished theories and formulate new ones even as the results continues to pour in. And the mission has barely begun to explore Mercury’s inner secrets, exterior surface and atmospheric environment.

MESSENGER became the first spacecraft ever to orbit planet Mercury on March 18, 2011 and has just completed the first quarter of its planned one year long mission – that’s the equivalent of one Mercury year.

MESSENGER has collected a treasure trove of new data from the seven instruments onboard yielding a scientific bonanza; these include extensive global imagery, measurements of the planet’s surface chemical composition, topographic evidence for significant amounts of water ice, magnetic field and interactions with the solar wind, reported the science team at a press conference at NASA Headquarters.

Schematic illustration of the operation of MESSENGER's X-ray Spectrometer (XRS). When X-rays emitted from the Sun’s corona strike the planet, they can induce X-ray fluorescence from atoms at the surface. Detection of these fluorescent X-rays by the XRS allows determination of the surface chemical composition. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“We are delighted to share the findings of the first 25% of our year long mission,” said MESSENGER principal investigator Sean Solomon of the Carnegie Institution of Washington at a press briefing for reporters. “We receive new data back almost every day.”

“MESSENGER has snapped over 20,000 images to date,” said Solomon, at up to 10 meters per pixel. The probe has also taken over two million laser-ranging topographic observations, discovered vast volcanic plains, measured the abundances of many key elements and confirmed that bursts of energetic particles in Mercury’s magnetosphere result from the interaction of the planets magnetic field with the solar wind.

“We are assembling a global overview of the nature and workings of Mercury for the first time.”

“We had many ideas about Mercury that were incomplete or ill-formed, from earlier flyby data,” explained Solomon. “Many of our older theories are being cast aside into the dust bin as new observations from new orbital data lead to new insights. Our primary mission has another three Mercury years to run, and we can expect more surprises as our solar system’s innermost planet reveals its long-held secrets.”

Magnetic field lines differ at Mercury's north and south poles As a result of the north-south asymmetry in Mercury's internal magnetic field, the geometry of magnetic field lines is different in Mercury's north and south polar regions. In particular, the magnetic "polar cap" where field lines are open to the interplanetary medium is much larger near the south pole. This geometry implies that the south polar region is much more exposed than in the north to charged particles heated and accelerated by solar wind–magnetosphere interactions. The impact of those charged particles onto Mercury's surface contributes both to the generation of the planet's tenuous atmosphere and to the "space weathering" of surface materials, both of which should have a north-south asymmetry given the different magnetic field configurations at the two poles. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

NASA’s Mariner 10 was the only previous robotic probe to explore Mercury, during three flyby’s back in the mid-1970’s early in the space age.

MESSENGER was launched in 2004 and the mission goal is to produce the first global scientific observations of Mercury and piece together the puzzle of how Mercury fits in with the origin and evolution of our solar system.

There was very little prior imaging coverage of Mercury’s northern polar region.

“We’ve now filled in many of the gaps,” said Messenger scientist Brett Denevi of Johns Hopkins University’s Applied Physics Laboratory (APL). “We now see large smooth plains that are thought to be volcanic in origin.”

“Now we’re seeing for the first time their full extent, which is around 4 million square kilometers (1.54 million square miles). That’s about half the size of the continental United States.”

MESSENGER is currently filling in coverage of Mercury’s north polar region, which was seen only partially during the Mariner 10 and MESSENGER flybys. Flyby images indicated that smooth plains were likely important in Mercury’s northernmost regions. MESSENGER's orbital images show that the plains are among the largest expanses of volcanic deposits on Mercury, with thicknesses of several kilometers in many places. The estimated extent of these plains is outlined in yellow. This mosaic is a combination of flyby and orbital coverage in a polar stereographic projection showing latitudes from 50° to 90° N. The longitude at the 6 o'clock position is 0°. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“We see all kinds of evidence for volcanism and tectonic deformation of the plains from orbit where we can look straight down,” added Denevi. “In the new images we see ghost craters from pre-existing impact craters that were later covered over by lava.’

Color images of the whole planet – with a resolution of about 1 kilometer per pixel – tell the researchers about the chemical composition and rock types on Mercury’s surface.

“We don’t know the composition yet.”

“We are very excited to study these huge volcanic deposits near the north pole with the implications for the evolution of Mercury’s crust and how it formed,” said Denevi.

