Get a dose of reality via Sony’s PlayStation gaming system. The final liftoff of space shuttle Discovery on February 24, 2011 at 4:50 pm EST will be the first live streaming event to be offered by PlayStationHome, the social gaming networking service, and provide a unique “social viewing” environment.
“We’re excited about this new way for people to experience the exhilaration of human spaceflight as part of a larger community,” said David Weaver, NASA associate administrator for the Office of Communications. “In addition to the other two shuttle launches planned for April and June, NASA looks forward to sharing more of our endeavors with PlayStation users.”
The event is offered by Sunset Yacht, a premium personal space from LOOT, Sony DADC’s interactive entertainment development team. Users will be able to chat via Bluetooth headsets with others watching the launch – all from inside the PlayStation Home social gaming environment.
In addition to live streamed events, the Sunset Yacht’s NASA TV channel will offer hundreds of videos offering spectacular views of the universe from past and current NASA missions. A gallery of podcasts showcasing several missions including the Mars Science Laboratory and Voyager spacecraft also will be available from the agency’s Jet Propulsion Laboratory in Pasadena.
“The launch of the space shuttle Discovery provides a wonderful opportunity to introduce people to the fun of social viewing,” said LOOT Managing Director David Sterling. “Users can share this experience with their friends, regardless of where those friends happen to be in the world.”
As Stardust-Next was racing past Comet Tempel at 9.8 km/sec, or 24,000 MPH, it encountered a hail of bullet like particles akin to a warplane meeting the fury of armed resistance fighters which potentially could have utterly destroyed the probe.
NASA has released a cool sound track of the sounds of thousands of cometary dust particles pelting Stardust-NExT. The audio was recorded by an instrument aboard the spacecraft called the Dust Flux Monitor which measures sound waves and electrical pulses from dust impacts.
Telemetry downlinked after the Feb. 14 flyby indicates the spacecraft flew through waves of disintegrating cometary particles.
“The data indicate Stardust went through something similar to a B-17 bomber flying through flak in World War II,” says Don Brownlee, Stardust-NExT co-investigator from the University of Washington in Seattle.
I contacted co-investigator Don Brownlee for further insight into the sounds and sights of the Tempel 1 flyby.
“The 12 biggest particles penetrated the centimeter thick front honeycomb plate of the whipple meteoroid shield and were detected with the Dust Flux Monitor Instrument,“ Brownlee told me. “The instrument had two type of sensors made in a collaboration between the University of Chicago and the University of Kent in the UK.
[/caption]
The shielding was installed to protect Stardust from the hail of cometary particles during its prior flyby at Comet Wild 2 in 2004. Brownlee was the Principal Investigator for Stardust during its original mission at Wild 2.
I asked Brownlee if the shields were essential to the spacecraft surviving the Tempel 1 flyby ?
“Yes,’ he replied.
“A total of approximately 5,000 particle impacts were detected,” Brownlee said. This was over a period of about 11 minutes during closest approach. The movie is in real time and is a visual representation of the sounds. It covers just a portion of the flyby.
“Like at Wild 2, the particles came out in bursts and clumps. The Tempel 1 flyby, the Wild 2 flyby and the recent imaging of Comet Hartley confirm that fragmenting. Dust and ice clods are commonly released into space by comets.”
“The biggest at Wild 2 was about 0.5 cm and this time at Tempel 1 they were probably a bit bigger. The penetrating impacts at Tempel 1 were about twice what they were at Wild 2 ….. Also about twice as fast!”
“The data indicate Stardust went through something similar to a B-17 bomber flying through flak in World War II,” said Don Brownlee, Stardust-NExT co-investigator from the University of Washington in Seattle. “Instead of having a little stream of uniform particles coming out, they apparently came out in chunks and crumbled.”
To my eye, I was surprised that the flyby images seemed to surpass those at Wild 2. Brownlee agreed.
“I was surprised,” said Brownlee. “The team did a terrific job and the images are better than before. Tempel is a little closer to the sun, the flyby was a little closer, the pictures were taken at a much higher rate and the imaging team put in a great effort to plan the exposures and to clean up the camera before the encounter. The mirror was scanning at it’s maximum rate!”
Listen to the Stardust-NExT post flyby briefing
News conference held Feb. 15 following the flyby of comet Tempel 1 by the Stardust-NExT spacecraft on Valentine’s Day, Feb. 14. The spacecraft’s closest approach was a distance of 112 miles. Participants are: Ed Weiler, NASA’s associate administrator, Science Mission Directorate, Washington; Joe Veverka, Stardust-NExT principal investigator, Cornell University; Tim Larson, Stardust-NExT project manager, NASA’s Jet Propulsion Laboratory, Pasadena, Calif.; Don Brownlee, Stardust-NExT co-investigator, University of Washington, Seattle; and Pete Schultz, Stardust-NExT co-investigator, Brown University.
