Three members of the Expedition 26 crew landed safely in their Soyuz spacecraft early Wednesday, but their replacements might not launch until mid-April, a delay of a couple of weeks. Commander Scott Kelly and Russian Flight Engineers Alexander Kaleri and Oleg Skripochka landed with no problems in the cold and snow of Kazakhstan, concluding their five-month stay aboard the International Space Station. But meanwhile, the Russian Soyuz TMA-21 is experiencing a problem with the communications system, and the new crew was scheduled to launch on March 29. But the launch may be delayed until after the April 12th 50th anniversary of Yuri Gagarin’s first space flight.
Roskosmos director Anatoly Perminov said technicians were working on a faulty transistor, and if the launch doesn’t take place by about April 9, they would likely be postponed until after the anniversary celebration of the first human to orbit Earth.
The delay could increase concerns about relying solely on Russia for rides to the ISS.
The new crew half of the Expedition 27 crew consists of NASA astronaut Ron Garan and Russian cosmonauts Andrei Borisenko and Alexander Samokutayev. Remaining on board the ISS are Dmitry Kondratyev, now commander and Flight Engineers Catherine Coleman (NASA) and Paolo Nespoli (ESA).
The Expedition 26 trio undocked from the ISS at 12:27 a.m. EDT from the station’s Poisk module, and landed at 3:54 a.m. (1:54 p.m. local time) at a site northeast of the town of Arkalyk.
Working in frigid temperatures, Russian recovery teams were on hand to help the crew exit the Soyuz and adjust to gravity. Kaleri and Skripochka will return to the Gagarin Cosmonaut Training Center in Star City, outside of Moscow, while Kelly will fly directly home to Houston.
The three returning crewmembers have been in space since Oct. 8, 2010 when they launched aboard the Soyuz TMA-01M spacecraft from the Baikonur Cosmodrome in Kazakhstan, spending 159 days in space.
During their mission, the Expedition 25 and 26 crew members worked on more than 150 microgravity experiments in human research; biology and biotechnology; physical and materials sciences; technology development; and Earth and space sciences.
NASA’s Lunar Reconnaissance Orbiter (LRO) has completed its initial phase of operations during the exploration phase which lasted one year from Sept. 15, 2009 through Sept. 15, 2010 and has now transitioned to the science phase which will last for several more years depending on the funding available from NASA, fuel reserves and spacecraft health. The exploration phase was in support of NASA’s now cancelled Project Constellation
To mark this occasion NASA released a new data set that includes an overlap of the last data from the exploration phase and the initial measurements from the follow on science mapping and observational phase.
This is the fifth dataset released so far. All the data is accessible at the Planetary Data System (PDS) and the LROC website and includes both the raw data and high level processed information including mosaic maps and images.
LRO was launched on June 18, 2009 atop an Atlas V/Centaur rocket as part of a science satellite duo with NASA’s Lunar Reconnaissance Orbiter & Lunar Crater Observation and Sensing Satellite (LCROSS) from Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
After achieving elliptical orbit, LRO underwent a commissioning phase and the orbit was lowered with thruster firings to an approximately circular mapping orbit at about 50 km altitude.
LRO was equipped with 7 science instruments that delivered more than 192 terabytes of data and with an unprecedented level of detail. Over 41,000 DVDs would be required to hold the new LRO data set.
“The release of such a comprehensive and rich collection of data, maps and images reinforces the tremendous success we have had with LRO in the Exploration Systems Mission Directorate and with lunar science,” said Michael Wargo, chief lunar scientist of the Exploration Systems Mission Directorate at NASA Headquarters in Washington according to a NASA statement.
The new data set includes a global map produced by the onboard Lunar Reconnaissance Orbiter Camera (LROC) that has a resolution of 100 meters. Working as an armchair astronaut, anyone can zoom in to full resolution with any of the mosaics and go an exploration mission in incredible detail because the mosaics are humongous at 34,748 pixels by 34,748 pixels, or approximately 1.1 gigabytes.
Browse the Lunar Reconnaissance Orbiter Camera (LROC) Image Gallery here:
The amount of data received so far from LRO equals the combined total of all other NASA’s planetary missions. This is because the moon is nearby and LRO has a dedicated ground station.
