Blue Origin, the builder of the New Shepard re-usable rocket, has announced plans for the fourth flight of the rocket. With a recent successful launch and landing in their pocket, the company is anticipating another similar result. But this time, something will be done differently.
This time around, New Shepard will be launched and landed normally, but the crew capsule will be tested with an intentionally failed parachute. Blue Origin is promising an “exciting demonstration,” and in an email said they will be “demonstrating our ability to safely handle that failure scenario.”
Though no date has yet been set for this gimped-parachute demonstration, we are looking forward to it.
In previous tests, the crew capsule performed maneuvers that characterized its aerodynamics and reduced what are called ‘model uncertainties.’ Greater predictability is what these test flights are designed to achieve. Obviously, too many question marks are not good.
As Jeff Bezos, head of Blue Origin, said in an email, “One of the fundamental tenets of Blue Origin is that the safest vehicle is one that is robust and well understood. Each successive mission affords us the opportunity to learn and improve our vehicles and their modeling.”
The company also shared news of the construction of additional test cells at its facility in West Texas. These cells were announced in October, and now one of the cells has been commissioned. This cell “supports the development of the pre-burner start and ignition sequence timing” according to Bezos.
Bezos also touted the benefits of privately-funded endeavours, saying “…one of the many benefits of a privately funded engine development is that we can make and implement decisions quickly. We made the decision to build these two new test cells as a team in a 10 minute discussion.” He added, “Less than three weeks later we were pouring concrete and now we have an operating pressure fed test cell 7 months later.”
It’s clear that privately-funded initiatives can have more flexibility than governmental initiatives. They don’t face the same budgetary wrangling that organizations like NASA do. But, they don’t command the same resources that NASA does.
Companies like Blue Origin an SpaceX are very innovative and are leading the way in reusable rockets. If Blue Origin can make the crew capsule survivable in a failed parachute scenario, as the next test aims to do, then commercial space flight will benefit. Private trips to space, which are one of Blue Origin’s goal, will also become more and more attainable.
Orbital ATK has unveiled a practical new proposal to build a near term man-tended outpost in lunar orbit that could launch by 2020 and be operational in time for a lunar link-up with NASA’s Orion crew module during its maiden mission, when American astronauts finally return to the Moon’s vicinity in 2021 – thus advancing America’s next giant leap in human exploration of deep space.
The intrepid offer by Orbital could be carried out rather quickly because it utilizes an evolved version of the company’s already proven commercial Cygnus space station resupply freighter as “the building block … in cislunar space,” said Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems, in an exclusive interview with Universe Today. See an artist concept in the lead image.
“Our Cygnus spacecraft is the building block to become a vehicle for exploration beyond low Earth orbit,” Orbital ATK’s Frank DeMauro told Universe Today.
“We are all about supporting NASA’s Mission to Mars. We feel that getting experience in cislunar space is critical to the buildup of the capabilities to go to Mars.”
NASA’s agency wide goal is to send astronauts on a ‘Journey to Mars’ in the 2030s – and expeditions to cislunar space in the 2020s serve as the vital ‘proving ground’ to fully develop, test out and validate the robustness of crucial technologies upon which the astronauts lives will depend on later Red Planet missions lasting some 2 to 3 years.
Orbital ATK’s lunar-orbit outpost proposal was announced at an official hearing of the US House of Representatives Subcommittee on Space on Wednesday, May 18, by former NASA Astronaut and Orbital ATK President of the Space Systems Group, Frank Culbertson.
“A lunar-orbit habitat will extend America’s leadership in space to the cislunar domain,” said Orbital ATK President of the Space Systems Group, Frank Culbertson.
“A robust program to build, launch and operate this initial outpost would be built on NASA’s and our international partners’ experience gained in long-duration human space flight on the International Space Station and would make use of the agency’s new Space Launch System (SLS) and Orion deep-space transportation system.”
The idea is to assemble an initial crew-tended habitat with pressurized work and living volume for the astronauts based on a Cygnus derived vehicle, and have it pre-positioned and functioning in lunar-orbit by 2020.
As envisioned by Orbital ATK, the habitat would be visited during NASA’s first manned mission of SLS and Orion to the Moon known as Exploration Mission-2 (EM-2).
