Best Images from STS-133: Discovery’s Final Mission in Pictures

Discovery leaving the ISS on March 7, 2011 for the final time. Credit: NASA

[/caption]

As space shuttle Discovery prepares to return home from its final mission to space, let’s take a look back at the STS-133 mission, an historic “last” for the program’s most-traveled shuttle. “I think the legacy that this shuttle has made for herself is just nothing short than cause for celebration,” said mission specialist Michael Barratt during press conference from orbit on March 8.

“It’s going to be sad when it’s over, when we land tomorrow or the next day,” said STS-133 commander Steve Lindsey. “The hardest part of this for me is giving up the capability. It can do everything except leave low-Earth orbit…There is not a single thing wrong with her. Every single system and every piece of every system is working just like it’s brand new.”

After a successful launch, the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) equipped with special cameras, begins to conduct thorough inspections of the shuttle's thermal tile system on flight day 2. Photo credit: NASA
This view of the nose, the forward underside and crew cabin of the space shuttle Discovery was provided by an Expedition 26 crew member during a survey of the approaching STS-133 vehicle prior to docking with the International Space Station. Credit: NASA
ISS tally ho! A view the space station as Discovery approaches for docking. Compare this image with one below, taken as Discovery departs to see the addition of the PMM. Credit: NASA
Backdropped by a blue and white part of Earth, space shuttle Discovery is featured in this image photographed by an Expedition 26 crew member as the shuttle approaches the International Space Station during STS-133 rendezvous and docking operations. Docking occurred at 2:14 p.m. (EST) on Feb. 26, 2011. A Russian Progress spacecraft docked to the space station is also featured in the image. Credit: NASA
A view of the docked space shuttle Discovery during the STS-133 mission, along with and the Canadian-built robot Dextre, and other parts of the ISS. Credit: NASA
European Space Agency astronaut Paolo Nespoli (left), Expedition 26 flight engineer; and NASA astronaut Steve Bowen, STS-133 mission specialist, are pictured in the Quest airlock of the International Space Station as they prepare for the start of the mission's first spacewalk. Credit: NASA
Astronauts Steve Bowen and Alvin drew work in tandem on one of the truss sections of the ISS during the first spacewalk of the STS-133 mission. Credit: NAS
Astronaut Alvin Drew during the first spacewalk of the STS-133 mission. Credit: NASA

The first spacewalk of the mission lasted six-hours and 34-minutes. Alvin Drew and Steve Bowen installed a power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese “Message in a Bottle” experiment to space.

Cady Coleman, Expedition 26 flight engineer, is pictured near a Japanese-designed metal cylinder floating freely in the Destiny laboratory of the International Space Station while space shuttle Discovery remains docked with the station. On Feb. 28, spacewalkers Steve Bowen and Alvin Drew opened and 'filled' the cylinder, named "Message in a Bottle", with space, or rather the vacuum of outer space, and then sealed it to be brought back to Earth with the Discovery crew. Credit: NAS
The newly-attached Permanent Multipurpose Module (PMM) and a docked Russian Soyuz spacecraft. Credit: NASA
NASA astronauts Scott Kelly (foreground), Expedition 26 commander; and Steve Lindsey, STS-133 commander, are pictured in the newly-installed Permanent Multipurpose Module (PMM) of the International Space Station. Credit: NASA
Backdropped by Earth's horizon and the blackness of space, this view shows the Cupola of the International Space Station and a docked Russian Progress spacecraft, taken during the STS-133 mission. Credit: NASA
Nicole Stott, STS-133 mission specialist, is pictured in the Cupola of the International Space Station. Credit: NASA
Alvin Drew, STS-133 mission specialist, is pictured in his sleeping bag, which is attached in the Columbus laboratory of the International Space Station. Credit: NASA
The crews from STS-133 and the ISS Expedition 26 in the newly installed Permanent Multipurpose Module. Credit: NASA