Data from the other LRO instruments is included in the release including visual and infrared brightness, temperatures maps from Diviner; locations of water-ice deposits from the Lyman-Alpha Mapping Project (LAMP) especially in the permanently shadowed areas and new maps of slope, roughness and illumination conditions from the Lunar Orbiter Laser Altimeter team.
Additional new maps were generated from data compilations from the Lunar Exploration Neutron Detector (LEND), the Cosmic Ray Telescope for the Effects of Radiation and the Miniature Radio Frequency (mini RF) instruments
The combined result of all this LRO data is to give scientists the best ever scientific view of the moon.
“All these global maps and other data are available at a very high resolution — that’s what makes this release exciting,” said Goddard’s John Keller, the LRO deputy project scientist. “With this valuable collection, researchers worldwide are getting the best view of the moon they have ever had.”
When MESSENGER streaked into the early morning sky over Cape Canaveral on Aug. 3, 2004, very little was known about Mercury.
That could soon change. This week, MESSENGER — which stands for MErcury Surface, Space ENvironment, GEochemistry and Ranging — will make history when it becomes the first spacecraft to orbit Mercury.
At 8:45 p.m. EDT on Thursday, MESSENGER will execute a 15-minute maneuver that will place it into orbit around Mercury, kicking off a year-long science campaign to understand the innermost planet. The craft will fly around Mercury 730 times in the first year, and may be extended for another year after that.
No spacecraft had approached Mercury since the Mariner 10 space probe performed three fly-by maneuvers over the course of 1974 and 1975, imaging the planet’s surface. However, Mariner 10 sent back photos of only one side of the planet, leaving the other shrouded in mystery.
The MESSENGER mission — led by NASA, the Applied Physics Laboratory at Johns Hopkins University and the Carnegie Institution — is an effort to study the geologic history, magnetic field, surface composition and other mysteries of the planet. The findings are expected to broaden our understanding of rocky planets, more and more of which are being discovered in other solar systems. One of the most compelling enigmas surrounds Mercury’s magnetic field. At a diameter only slightly larger than that of the moon (about 4,800 kilometers or 2,983 miles), Mercury should have solidified to the core. However, the presence of a magnetic field suggests the planet’s insides are partially molten.
During its journey toward Mercury, MESSENGER passed the planet several times, filling in the imaging gaps left by Mariner 10. Now, the entire planet with the exception of about five percent has been observed. MESSENGER will focus its cameras on getting the best possible images of the remaining portions, mostly in the polar regions.
The in-flight preparations for this historic injection maneuver began on Feb. 8, when several heaters on the spacecraft were configured to condition the bi-propellant used during the maneuver. Starting on March 8, antennas from each of the three Deep Space Network (DSN) ground stations began a round-the-clock vigil, allowing flight control engineers at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., to monitor MESSENGER on its final approach to Mercury. Also that day, the spacecraft began executing the last cruise command sequence of the mission. The command load executed until today. Now, the command sequence containing the orbit-insertion burn has begun.
APL is hosting a live webcast about the orbit insertion maneuver starting at 7:55 p.m. EDT on Thursday, March 17.
For those of you living near Johns Hopkins, APL and The Planetary Society will co-host a public lecture in APL’s Kossiakoff Center, featuring MESSENGER Project Scientist Ralph L. McNutt, Jr. The lecture will begin at 8 p.m. on Thursday. RSVP online.
Check Universe Today late on Thursday for coverage of the orbit insertion, with input from related talks at the Laboratory for Space Physics (LASP) in Boulder, Colorado. Meanwhile, for more information, check out NASA’s MESSENGER mission website.
That’s the feeling you’ll get from this exquisite and exciting piece from amateur videographer Anton Janssen from the Netherlands. Anton has captured the sights and sounds of excitement of the giant crowd in the thick of the action in this amazingly sharp video of Discovery’s last blast to space.
Anton’s vantage point from the NASA Causeway enabled him to film the liftoff with a birds eye view of the entire orbiter to the base of the launch pad – not blocked by the launch gantry at all. And to top that off, the video shows panoramic reaction shots of the large and exuberant crowd. What’s more is you can hear the cheering multitudes at multiple milestones as Discovery ascends with a deafening roar and spewing intense scorching flames out her rear like a gigantic blowtorch burning an indelible hole in the sky.