The three week long EM-2 lunar test flight could launch as early as August 2021 – if sufficient funding is available.
The goals of EM-2 and following missions could be significantly broadened via docking with a lunar outpost. And Orion mission durations could be extended to 60 days.
NASA hopes to achieve a launch cadence for Orion/SLS of perhaps once per year.
Therefore autonomy and crew tended capability has to be built in to the lunar habitat right from the start – since crew visits would account for only a fraction of its time but enable vastly expanded science and exploration capabilities.
The initial lunar habitat envisioned by Orbital ATK would be comprised of two upgraded Cygnus pressurized vehicles – provisionally dubbed as Exploration Augmentation Modules (EAM). They would be attached to a multi-port docking module very similar in concept and design to the docking Nodes already flying in orbit as integral components of the ISS.
The lunar Cygnus vehicles would be upgraded from the enhanced cargo ships currently being manufactured and launched to the ISS.
“There are additional capabilities that we can put into the Cygnus module. We can make them longer and bigger so they can carry more logistics and carry more science,” DeMauro elaborated.
A variety of supplementary subsystems would also need to be enhanced.
“We looked at what systems we would need to modify to make it a long term habitation module. Since we would not be docked to the ISS, we would need our own Environmental Control and Life Support Systems (ECLSS) out at lunar orbit to support the crew.”
“The service module would also need to be improved due to the high radiation environment and the longer time.”
“We also need to look at the thermal protection subsystem, radiation protection subsystem and power subsystems to support the vehicle for many years as opposed to the short time spent at the ISS. More power is also needed to support more science. We also need a propulsion system to get to the Moon and maintain the vehicle.”
“All that work is getting looked at now – to determine what we need to modify and upgrade and how we would do all that work,” DaMauro told me.
The habitat components would be launched to the Moon on a commercial launch vehicle.
High on the list of candidate launchers would be the United Launch Alliance Atlas V rocket which recently already successfully delivered two Cygnus cargo ships to the ISS in Dec. 2015 and March 2016.
Other potential boosters include the ULA Delta IV and even ESA’s Ariane V as a way to potentially include international participation.
The habitat components could be manufactured and launched about three years after getting a ‘Go Ahead’ contract from NASA.
Orbital ATK already has an established production line flowing to manufacture a steady stream of Cygnus cargo freighters to fulfill their NASA commercial resupply contract with NASA for the ISS – accumulating know how and cost reduction efficiencies.
“Since many aspects of operations in deep space are as yet untested, confidence must be developed through repeated flights to, and relatively long-duration missions in, cislunar space,” says Culbertson.
“Orbital ATK continues to operate our Cygnus cargo logistics vehicle as a flagship product, so we are ready to quickly and affordably implement an initial Cygnus-derived habitat in cislunar space within three years of a go-ahead.”
Over time, the outpost could be expanded with additional habitat and research modules delivered by Orion/SLS, commercial or international rockets. Perhaps even Bigelow expandable commercial modules could be added later.
Cygnus is suitable for wide ranging science experiments and gear. It could also launch cubesats – like the current Cygnus berthed at the ISS is equipped with a cubesat deployer.
Potential lunar landers developed by international partners could dock at the cislunar habitats open docking ports in between surface science forays.
“We are doing science now on Cygnus and we would expect to carry along science experiments on the new Cygnus vehicle. The vehicle is very attractive to science experiments,” DeMauro explained.
“There really is no limit to what the outpost could become.”
“What we put out is very exciting,” DeMauro noted.
“As a company we are looking forward to working in this arena. Our suggested plans are in line with where NASA wants to go. And we think we are the right company to play a big part in that!”
By incorporating commercial companies and leveraging the considerable technology development lessons learned from Cygnus, NASA should realize significant cost savings in implementing its human exploration strategy. Although Orbital ATK is not divulging a cost estimate for the lunar habitat at this time, the cost savings from a commercial partner should be considerable. And the 3 year time frame to launch is very attractive.
Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet. Cygnus derived modules and/or other augmenting hardware components will be required to carry out any round trip human missions to the Martian surface.