Joint crew photo inside the newest module, the PMM — which is basically a big storage closet for the ISS. The STS-133 crew members, all attired in red shirts(from left)are NASA astronauts Alvin Drew, Eric Boe (below), Nicole Stott, Michael Barratt, Steve Bowen and Steve Lindsey (below). The dark blue-attired Expedition 26 crew members, from bottom left, are NASA astronaut Scott Kelly, European Space Agency astronaut Paolo Nespoli, NASA astronaut Cady Coleman along with Russian cosmonaut Oleg Skripochka. In the center of the photo are Dmitry Kondratyev and Alexander Y. Kaleri.

Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, moves stowage containers in the Unity node of the International Space Station. Credit: NAS
Alvin Drew works outside during the second EVA of the STS-133 mission. Credit: NASA
Anchored to a Canadarm2 mobile foot restraint, NASA astronaut Steve Bowen works outside the ISS during the second EVA of the STS-133 mission. Credit: NASA
The space shuttle Discovery as seen from the International Space Station, flying over southwestern coast of Morocco in the northern Atlantic. During a post undocking fly-around, the crew members aboard the two spacecraft collected a series of photos of each other's vehicle. Credit: NASA
Backdropped against the blackness of spaec and clouds over Earth, the International Space Station is seen from Discovery as the shuttle departed from the station. Credit: NAS
Disovery departing the ISS for the final time. Credit: NASA

Larger versions of all these images can be found at NASA’s Human Spaceflight website, under the STS-133 gallery.

Click here to see our gallery of launch images for Discovery’s final flight.

Here’s a video recap of the STS-133 mission:

As Shuttle Era Ends, What Will be its Legacy?

The shuttle era is set to end this summer when Atlantis completes STS-135. What will be the program's legacy? Photo Credit: Jason Rhian

[/caption]
When it comes to space flight, the media, politicians and the public tend to focus on who was “first.” Many point to the fact that the Soviet Union was first to send both a satellite and man into orbit as the impetus behind the U.S. into the new frontier. However, the “lasts” are often lost to history, forgotten in the dusty pages of some biographer’s notes. As the shuttle era closes, there are several lasts that, so far, have gone unmentioned. More importantly, the program, as a whole, has been an incredibly powerful engine for change – both within the U.S. and abroad.

Alvin Drew is the last African-American currently scheduled to fly in the shuttle program. Additionally, there is one other last that may or may not be highlighted (if NASA gets the necessary funding for the mission) – the last woman to fly in the shuttle program – Sandra “Sandy” Magnus on STS-135. Although NASA has declared STS-135 an official mission, the funding needed to fly it, has yet to be approved.

Currently, Alvin Drew will be the last African-American to fly in the shuttle program. Photo Credit: Jason Rhian

These two “lasts” may or may not be noted by the media, many of whom give the appearance of looking down on the program. The shuttle, as Bob Crippen once said is often “bad-mouthed” for not living up the expectations laid out at the beginning of the program. Perhaps, in time, the shuttle program will be remembered as what it was – an engine that worked to remove many social barriers. The shuttle era could, one day, be regarded as the program that opened space flight to people of all races and nations.

The number of nations that have flown astronauts onboard NASA’s fleet of shuttles is far more expansive than most think. Canada, Belgium, France, Germany, Italy, the Netherlands, Spain, Switzerland, Israel, Japan, Mexico, Russia, Saudi Arabia and the Ukraine have all flown astronauts aboard the space shuttle.

During the Mercury, Gemini and Apollo Programs the crews were universally white and male. With the shuttle’s capacity for larger crews – that dynamic changed. The U.S. flew its first woman, Sally Ride, in 1984 (the Soviet Union flew its first woman, Valentina Tereshkova in 1963) the first African-American, Guy Bluford also flew that year. After that the backgrounds of the astronauts who flew on the shuttle continued to diversify.