Anton told me he bought the camera new and especially for the STS-133 launch after he purchased one of the very hard to get VIP Tickets from the KSC Visitor Complex. He arrived at the viewing site several hours early, along with tens of thousands of other onlookers along the Florida Space Coast beaches and roadways.
“The NASA Causeway was a great viewing site because you could see the shuttle right from the start,” Anton explained.
Check out this amazing close up video view of the final moments of Discovery’s final landing and the finale of her space career as record by Matt Travis, of Spacearium, taken at the Shuttle Landing Facility where I was also stationed.
This timelapse of Discovery’s launch was shot from the Kennedy Space Center Causeway Viewing Site, by David Gonzales of Project Soar. (See our previous article about them.) Here, approximately 12 minutes is condensed into 27 seconds, so about 27 times as fast. Replayed at 15 fps. See the launch and smokey plume change over time as it is tugged on by wind.
Only 1 or 2 flight remain for the Space Shuttle Program until they are forcibly retired for lack of money.
Next up is the launch of Endeavour on April 19 at dusk. Should make for some extremely cool videos and snapshots! Get your gear ready!
A Delta IV rocket carrying a top secret military payload for the National Reconnaissance Office (NRO) blasted off Friday evening (March 11) at 6:38 p.m. from Cape Canaveral at Space Launch Complex-37 in Florida.
The NROL-27 payload supports the national defense and all information about its mission and goals is a classified military secret. Some outside observers say NROL-27 may be a powerful military communications satellite for relay of vital national security data rather than a signals intelligence satellite.
See our launch photo gallery below from Alan Walters and Ken Kremer
The NRO is located in Chantilly, VA. and charged with the design, construction and operation of the US fleet of intelligence gathering reconnaissance satellites. Their goal is achieving information superiority for the U.S. Government and Armed Forces.
“This mission helps ensure that crucial NRO resources will continue to strengthen our national defense,” said Col James Ross, 45th Space Wing vice commander.
The sunset liftoff into a clear blue sky was visually stunning. With the winds whipping towards our viewing site along the NASA causeway, the roaring rocket thunder was especially loud. Upper level winds threatened to derail the launch. Liftoff was delayed by about 45 minutes due to strong wind gusts which finally calmed to fall within the launch criteria.
“This is the 50th anniversary year of the NRO. NROL-27 is the fifth of six launches for the NRO in the 2010-2011 time period and marks our most aggressive launch schedule in two decades,” said Loretta Desio, NRO spokesperson, in an interview for Universe Today at the viewing site.
The NROL-27 satellite is named “Gryphon”.
Colors and works in the logo represent the United States Marine Corps, United States Navy, VA Tech, and fallen veterans. Logo symbols represent the United States Air Force, United States Army and two teammates killed on 9/11,” according to ULA spokesperson Chris Chavez.
The unmanned Delta IV rocket was built by United Launch Alliance (ULA) and launched by the 45th Space Wing stationed at Patrick Air Force Base. ULA is a partnership between Lockheed Martin and Boeing.
“The outstanding ULA, NRO and Air Force partnership made yet another successful mission,” said Lt. Col. William Heuck, 5th Space Launch Squadron commander.
NROL-27 was bolted atop the Delta IV rocket in the Medium + (4,2) configuration with a single liquid fueled booster and two small side mounted solid rocket boosters. The Delta IV stands 62.5 meters (205 feet) tall and can launch payloads up to 13.5 tons into low-Earth orbit and 6.6 tons into toward the geosynchronous orbits used by communications satellites.
The flight entered a news blackout after the successful separation of the payload fairing at about four and one half minutes after blastoff. No further information about the satellite will be forthcoming. The 4 meter diameter composite nose cone protects the satellite during ascent through the Earth’s atmosphere.
“I am extremely proud of the entire government and contractor team who supported this launch, said Col. Alan Davis, Director of the Office of Space Launch in the National Reconnaissance Office.
The Delta IV launch occurred just six days after the Atlas V launch of the second Orbital Test Vehicle (OTV-2) — the mini space shuttle on another secret mission. See my Atlas report here.
The Florida Space Coast has seen a surge of rocket launchings in the past month. The Delta IV launch is the last of three successful liftoffs in the past few weeks and follows closely on the heels of the Atlas and the final flight of Space Shuttle Discovery.