NASA is now building the next Orion capsule at the Kennedy Space Center. It will launch unpiloted atop the first SLS rocket in late 2018 on the EM-1 mission.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
For years now, the program to develop the X-37B spacecraft has been shrouded in secrecy. Originally intended as part of a NASA project to develop a reusable unmanned spacecraft, this Boeing-designed spaceplane was taken over by the Department of Defense in 2004. And while it has been successfully tested on multiple occasions, there remain some unanswered questions as to its intended purpose and what has been taking place during these flights.
This, predictably, has lead to all kinds of rumors and speculation, with some suggesting that it could be a spy plane while others think that it is intended to deliver space-based weapons. It’s latest mission – which was dubbed OTV-4 (Orbital Test Vehicle-4) – has been especially clandestine. And after nearly a year in orbit, it remains unclear what the X37B has been doing up there all this time.
The SpaceX Falcon 9 first stage booster that successfully launched a Japanese satellite to a Geostationary Transfer Orbit (GTO) just 3 days ago and then nailed a safe middle of the night touchdown on a drone ship at sea minutes minutes later, is headed back to port and may arrive overnight or soon thereafter.
The 156 foot tall booster was spotted offshore earlier today while being towed back to her home port at Port Canaveral, Florida.
The SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket is lurking off Port Canaveral waiting to enter the port until after the cruise ships depart for safety reasons. Pictured above at 7:40 a.m.
The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.
To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.
“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.
Musk was clearly ecstatic with the result, since SpaceX officials had been openly doubtful of a successful outcome with the landing.
Barely nine minutes after liftoff the Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.
The drone ship was named “Of Course I Still Love You.”
The Falcon 9 landed dead center in the bullseye.
Check out the incredible views herein from SpaceX of the Falcon 9 sailing serenely atop the “Of Course I Still Love You.”
Relive the launch through these pair of videos from remote video cameras set at the SpaceX launch pad 40 facility.
Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Video caption: SpaceX Falcon 9 launch of JCSAT-14 on 5/6/2016 Pad 40 CCAFS. Credit: Jeff Seibert/AmericaSpace
The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.
The landing counts as nother stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Move over Arianespace and United Launch Alliance. SpaceX’s Falcon Heavy rocket is set for its maiden launch this November. The long-awaited Falcon Heavy should be able to outperform both the Ariane 5 and the ULA Delta-4 Heavy, at least in some respects.
The payload for the maiden voyage is uncertain so far. According to Gwynne Shotwell, SpaceX’s President and CEO, a number of companies have expressed interest in being on the first flight. Shotwell has also said that it might make more sense for SpaceX to completely own their first flight, without the pressure to keep a client happy. But a satellite payload for the first launch hasn’t been ruled out.
Delivering a payload into orbit is what the Falcon Heavy, and its competitors the Ariane5 and the ULA Delta-4 Heavy, are all about. Since one of the main competitive points of the Falcon Heavy is its ability to put larger payloads into geo-stationary orbits, accomplishing that feat on its first flight would be a great coming out party for the Falcon Heavy.
SpaceX has promised that it will make its first Falcon Heavy launch useful. They say that they will use the flight either to demonstrate to its commercial customers the rocket’s capability to deliver a payload to GTO, or to demonstrate to national security interests its ability to meet their needs.
National security satellites require different capabilities from launch vehicles than do commercial communication satellites. Since these spacecraft are top secret, and are used to spy on communications, they need to be placed directly into their GTO, avoiding the lower-altitude transfer orbit of commercial satellites.
The payload for the first launch of the Falcon Heavy is not the only thing in question. There’s some question whether the November launch date can be achieved, since the Falcon Heavy has faced some delays in the past.
The inaugural flight for the big brother to the Falcon 9 was originally set for 2013, but several delays have kept bumping the date. One of the main reasons for this was the state of the Falcon 9. SpaceX was focussed on Falcon 9’s landing capabilities, and put increased manpower into that project, at the expense of the Falcon Heavy. But now that SpaceX has successfully landed the Falcon 9, the company seems poised to meet the November launch date for the Heavy.