On Thursday, the European ATV Johannes Kepler will dock with the International Space Station. Rendezvous and docking in space has been taking place for 45 years, and happened first when Gemini 8 hooked up with the Agena Target Vehicle in 1966. Most of us take for granted how two spacecraft rendezvous while in orbit, but it is a complicated procedure involving orbital mechanics, coordination between the two spacecraft, and strict timelines. Here’s a 90-second whirlwind tour of the history of docking in space – past, present and future from ESA. If you want to read more about the history rendezvous and docking, ESA’s ATV blog has a detailed look. Below is a video that describes how the ATV docks at the ISS.
As preparations continue for the launch of space shuttle Discovery on STS-133, here’s a look back at the history of the oldest orbiter still in service. When this flight is over, 180 people will have flown on Discovery and the orbiter will have traveled over 240 million kilometers (150 million miles).
CAPE CANAVERAL – Arriving in their trademark T-38 Talon jets, the crew that will fly the last mission of the space shuttle Discovery arrived at NASA’s Kennedy Space Center in Florida. The astronauts landed at the Shuttle Landing Facility (SLF) at 3:45 p.m. EDT and took a few moments to speak to members of the media and pose for pictures before heading off to prepare for their 11-day mission.
Discovery is currently slated to begin its mission to the International Space Station (ISS) with liftoff taking place at 4:50 p.m. EDT Thursday, Feb. 24. The STS-133 mission is Discovery’s final scheduled flight. However, STS-132, which took place this past May, was shuttle Atlantis’ final scheduled flight – now that orbiter is scheduled to close out the shuttle program when it completes mission STS-135, which is scheduled to take place late this summer.
The crew will deliver the Leonardo Permanent Multipurpose Module (PMM) to the space station. The PMM was modified from the Multi-Purpose Logistics Module (MPLM) Leonardo – which was essentially a cargo container. Now, Leonardo will be a permanent fixture on the orbiting outpost providing additional storage for the station’s crew.
On the way to orbit, the PMM will carry, among other things, the first human-like robot ever flown in space, Robonaut 2 (R2). R2 will stay onboard the station and will be used to test the viability of similar robots in assisting astronauts on future long-duration missions. One of the things that the station can always use – is more spare parts. STS-133 will deliver various parts and the Express Logistics Carrier 4, a platform that holds large equipment.
The crew consists of Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists Alvin Drew, Steve Bowen, Michael Barratt and Nicole Stott. Bowen is a last minute addition to the crew. He replaces Tim Kopra who broke his hip in a bicycle accident.
Following a Flight Readiness Review today, NASA and Space Shuttle Program managers announced that space shuttle Discovery is ready to launch next week Thursday to finally send the STS-133 mission to the International Space Station. Launch is now scheduled for Feb. 24, at 4:50 p.m. EST. “We had a really thorough review today,” said William Gerstenmaier, NASA’s associate administrator for Space Operations. “Things are looking pretty good.”
The STS-133 crew will bring the Permanent Multipurpose Module (PMM) to the station. The PMM was converted from the multi-purpose logistics module Leonardo and will provide additional storage for the station crew. Later, experiments may be conducted in the module, in fields like fluid physics, materials science, biology and biotechnology.
The first human-like robot will also make the trip to the ISS. Robonaut 2 will become a permanent resident of the station. In addition, Discovery will bring critical spare parts and the Express Logistics Carrier 4, an external platform that holds large equipment.
Managers, engineers and contractors went over the detailed analysis and testing performed on the “stringer” or support beams of Discovery’s external fuel tank during the session and reviewed the repairs and modifications made.
Mike Moses, chairman of the Mission Management Team, described the fix as a “a big metal band-aid” to give the metal beams extra support.
The processes of the repairs and testing involved people throughout the agency and its centers, and the managers at today’s press conference lauded the teams.
“I can’t say enough about the work the teams have done,” Gerstenmaier said. “They’ve done just an outstanding job to get us to where we are now ready to launch.”
The crew also underwent a change recently when astronaut Steve Bowen was assigned to take the place of Tim Kopra who was injured in a bicycle accident.
“Overall the crew was in really good shape and felt really comfortable with this change,” said Moses.