A Delta IV rocket blasted off Friday evening from Cape Canaveral launch Complex-37 carrying a secret payload for the National Reconnaissance Office. Called NROL-27, the mission was said to be in support of national defense. This marks the fourth NRO launch accomplished by ULA since Sept. 20, 2010 and occurred just six days after the Atlas V launch of the second Orbital Test Vehicle (OTV-2) — the mini space shuttle on another secret mission. Continue reading “New Spy Satellite Launches on Covert Mission”
[/caption]
CAPE CANAVERAL – The youngest orbiter in NASA’s shuttle fleet headed to Launch Complex 39A at Kennedy Space Center in Florida for the last time on Friday, Mar. 10. The shuttle started its slow trek out to the launch pad around 8 p.m. EST. Endeavour is being prepared for the STS-134 mission which is scheduled to launch on Apr. 19 at 7:48 p.m. EST.
Endeavour was wheeled out of NASA’s massive Vehicle Assembly Building (VAB) on top of the crawler-transporter. This huge, tracked vehicle moves at a blistering pace of about a mile an hour. Therefore it took Endeavour several hours to reach LC39A. What is known as “Rollout” had been slated to occur the day prior, but a front of nasty weather blew in and shuttle managers decided to push the trip back a day.
The STS-134 will be Endeavour’s 25th and final mission. It is a resupply flight to the International Space Station. Its payload consists of the Alpha Magnetic Spectrometer -02 (AMS-02) as well as the Express Logistics Carrier-3.
“As exciting as it will be to fly this mission, what’s even more exciting is the science that this flight will bring to the International Space Station,” said STS-134 Pilot Greg Johnson. “I have no doubt that the AMS-02 will teach us new things about how the universe works and it may even show us new particles that we didn’t even know existed.”
Commander Mark Kelly will lead the crew of six, Johnson is the pilot and the Mission Specialists will be Mike Fincke, Andrew J. Feustel, Greg Chamitoff and European astronaut Roberto Vittori.
For a while it was uncertain whether-or-not Mark Kelly, the mission’s commander would be on this historic flight. His wife, Congresswoman Gabrielle Giffords, was severely injured when she was shot in the head by alleged gunman Jared Lee Loughner. NASA named Rick Sturckow as the mission’s backup commander. However, Kelly announced later that he would remain the mission’s commander and resumed training with his crewmates. By all accounts, it was Giffords that encouraged him to continue and it appears that she will back at Kennedy Space Center when the mission launches.
“While all of us that have worked on Endeavour are a little sad that this is her final mission, we remained focused on conducting her last flight as safely as possible,” said Endeavour’s Flow Director, Dana Hutcherson.
Endeavour was constructed after the loss of Challenger in 1986. The orbiter first flew in 1992. After the STS-134 mission concludes there will only be one flight remaining in the shuttle program, STS-135, currently slated for a June 28 launch. It has been hinted that Endeavour might end up staying at Kennedy Space Center – at the Kennedy Space Center Visitor Complex. However, an official announcement has yet to be made.
CAPE CANAVERAL – After logging over a year’s worth of flight time in space, the space shuttle Discovery wrapped up a historic career by safely touching down at NASA’s Kennedy Space Center (KSC) in Florida at 11:57 a.m. EDT. The shuttle landed at KSC’s Shuttle Landing Facility on runway 15.
Discovery’s final mission was a resupply flight to the International Space Station (ISS). The shuttle delivered the Leonardo Permanent Multipurpose Module (PMM) to the orbiting outpost. Among other things, the PMM carried the first humanoid robot in space – Robonaut-2 (R2) inside. R2 is also the first robot that the U.S. has flown to the ISS.
The crew that flew Discovery on her final mission consisted of Commander Steve Lindsey, Pilot, Eric Boe and Mission Specialists; Alvin Drew, Nicole Stott, Michael Barratt and Stephen Bowen. Bowen actually was not slated to fly this mission; he was a last-minute replacement for Tim Kopra who broke his hip in a bicycle accident in January.
The lead-up to Discovery’s final mission was one filled with technical hurdles that NASA’s engineers had to overcome before the shuttle thundered one last time to orbit. On the Nov. 5 launch attempt a leak at the Ground Umbilical Carrier Plate (GUCP) caused a scrub. Upon inspection technicians found a section of popped-up foam on the shuttle’s external tank – this led them to discovering numerous, small cracks in the aluminum body of the external tank itself.