One of the main attractions to the Falcon Heavy is its ability to deliver larger payloads to geostationary orbit (GEO). This is the orbit occupied by communications and weather satellites. These types of satellites, and the companies that build and operate them, are an important customer base for SpaceX. SpaceX claims that the Falcon Heavy will be able to place payloads of 22,200 kg (48,940 lbs) to GEO. This trumps the Delta-4 Heavy (14,200 kg/31,350 lbs) and the Ariane5 (max. 10,500 kg/23,100 lbs.)
There’s a catch to these numbers, though. The Falcon Heavy will be able to deliver larger payloads to GEO, but it’ll do it at the expense of reusability. In order to recover the two side-boosters and central core stage for reuse, some fuel has to be held in reserve. Carrying that fuel and using it for recovery, rather than burning it to boost larger payloads, will reduce the payload for GEO to about 8,000 kg (17,637 lbs.) That’s significantly less than the Ariane 5, and the upcoming Ariane 6, which will both compete for customers with the Falcon Heavy.
The Falcon Heavy is essentially four Falcon 9 rockets configured together to create a larger rocket. Three Falcon 9 first stage boosters are combined to generate three times as much thrust at lift-off as a single Falcon 9. Since each Falcon 9 is actually made of 9 separate engines, the Falcon Heavy will actually have 27 separate engines powering its first stage. The second stage is another single Falcon 9 second-stage rocket, consisting of a single Merlin engine, which can be fired multiple times to place payloads in orbit.
The three main boosters for the Falcon Heavy will all be built this summer, with construction of one already underway. Once complete, they will be transported from their construction facility in California to the testing facility in Texas. After that, they will be transported to Cape Canaveral.
Once at Cape Canaveral, the launch preparations will have all of the 27 engines in the first stage fired together in a hold-down firing, which will give SpaceX its first look at how all three main boosters operate together.
Eventually, if everything goes well, the Falcon Heavy will launch from Pad 39A at Cape Canaveral. Pad 39A is the site of the last Shuttle launches, and is now leased from NASA by SpaceX.
The Falcon Heavy will be the most powerful rocket around, once it’s operational. The versatility to deliver huge payloads to orbit, or to keep its costs down by recovering boosters, will make its first flight a huge achievement, whether or not it does deliver a satellite into orbit on its first launch.
Russia’s new Vostochny Cosmodrome launched its first rocket on Wednesday, April 27th, carrying three new satellites into orbit. After an initial 24-hour launch delay due to a computer-initiated abort, a Soyuz-2.1a lifted off from its pad at 10:01 am EDT. Every successful space launch is important in its own way, but this one even more so because of the importance of this new cosmodrome to Russia.
The breakup of the Soviet Union in 1991 threw that country into chaos. The formal dissolution of the USSR on December 26th, 1991, created a lot of financial and political turmoil. The Soviet space program was a victim of that chaos, and with the USSR’s main cosmodrome now located on foreign territory, at Baikonur, Kazakhstan, things were uncertain.
Roscosmos, the Russian space agency, has been renting the Baikonur cosmodrome for $115 million annually. But this dependence on a foreign launch site has been a thorn in the side of Russia for decades. Russia is a fiercely independent and proud nation, so it surprised no one when construction of a new spaceport was announced. In 2010, Vladimir Putin emphasized the importance of the new facility, saying “The creation of a new space center … is one of modern Russia’s biggest and most ambitious projects.”
The new facility, called the Vostochny Cosmodrome, will eventually be home to multiple launch pads, though only one is functional for now. It’s located at 51 degrees north, whereas the Baikonur site is located at 46 degrees North. Though further north, it will still be able to launch almost the same payloads as Baikonur.
Russia has other spaceports on its own territory. The Svobodny Cosmodrome is also located in Russia’s far east, and at the same 51 degrees north as Vostochny. But Svobodny was originally an ICBM launch site, and couldn’t handle the launching of crewed missions. All crewed missions had to be launched from Baikonur. Russia has another cosmodrome, the Plesetsk Cosmodrome, where satellites can be launched into geostationary orbit.