Sandra Magnus is set to fly onboard shuttle Atlantis' STS-135 mission, she will be the last woman to fly in the shuttle program. Photo Credit: NASA

The first female pilot, Eileen Collins, flew on board STS-63 – she would go on to become the first female commander – and to return NASA to flight after the Columbia disaster on STS-114 in 2005. Charles Bolden, an African-American, commanded the first joint Russian/American shuttle mission (mission STS-61 on Discovery) and would go on to become the first African-American NASA administrator when he was selected in 2009. These are just two of numerous examples of how the shuttle has empowered different genders and races.

So while Drew’s and Magnus’ place in history may not be well remembered, those that paved the way for them as well as the shuttle’s capabilities made it all possible. Time will tell if the shuttle will be remembered for its shortcomings or if it will be remembered for allowing astronauts of all stripes to fly, for the Hubble Space Telescope to be deployed and serviced, for the International Space Station to be built and for all the other positive things that the shuttle made possible since it first flew in April of 1981.

“The shuttle has flown on such a routine basis for the past 30 years that many Americans may not realize the contributions it has made for all humankind,” said Candrea Thomas a NASA public affairs officer. “When the shuttles stop flying, I believe Americans will remember all the wonderful technologies and advancements that these amazing spacecraft, and the diverse group of people who worked on them, made possible.”

Special Star Trek Song Beamed Up To Space Shuttle

William Shatner, who played Captain James T. Kirk on the original Star Trek television series, provided a very special message to the crew of space shuttle Discovery during the STS-133 Flight Day 12 wakeup call.

With strains of Alexander Courage’s famous theme song from Star Trek playing, Shatner replaced the original television introduction with, “Space, the final frontier. These have been the voyages of the Space Shuttle Discovery. Her 30 year mission: To seek out new science. To build new outposts. To bring nations together on the final frontier. To boldly go, and do, what no spacecraft has done before.”

Continue reading “Special Star Trek Song Beamed Up To Space Shuttle”

X-37B thunders off the pad on its way to orbit

The United Launch Alliance Atlas V carries the second OTV to orbit. Photo Credit: NASAtech.net

[/caption]
CAPE CANAVERAL – Much has been made about the secretive nature of the Orbital Test Vehicle (OTV). Better known as the X-37B, the second of the U.S. Air Force’s OTVs roared off Cape Canaveral Air Force Station’s Launch Complex 41 at 5: 46 p.m. EDT. The Atlas V 501 thundered off of the launch pad carrying the second of the two OTVs into orbit.

The launch was to take place on Mar. 4, but looming cumulus clouds, high winds and rain pushed the launch back a day. The first launch window today opened at 4:09 p.m. EDT, however technical issues required minor work out on the launch pad and it was decided to try for launch during the second launch window’s opening.

This is the second launch of the mini unmanned X-37B space planes. Photo Credit: Jason Rhian

The first OTV, USA-212 lifted off from the exact same launch pad on 22 April 2010 and returned to Earth on Dec. 3, 2010. The return to earth tested out the space planes heat shield as well as the vehicle’s hypersonic aerodynamic aspects. The space plane is small enough to be carried within the U.S. space shuttle’s payload bay, it landed at Vandenberg Air Force Base in California. The craft suffered a tire blowout upon landing, but landed safely.

“The X-37B is a scientific achievement as well as a tremendous step in space operations. By itself, the ability to put a vehicle in space, conduct experiments and tests for close to nine months and then have that vehicle autonomously de-orbit and land is an important accomplishment,” said Major Tracy Bunko an Air Force spokeswoman. “This gives the Air Force the ability to examine how state-of-the-art, highly complex technologies will perform in space before they are made operational is an important cost-saving, risk-reducing capability.”

U.S. Air Force officials stated that the X-37B program has the potential of making space experiments much more affordable. This would allow future experiment designers to focus their resources and funds on technology and innovation rather than on what they currently are forced to expend them on – basic services, redundancy and ground operations.