“Targeted new high resolution imaging is helping us see landforms unlike anything we’ve seen before on Mercury or the moon.”

MESSENGER’s orbital images have been overlaid on an image from the second flyby shown in Image 1.2a. Even for previously imaged portions of the surface, orbital observations reveal a new level of detail. This region is part of the extensive northern plains, and evidence for a volcanic origin can now be seen. Several examples of “ghost” craters, preexisting craters that were buried by the emplacement of the plains, are seen near the center of the mosaic. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Determining whether Mercury harbors caches of polar water ice is another one of the many questions the MESSENGER science team hopes to answer.

Two decades ago, Earth-based radar images showed deposits thought to consist of water ice near Mercury’s north and south poles. Researchers postulated a theory that these icy deposits are preserved on the cold, permanently shadowed floors of high-latitude impact craters, similar to those on Earth’s moon.

Early results from topographic measurements are promising.

“The very first scientific test of that hypothesis using Messenger data from orbit has passed with flying colors.”

“The area of possible polar water ice is quite a bit larger than on the moon,” said Solomon. “Its probably meters or more in depth based on radar measurements.”

“And we may have the irony that the planet closest to the sun may have more water ice at its poles than even our own moon.”

“Stay tuned. As this mission evolves, we will be relying on the geochemical and remote sensing instruments which take time to collect observations. The neutron and gamma ray spectrometers have the ability to tell us the identity of these icy materials,” said Solomon.

The same scene as that in Image 1.3a is shown after the application of a statistical method that highlights differences among the eight color filters, making variations in color and composition easier to discern. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
This topographic contour map was constructed from the several MLA profiles (lines of white circles) that pass through and near the crater circled in Image 3.4. The color scale at right is in km, and north is at the 4 o’clock position. Calculations show that the topography of the crater is consistent with the prediction that the southernmost portion of the crater floor is in permanent shadow. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
A cross-section of Mercury’s magnetosphere (in the noon-midnight plane, i.e., the plane containing the planet-Sun line and Mercury’s spin axis) provides context for the energetic electron events observed to date with the MESSENGER XRS and GRS high-purity germanium (HpGe) detectors. The Sun is toward the right; dark yellow lines indicate representative magnetic field lines. Blue and green lines trace the regions along MESSENGER's orbit from April 2 to April 10 during which energetic electrons were detected and MESSENGER's orbit was within ± 5° of the noon-midnight plane. The presence of events on the dayside, their lack in the southern hemisphere, and their frequency of occurrence at middle northern latitudes over all longitudes point to a more complex picture of magnetospheric activity than found at Earth. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

June 21 ATV Re-Entry: A Man-Made Fireball In The Sky

ATV re-entry. Credit: ESA

[/caption]

The Johannes Kepler ATV (Automated Transfer Vehicle) has undocked from the International Space station and will re- enter Earth’s atmosphere on June 21st ending its mission in fiery destruction.

The ATV has been docked with the ISS since February, where it delivered supplies, acted as a giant waste disposal and boosted the orbit of the International Space Station with its engines.

The X-wing ATV delivered approximately 7 tonnes of supplies to the station and will be leaving with 1,200kg of waste bags, including unwanted hardware.

The Johannes Kepler ATV-2 approaches the International Space Station. Docking of the two spacecraft occurred on Feb. 24, 2011. Credit: NASA

On June 21st at 17:07 GMT the craft will fire its engines and begin its suicide mission, tumbling and burning up as a bright manmade fireball over the Pacific Ocean. Any leftover debris will strike the surface of the Pacific ocean at 20:50 GMT.

During the ATV’s re-entry and destruction there will be a prototype onboard flight recorder (Black Box) transmitting data to Iridium satellites, as some aspects of a controlled destructive entry are still not well known.

ESA says that this area is used for controlled reentries of spacecraft because it is uninhabited and outside shipping lanes and airplane routes. Extensive analysis by ESA specialists will ensure that the trajectory stays within safe limits.

There still are some chances to see the ISS and Johannes Kepler ATV passing over tonight, but if you in a location where you can see the south Pacific skies starting at about 20:00 GMT, keep an eye out for a glorious manmade fireball.

A shower of debris results as the ATV continues its plunge through the atmosphere. Credit: ESA

Read more about the re-entry at ESA.