The site for the new Vostochny Cosmodrome (Vostochny means ‘eastern’ in Russian) was chosen for a few reasons. The site is serviced by both highway and rail, and is remote enough that launch paths won’t interfere with any built up areas. It’s also located several hundred kilometres from the Pacific Ocean, to avoid complications that proximity to an ocean can cause, yet close enough that spent stages can be jettisoned and will fall harmlessly into the ocean.
Vostochny is about the same size as the Kennedy Space Centre in Cape Canaveral. Vostochny covers 551.5 square kilometers, while the Kennedy facility covers 583 square kilometers. The new cosmodrome will eventually house over 400 separate facilities, including engineering and transport infrastructure.
The Vostochny Cosmodrome project has suffered some setbacks. Parts of the assembly complex for the Soyuz 2 rocket were built too small, which delayed the planned initial launch set for December 2015. There’ve been accusations of corruption, and even a worker’s strike in the Spring of 2015 over unpaid wages.
These and other problems led Valdimir Putin to release a statement saying he was taking personal control of the project. Since then, Putin has kept a close eye on the Vostochny project. In response to the recent 24 hour launch delay of the cosmodrome’s inaugural launch, Putin criticized Roscosmos for the delay, and for all of the glitches and failures in the Russian space program recently.
But, ever the politician, Putin also tempered his remarks, saying “Despite all its failings, Russia remains the world leader in the number of space launches.” “But the fact that we’re encountering a large number of failures is bad. There must be a timely and professional reaction,” he added.
As for Vostochny itself, it will allow Russia to conduct much more of its space launches on its own soil. By 2020, Vostochny will conduct 45% of Russia’s space launches. Baikonur will still be used, but much more sparingly. It currently is responsible for 65% of Russian launches, but that will drop to 11%. The Plesetsk Cosmodrome will account for the other 44%.
As for the inaugural launch, it went flawlessly after its initial 24 hour technical delay. The three satellites it carried into orbit will fulfill several different functions. Together, they will study the Earth’s upper atmosphere, observe gamma-ray bursts, and test new electronics modules for use in space. They will also carry high-resolution cameras for remote sensing and scientific work, test communication systems with ground stations, and will develop control algorithms for use with nano-satellites.
On April 12th, 1961, the first human being broke free of the gravity bond with Earth, and orbited the planet.
Though most everyone is familiar with the American Apollo astronauts who walked on the Moon, what it took to get there, and the “One small step…” of Neil Armstrong, fewer people are familiar with Yuri Gagarin, the Soviet cosmonaut who was the first human in space. He orbited Earth in his Vostok 1 spacecraft for 108 minutes.
Gagarin became an international celebrity at the time. He received the USSR’s highest honor, the Hero of the Soviet Union. Quite an honor, and quite an achievement for someone who, as a child, survived the Nazi occupation of Russia by living in a tiny mud hut with those members of his family who were not deported for slave labour by the Germans.
The Space Race between the USA and the USSR was in full swing at the time of Gagarin’s flight, and only one month after Gagarin’s historic journey, American astronaut Alan Shepard reached space. But Shepard’s journey was only a 15 minute sub-orbital flight.
Gagarin only has one space flight to his credit, aboard the Vostok 1 in 1961. He did serve as back-up crew for the Soyuz 1 mission though. Gagarin was a test pilot before becoming a cosmonaut, and he died while piloting a Mig-15 fighter jet in 1968.
Space travel in our age is full of ‘firsts.’ It’s the nature of our times. But there can only ever be one first person to leave Earth, and that accomplishment will echo down the ages. Scores of people have been into space now. Their accomplishments are impressive, and they deserve recognition.
Five time space shuttle astronaut and current NASA science chief John Grunsfeld – best known as the ‘Hubble Hugger’ for three critical and dramatic servicing and upgrade missions to the iconic Hubble Space Telescope – his decided to retire from the space agency he faithfully served since being selected as an astronaut in 1992.
“John Grunsfeld will retire from NASA April 30, capping nearly four decades of science and exploration with the agency. His tenure includes serving as astronaut, chief scientist, and head of NASA’s Earth and space science activities,” NASA announced.
Indeed, Grunsfeld was the last human to touch the telescope during the STS-125 servicing mission in 2009 when he served as lead spacewalker.