X-37B launch delayed due to weather

Poor weather dealyed the launch of the Air Force's Orbital Test Vehicle. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL – Weather delayed the launch of the second of the United States Air Force’s Orbital Test Vehicles (OTV). The X-37B, as it is more commonly known, sate encapsulated within its fairing on top of the Atlas V 501 launch vehicle at Cape Canaveral Air Force Station (CCAFS).

It appeared that the launch might occur at the first launch window, which opened at 3:50 p.m. EDT. However high-level ground winds forced a delay. The second launch window was for 5:27 p.m. EDT, but by this time the winds had increased, Cumulous Clouds had moved into the area – bringing heavy rains in with them, forcing a scrub for the day. The plans are now for a 24-hour recycle of the launch, however tomorrow does not look much better with similar weather threatening the launch.

The first OTV, USA-212 lifted off from the exact same launch pad on 22 April 2010 and returned to Earth on Dec. 3, 2010. The return to earth tested out the space planes heat shield as well as the vehicle’s hypersonic aerodynamic aspects. The space plane is small enough to be carried within the U.S. space shuttle’s payload bay, it landed at Vandenberg Air Force Base in California.

Looming clouds, high winds and eventually rain stopped the launch of the second of the Air Force's OTVs. Photo Credit: Jason Rhian

US Military X-37B rolls out to Atlas Launch Pad poised for March 4 launch – Photo Album

The secret X-37B mini space shuttle from the Air Force is encapsulated in a bisected 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida. This up close view of the nose cone holding the X 37-B includes the umbilical line attachments. Credit: Ken Kremer

[/caption]
The second X-37B Orbital Test Vehicle (OTV-2) built for the US Air Force was rolled out today (March 3) to the Atlas rocket launch pad at Space Launch Complex-41(SLC-41) at Cape Canaveral Air Force Station, Florida.

The experimental OTV-2 is poised to blast off on Friday, March 4 on an Atlas V rocket in a launch window that extends from 3:39 pm to 5:39 p.m. EST. The X-37B is encapsulated in a 5 meter fairing.

The secret cargo and experiments loaded aboard are shrouded behind a veil of military security.

UPDATE: Due to weather concerns, the launch has been postponed until Saturday, March 5. Weather is predicted to improve to 40% favorable for launch.

Air Force technicians are completing final preparations for the late afternoon blast off of the bronze colored rocket topped by the extra long payload fairing to accommodate the OTV-2.

The rocket is sitting atop the mobile launch platform and was pushed about 1800 feet from the 31 story Vertical Integration Facility (VIF) to launch pad 41 by twin diesel powered trackmobiles. See my photo album of today’s X-37B rollout and close up visit to the Atlas rocket at SLC-41.

“No major changes were required from the OTV-1 flight based on post-flight assessments, but we did make a few minor modifications based on lessons learned from the first flight,” Tracy Bunko, Maj, USAF of the Air Force Press Desk told me in an interview.

“We’re pleased with what we’ve seen so far. Technology assessments are ongoing in areas including re-entry guidance, navigation, and control, thermal protection systems, and flight actuation systems.”

“We want to potentially test the landing capabilities in stronger wind conditions,” Bunko explained.

Read the mission preview and launch report by Jason Rhian

X-37B at Space Launch Complex 41 slated for March 4, 2011 launch after rollout of Atlas V rocket
from Vertical Integration Facility (left) pad 41 (right) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer
Atlas V rocket with X-37B bolted atop at pad 41 at Cape Canaveral Air Force Station, Florida poised for March 4 launch. Credit: Ken Kremer
The X-37B is poised for launch on March 4, 2011 after rollout to pad 41 at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer
X-37B is encapsulated in a Swiss made five meter fairing.
Credit: Ken Kremer
The X-37B Orbital Test Vehicle (OTV) and Atlas V rocket bathed in xenon lights after March 3 rollout at Space Launch Complex-41 (SLC-41) at Cape Canaveral Air Force Station, Florida.
Launch scheduled for March 4. Credit: Ken Kremer
Photo taken from roof of CBS News building at KSC press site