When Discovery was set to launch on Feb.24, a range issue crept up at the last minute almost scrubbing the launch. It was cleared with only seconds to spare.
Discovery’s service record is a distinguished one. Whenever NASA had a critical mission to fly – Discovery got the nod. The orbiter carried Sen. Jake Garn as well as former Mercury astronaut and Senator John Glenn to orbit. It delivered the Hubble Space Telescope to space. And it returned the U.S. space program to orbit, twice, after the Challenger and Columbia accidents.
“If you think of a vehicle that’s 27 years old, you never see a vehicle that age that never comes back with no flaws, however Discovery did just that, she functioned flawlessly,” said Commander Steve Lindsey upon landing. “This is a tribute to the Kennedy Space Center team.”
The next phase of Discovery’s career is retirement; she will now head to the Smithsonian Institute’s Steven F. Udvar Hazy Center in Washington D.C. where she will be put on display. Discovery will take the place where Discovery currently resides.
“Discovery is an amazing spacecraft and she has served her country well,” said NASA Administrator Charles Bolden. “The success of this mission and those that came before it is a testament to the diligence and determination of everyone who has worked on Discovery and the Space Shuttle Program, over these many years. As we celebrate the many accomplishments of this magnificent ship, we look forward to an exciting new era of human spaceflight that lies ahead.”
There are only two missions left in the shuttle program, STS-134 onboard Endeavour which is slated to fly on Apr. 19 and STS-135 which will be flown by Atlantis on June 28.
For the final flight of Space Shuttle Endeavour, I was privileged to be one of the lucky few to be an eyewitness to how the orbiter was hoisted and attached for the last time to the External fuel tank and twin solid rocket boosters that will power her last ascent to space on the STS-134 mission . Thereafter she will be retired from active duty service.
“Lift and Mate” is the formal name for the nearly day and a half long intricate process to join Endeavour to the fuel tank and rocket boosters and took place after the orbiter was hauled inside the 52 story Vehicle Assembly Building atop a 76 wheeled transporter on Feb. 28.
Lift and Mate is a jaw dropping and unforgettable experience because you see the orbiter suspended in mid air as though it was flying in space. While hanging in the air by thin cables, the 100 ton orbiter is reminiscent to me of what astronauts on the International Space Station surely see as the shuttle approaches for docking.
Following the shuttles rollover to the VAB on top on the transporter, technicians initially attached a large yellow, metal sling to Endeavour in the center area of the VAB – known as the transfer aisle.
Endeavour was then slowly and methodically hoisted on pulleys and chains into the vertical position. The tail came to rest just a few meters from the hard and unforgiving concrete floor. The orbiter was then lifted up to the VAB ceiling and carefully moved over walkways into High Bay 3. Media including myself watched this entire process in total awe from several different levels inside the VAB as Endeavour was lifted past us from just a few meters away.
The final step was to lower Endeavour into position for mating to the fuel tank and solid rocket boosters already awaiting her arrival.
Its hard to believe I was really an eyewitness to this majestic event and also sadly realize it will never happen again.
“The orbiter has a lot of life left in her,” said a top shuttle manager to me. “The shuttle could fly many more missions.”
NASA will rollout Endeavour to Launch Pad 39 A on March 9 following the landing of Space Shuttle Discovery.
The STS-134 mission will be the 25th and final flight for shuttle Endeavour. Launch is set for April 19. Endeavour will haul the $2 Billion Alpha Magnetic Spectrometer (AMS) to orbit and attach it to the ISS. AMS will search for dark matter and seek to determine the origin of the universe.
Check out the majestic views of “Lift and Mate” for Space Shuttle Endeavour in my photo album herein
Final “Lift and Mate” of Space Shuttle Endeavour. Photos by Ken Kremer
The STS-133 crew sent down a video from orbit today where they each paid tribute to the legacy of space shuttle Discovery. My favorite line was from Nicole Stott: “I’m looking forward to bringing her home to the people who care for her the most, to the time when we are on the runway and can look back and still see her standing on her own gear, with her own proud wings holding her up before she goes back to that hanger for the last time.”