The STS-125 mission successfully upgraded the observatory to the apex of its scientific capability during five spacewalks by four astronauts and extended the life of the aging telescope for many years. Hubble remains fully operable to this day!
In April 2015, Hubble celebrated 25 years of operations, vastly outperforming its planned lifetime of 15 years.
“Hubble has given us 25 years of great service. Hopefully we’ll get another 5 to 10 years of unraveling the mysteries of the Universe,” Grunsfeld told me during a recent interview at NASA Goddard.
In his most recent assignment, Grunsfeld was NASA’s Science Chief working as the Associate Administrator for the Science Mission Directorate (SMD) at NASA Headquarters in Washington, D.C. since January 2012.
“John leaves an extraordinary legacy of success that will forever remain a part of our nation’s historic science and exploration achievements,” said NASA Administrator Charlie Bolden, in a statement.
“Widely known as the ‘Hubble Repairman,’ it was an honor to serve with him in the astronaut corps and watch him lead NASA’s science portfolio during a time of remarkable discovery. These are discoveries that have rewritten science textbooks and inspired the next generation of space explorers.”
Grunsfeld was inducted into the U.S. Astronaut Hall of Fame in 2015.
He received his PhD in physics in 1988 and conducted extensive research as an astronomer in the fields of x-ray and gamma ray astronomy and high-energy cosmic ray studies.
NASA said that Grunsfeld’s deputy Geoff Yoder will serve as SMD acting associate administrator until a successor is named.
“After exploring strange new worlds and seeking out new life in the universe, I can now boldly go where I’ve rarely gone before – home,” said Grunsfeld.
“I’m grateful to have had this extraordinary opportunity to lead NASA science, and know that the agency is well-positioned to make the next giant leaps in exploration and discovery.”
During his tenure as science chief leading NASA’s Science Mission Directorate Grunsfeld was responsible for managing over 100 NASA science missions including the Mars orbital and surface assets like the Curiosity and Opportunity Mars rovers, New Horizons at Pluto, MESSENGER, upcoming Mars 2020 rover and OSIRIS-Rex as well as Earth science missions like the Deep Space Climate Observatory, Orbiting Carbon Observatory-2, and Global Precipitation Measurement spacecraft -which resulted numerous groundbreaking science, findings and discoveries.
Dr. Grunsfeld is a veteran of five spaceflights: STS-67 (1995), STS-81 (1997), STS-103 (1999) STS-109 (2002) and STS-125 (2009), during which time he logged more than 58 days in space, including 58 hours and 30 minutes of EVA in 8 spacewalks.
He briefly retired from NASA in December 2009 to serve as Deputy Director of the Space Telescope Science Institute, in Baltimore, Maryland. He then returned to NASA in January 2012 to serve as SMD head for over four years until now.
From his NASA bio, here is a summary of John Grunsfeld’s space flight experience during five shuttle flights:
STS-67/Astro-2 Endeavour (March 2 to March 18, 1995) launched from Kennedy Space Center, Florida, and landed at Edwards Air Force Base, California. It was the second flight of the Astro observatory, a unique complement of three ultraviolet telescopes. During this record-setting 16-day mission, the crew conducted observations around the clock to study the far ultraviolet spectra of faint astronomical objects and the polarization of ultraviolet light coming from hot stars and distant galaxies. Mission duration was 399 hours and 9 minutes.
STS-81 Atlantis (January 12 to January 22, 1997) was a 10-day mission, the fifth to dock with Russia’s Space Station Mir and the second to exchange U.S. astronauts. The mission also carried the Spacehab double module, providing additional middeck locker space for secondary experiments. In 5 days of docked operations, more than 3 tons of food, water, experiment equipment and samples were moved back and forth between the two spacecraft. Grunsfeld served as the flight engineer on this flight. Following 160 orbits of the Earth, the STS-81 mission concluded with a landing on Kennedy Space Center’s Runway 33, ending a 3.9-million-mile journey. Mission duration was 244 hours and 56 minutes.
STS-103 Discovery (December 19 to December 27, 1999) was an 8-day mission, during which the crew successfully installed new gyroscopes and scientific instruments and upgraded systems on the Hubble Space Telescope (HST). Enhancing HST scientific capabilities required three spacewalks (EVAs). Grunsfeld performed two spacewalks, totaling 16 hours and 23 minutes. The STS-103 mission was accomplished in 120 Earth orbits, traveling 3.2 million miles in 191 hours and 11 minutes.