Sequence of Photos showing rollout of Atlas V rocket, from right to left

March 3 rollout of X-37B Vertical Integration Facility (right) to Launch Pad 41 (left) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

March 3 rollout of X-37B Vertical Integration Facility (right) to Launch Pad 41 (left) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer
March 3 rollout of X-37B Vertical Integration Facility (right) to Launch Pad 41 (left) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Weather a concern for second OTV launch

The X-37B (OTV) sits safely cocooned inside its fairing at Cape Canaveral Air Force Station in Florida. Photo Credit: USAF

[/caption]
CAPE CANAVERAL – In preparation for the launch of the second of the U.S. Air Force’s Orbital Test Vehicles (OTV), the Air Force has released images of the OTV being encapsulated within the fairing that goes on top of the Atlas V AV-026 launch vehicle. Currently, the launch is scheduled to take place on Friday, March 4. The launch window is between 3:39 p.m. EDT and 5:39 p.m. EDT.

UPDATE: Due to weather concerns, the launch has been postponed until Saturday, March 5. Weather is predicted to improve to 40% favorable for launch.

The X-37B OTV is carefully sealed within its fairing. This then is hoisted to the top of the Atlas launch vehicle. Photo Credit: USAF

The tiny X-37B space plane is better known as the X-37B. The small spacecraft was designed to fit within the payload bay of the space shuttle. It currently is inside the Atlas’ 5-meter fairing. This is what is known as the X-37B Orbital Test Vehicle encapsulated assembly or EA. The EA being hoisted to the top of the rocket is one of the last major assembly endeavors before launch.

The X-37B, its nose pointed skyward is sealed inside its fairing. Photo Credit: USAF

The EA arrived at Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41) on Feb. 21. Currently weather conditions provide for a 70 percent chance of unfavorable conditions for launch. The primary causes for concern are gusty winds and Cumulus Clouds.

With the lights from a distant launch pad providing illumination the X-37B's EA trundles to its launch pad. Photo Credit: USAF

How Does the Shuttle Orbiter Get Attached to the External Tank and Solid Rocket Boosters?

Ever wondered how the space shuttle orbiter gets attached to the big external tank and the solid rocket boosters? This video shows the process — called “Lift and Mate” — where the shuttle Endeavour was put into a special harness, lifted high above the stacked ET and SRBs inside the Vehicle Assembly Building at Kennedy Space Center, and lowered into place. The orbiter is then bolted to the ET and SRBs. Endeavour’s Lift and Mate for its final flight took place on March 1, 2011. You can also see extremely high resolution, pan and zoom images of Endeavour lifted high in the VAB at the NASATech website. (High bandwidth warning! — but definitely worth it.) See the NASATech main page for the full variety of images.

Endeavour is scheduled to rollout to Launch Pad 39A next week for STS-134, with launch set for April 19. Even though this could be the final flight of the shuttle program (STS-135 is still not a certainty) many people are looking forward to this flight, as it will bring the Alpha Magnetic Spectrometer to the ISS. AMS is a particle physics detector designed to search for various types of unusual matter by measuring cosmic rays.

NASAs Navy tows Discoverys Last Rocket Boosters into Port Canaveral – Photo Album

Freedom Star tows Solid Rocket Booster (SRB) from Discovery’s last llight. NASA’s Solid Rocket Booster Retrieval Ship - Freedom Star - tows one of Discovery’s booster from the Atlantic Ocean into the entrance of Port Canaveral on its journey to Hangar AF at Cape Canaveral Air Force Station in Florida. Seagulls help guide NASA’s Navy into port. Credit: Ken Kremer

[/caption]

As the Space Shuttle program quickly winds down, one of the lesser known facts is that the public can get a free bird’s eye view of the ocean retrieval of the mighty Solid Rocket Boosters which power the orbiters majestic climb to space. All you have to do is stand along the canal of Port Canaveral, Florida as the rockets float by on their journey to a processing hanger at Cape Canaveral Air Force Station.