STS-109 Columbia (March 1 to March 12, 2002) was the fourth HST servicing mission. The crew of STS-109 successfully upgraded the HST, installing a new digital camera, a cooling system for the infrared camera, new solar arrays and a new power system. HST servicing and upgrades were accomplished by four crewmembers during a total of five EVAs in 5 consecutive days. As Payload Commander on STS-109, Grunsfeld was in charge of the spacewalking activities and the Hubble payload. He also performed three spacewalks totaling 21 hours and 9 minutes, including the installation of the new Power Control Unit. STS-109 orbited the Earth 165 times and covered 3.9 million miles in over 262 hours.
STS-125 Atlantis (May 11 to May 24, 2009) was the fifth and final Hubble servicing mission. After 19 years in orbit, the telescope received a major renovation that included the installation of a new wide-field camera, a new ultraviolet telescope, new batteries, a guidance sensor, gyroscopes and other repairs. Grunsfeld served as the lead spacewalker in charge of the spacewalking and Hubble activities. He performed three of the five spacewalks on this flight, totaling 20 hours and 58 minutes. For the first time while in orbit, two scientific instruments were surgically repaired in the telescope. The STS-125 mission was accomplished in 12 days, 21 hours, 37 minutes and 09 seconds, traveling 5,276,000 miles in 197 Earth orbits.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about Hubble, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
Men and women look exactly the same when ensconced in a space suit. But female physiology is different from male physiology in significant ways. And those differences create challenges when those bodies have to endure long duration spaceflight, such as during proposed missions to Mars.
Some of the effects of spending a long time in space are well-known, and affect both genders. Exposure to microgravity creates most of these effects. With less gravity acting on the body, the spine lengthens, causing aches and pains. Lowered gravity also causes bone loss, as the skeletal system loses important minerals like nitrogen, calcium, and phosphorous. And the muscles atrophy, since they aren’t used as much.
Microgravity makes the body sense that it is carrying too much fluid in the chest and head, and the body tries to eliminate it. Astronauts feel less thirst, and over time the body’s fluid level decreases. With less fluid, the heart doesn’t have to work as hard. The heart’s a muscle, so it atrophies much like other muscles. The fluid level causes other changes too. Fluid accumulates in the face, causing “Puffy Face Syndrome.”
But some problems are specific to gender, and Gregor Reid, PhD, and Camilla Urbaniak, PhD Candidate at the Shulich School of Medicine and Dentistry are focusing on one fascinating and important area: the human microbiome. Female and male microbiomes are different, and they are affected by microgravity, and other aspects of space travel, in different ways.
The human microbiome is the trillions of microorganisms living on the human body and in the gut. They are important for digestion and nutrition, and also for the immune system. A healthy human being requires a healthy microbiome. If you’ve ever travelled to another part of the world, and had stomach problems from the food there, those can be caused by changes in your microbiome.
Research on astronauts shows that spending time in space changes different aspects of the microbe population in a human being. Some of these changes cause health complications when the microbes responsible for digestion and immunity are affected. Reid says that the microbe has to be understood as its own organ, and we need a better understanding of how to keep that organ healthy. Keeping the microbiome healthy will keep the astronaut healthy, and reduce the risk of disease.
After conducting a literature review, the two researchers suggested that astronauts should incorporate probiotics and fermented foods into their diet to boost the health of their microbiome. They think that astronauts should have access to probiotic bacteria that they can prepare food with. Urbaniak acknowledges that female astronauts don’t want to be limited to shorter duration space flights, and using probiotics to manipulate the microbiome of female astronauts will allow them to withstand longer voyages.
Reid and Urbaniak also highlight some other problems facing women in long distance space voyages. If a female astronaut is diagnosed with breast cancer, ovarian cancer, or a urinary tract infection during an extended journey in space, any treatment involving antibiotics would be problematic. The antibiotics themselves may work less effectively due to changes in the microbiome.
Research on male astronauts has already shown a decrease in beneficial microorganism in the gut, and in the nasal and oral pathways. Those decreases were noted in both long and short duration stays in space. The research also shows an increase in harmful microorganisms such as E. coli. and staphylococcus. But so far, the same research hasn’t been done on female astronauts.
It’s well understood that women and men have different microbial profiles, and that their microbiomes are different. But there’s a lot we still don’t know about the specifics. This is an important area of research for NASA. According to Urbaniak, though, previous studies of the human microbiome and its response to space travel have focused on male astronauts, not female astronauts. Reid and Urbaniak are hopeful that their work will start a conversation that results in a greater understanding of the effects of space travel on women.
KENNEDY SPACE CENTER, FL – Tuesday evening, March 22, turned into ‘streaks galore’ on Florida’s space coast, as the nighttime launch of an Orbital ATK Cygnus cargo freighter atop an Atlas V rocket was captured in unforgettable fashion by talented space photographers as it chases down the International Space Station (ISS), loaded with hundreds of science experiments.
Check out this expanding gallery of breathtaking photos and videos collected from many of my photojournalist friends and colleagues – who collectively count as the best space photographers worldwide!
We all descended on the sunshine state to record the Tuesday’s blastoff of the United Launch Alliance Atlas V rocket carrying Orbital ATK’s Cygnus CRS-6 (OA-6) spacecraft from an array of locations ringing Cape Canaveral’s seaside launch pad as well as remote cameras we all set as media directly at the launch pad.
The two stage ULA Atlas V lifted off right on time at 11:05 p.m. EDT from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl, into a picturesque moonlit sky on a resupply mission to the ISS.
One could not have asked for better weather. Conditions were near perfect at launch time with virtually no winds and clouds.
Cygnus rode to orbit on a fountain of fire. And right now she is in hot pursuit of the million pound orbiting outpost crewed by an international team of six astronauts and cosmonauts.
The streak shots vividly show how the rocket magnificently illuminated the scattered thin clouds hovering over the seaside launch pad as it ascended and arced over eastwards towards Africa.
The Orbital ATK Cygnus CRS-6 (OA-6) mission launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration to accommodate the Cygnus.
The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.
It was the ULA’s 62nd straight success with the Atlas V as well as the firms third launch in 2016 and the 106th launch since the company formed in 2006.
The Cygnus CRS-6 (OA-6) mission is being launched under terms of the firm’s Commercial Resupply Services (CRS) contract with NASA. It also counts as Orbital ATK’s fifth cargo delivery mission to the space station.
Watch these launch videos from remote video cameras set right at the launch pad showing the full fury of liftoff sounding off with the deafening thunder of some one million pounds of liftoff thrust.
Video caption: Flame trench view of the Orbital/ATK OA-6 resupply module launch to the ISS on a ULA Atlas 5 rocket from Pad 41 of the CCAFS on March 22, 2016. Credit: Jeff Seibert/AmericaSpace
Video caption: Mobius video camera placed at Florida launch pad captures blastoff up close of Orbital ATK OA-6 (CRS-6) mission riding to orbit atop a United Launch Alliance Atlas V rocket on March 22, 2016 at 11:05 p.m. EDT from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: Ken Kremer/kenkremer.com
OA-6 is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.
Among the research highlights are experiments like Strata-1 which will evaluate how soil on airless bodies like asteroids moves about in microgravity, Gecko Gripper to test adhesives similar those found on geckos’ feet, Meteor will evaluate the chemical composition of meteors entering the Earth’s atmosphere, Saffire will purposely set a large fire inside Cygnus after it unberths from the ISS to examine how fires spread in space, and a nanosat deployer mounted externally will deploy over two dozen nanosats also after unberthing.
A new 3D printer featuring significantly upgraded capabilities is also on board.
The spacecraft will arrive at the station on Saturday, March 26, at which time Expedition 47 Commander Tim Kopra of NASA and Flight Engineer Tim Peake of ESA (European Space Agency) will grapple Cygnus, using the space station’s robotic arm, at approximately 6:40 a.m.
NASA TV coverage of rendezvous and grapple will begin at 5:30 a.m.
The Cygnus has been named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.
Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.