And if you own a boat you can sail right along side for the thrilling ride as the boosters are towed by ship from the Atlantic Ocean into the entrance of Port Canaveral. It’s the same route traveled by the humongous cruise ships setting sail for distant ports on Earth.

NASA’s Navy has recovered the twin Solid Rocket Boosters (SRB’s) used during space shuttle Discovery’s final flight. See my photo album above and below.

The two SRB’s and associated flight hardware are retrieved after they splashdown in the Atlantic Ocean following every shuttle launch by the NASA owed ships named Freedom Star and Liberty Star.

Discovery SRB in tow in the Atlantic Ocean by Freedom Star Retrieval Ship. Credit: Ken Kremer

Freedom Star and Liberty Star are stationed about 10 miles from the impact area at the time of splashdown. The ships then sail to the SRB splashdown point and divers are deployed to attach tow lines, haul in the parachutes used to slow the descent and install dewatering equipment.

Each vessel tows one SRB all the way from the Atlantic Ocean into Port Canaveral and then through the locks to Cape Canaveral Air Force Station. After the spent segments are decontaminated and cleaned, they will be transported to Utah, where they will be refurbished and stored, if needed.

Discovery SRB in tow past a flock of birds at Atlantic Ocean entrance to Port Canaveral. Credit: Ken Kremer

The unique ships were specifically designed and constructed to recover the SRB’s. The SRB’s separate from the orbiter about two minutes after liftoff. They impact in the Atlantic about seven minutes after liftoff and some 100 nautical miles downrange from the launch pad off the Florida coastline.

The STS-133 mission was launched from pad 39A at NASA’s Kennedy Space Center on Feb. 24 on Discovery’s 39th and last space flight. Landing is slated for March 8 at 11:36 a.m. at KSC.

The all veteran six person crew has successfully attached the Leonardo storage module and completed two space walks. Leonardo is packed with the R2 humanoid robot and tons of science gear, spare parts, food and water.

Photo album: Recovery and Retrieval of Solid Rocket Boosters from Space Shuttle Discovery’s final flight to space on STS-133 mission.

Close up of forward segments of SRB in tow minus the nose cap which separates at 2.5 nautical miles altitude and releases a parachute. Lighthouse in the background. Credit: Ken Kremer
Freedom Star - NASA’s Solid Rocket Booster Retrieval Ship. Credit: Ken Kremer
Pleasure boats navigate for birds eye view alongside water retrieval of the shuttles Solid Rocket Boosters in Port Canaveral. Credit: Ken Kremer
Rear view to SRB Aft Skirt from the Jetty Park Pier at Port Canaveral. Credit: Ken Kremer
Onlookers fish from rocky outcrops as SRB’s - which generate 3 million pounds of liftoff thrust - float by on a gorgeous afternoon in sunny Florida. What an incredible sight ! Credit: Ken Kremer
Liberty Star with SRB alongside in hip tow position in Port Canaveral. Frustrum of a forward aft skirt assembly is visible on deck of Liberty Star at left. Credit: Ken Kremer
Close up of Frustrum of a forward aft skirt SRB assembly on deck of Liberty Star in Port Canaveral. Credit: Ken Kremer
NASA’s Freedom Star and Liberty Star Solid Rocket Booster Retrieval Ships
docked in Port Canaveral. Both of NASA’s SRB retrieval ships are pictured here with boosters alongside. Credit: Ken Kremer
Ken Kremer at tow back of Discovery’s SRB’s by NASA’s Retrieval Ship Freedom Star. Credit: Urijan Poerink