The managers at the FRR approved the February 24 launch date even thought the European resupply ship – the ATV Johannes Kepler — is scheduled to dock at the space station just six hours before Discovery’s launch. Moses said they are confident the ATV will dock, but will be ready to modify the shuttle launch should there be any problems with the ATV.
“If they run into a problem in docking we will discuss the issue in real time,” Moses said at the press conference. “We still might launch that day, we might not, depending on the situation. But the space station program would really like to have the ATV docked during this mission.”
Discovery now sits on Launch Pad 39A at NASA’s Kennedy Space Center in Florida, ready for launch. The countdown will begin Monday at 3 p.m. “We’re in outstanding shape out at the pad,” said Mike Leinbach, shuttle launch director.
If all goes well and space shuttle Discovery arrives at the International Space Station the end of February, there will be a distinctive configuration: all the international partners will have a vehicle docked to the completed ISS. With the shuttle program about to retire, this configuration will be unique enough – this is the only time it will happen during the shuttle program — that NASA is considering putting three cosmonauts/astronauts in one of the Soyuz capsules that are docked to the station, have them undock and fly around to take pictures of the entire complex.
The Soyuz could photograph the station, showing the ISS in its final, completed configuration, with the shuttle attached, along with the Russian Progress and Soyuz, the European ATV and the Japanese HTV-1.
NASA managers, engineers and contractors are meeting today, Feb. 18 in a Flight Readiness Review to discuss the photo op. Of course, the Russian space agency would have to go along with the idea, as the task would not be insignificant.
Anytime a spacecraft undocks, there is the possibility of a problem or malfunction, and with people involved, the problems multiply fairly quickly. If for some reason the crew could not re-dock, they would have to deorbit and return to Earth, and the ISS crew would all of a sudden be reduced from six to three. Of course, the shuttle crew would be there, but their stay would be limited.
If the plans gets the OK, the crew doing the photo-op mission would ber Alexander Kaleri, Oleg Skripochka and Expedition 26 commander Scott Kelly.
But you have to admit, the pictures and videos would be spectacular, and as things stand now, this would be the one and only chance to get a picture like this, a sort of family photo of the station and all the vehicles that support it.
The feat is not without precedence, however. The Russians took a similar photo on July 4, 1995, when the shuttle Atlantis was docked to the Mir space station, the first time a shuttle visited the Russian space station. Just before Atlantis undocked to return home, cosmonauts Anatoly Solovyev and Nikolai Budarin undocked in a Soyuz spacecraft and photographed the shuttle’s departure from a distance of about 300 feet.
There was a computer problem during the maneuver, however, and the cosmonauts had to dock manually and everything turned out just fine. And the picture was great, too.
The NASA Twitter feed reporting from today’s FRR meeting said the decision to do the photo op will probably not be made until during the STS-133 mission. NASA management is also deciding today when the Discovery mission will actually launch – right now it is scheduled for February 24, 2011 but they are weighing waiting until February 25, as the ATV Johnnes Kepler will arrive at the ISS on the 24th about 6 hours before the shuttle is scheduled to launch. If there were any problems with the ATV, the shuttle might have to stand down.
Here’s a chance to practice your French countdown skills: watch today’s successful launch of the European Space Agency’s Automated Transfer Vehicle “Johannes” on a Arianespace Ariane 5 rocket blasted off on Feb. 16, 2011, carrying the “Johannes Kepler” cargo-carrying vehicle to the International Space Station. It will take eight days for the ATV to arrive and dock to the aft end of the International Space Station’s Zvezda Service Module. This is the second of ESA’s resupply vehicles, and is loaded with about seven tons of supplies and propellant for use by the six crew members on the ISS.
After yesterday’s scrub of Johannes Kepler, NASA had said that a launch of the ATV today (Wednesday) might delay the launch of space shuttle Discovery for STS-133. However, today, NASA said that might not be the case. Officials will decide Discovery’s launch date at the Flight Readiness Review on February 18. Currently, STS-133’s launch is scheduled for Feb. 24.
On April 12, 2011, everyone with the least bit of interest in space should be rockin’ the house. It’s the 50th anniversary of Yuri Gagarin’s flight, the first human to launch to space. As of this writing there are 109 Yuri’s Night events in 27 countries on 5 continents on 2 worlds (#2 is in Second Life.) Take a look at the Yuri’s Night website to see if there is an event near you. If not, start your own!
There is also a Yuri’s Night 2011 Video Contest, which is an open source competition to engage the public to create tribute videos for this 50th Anniversary of Human Spaceflight. The best videos will be shared at events around the world and the winners will receive $500. The deadline for submission is April 1, 2011. There will be online voting for the winner.
Tempel 1 is the first comet to receive a second visit by probes from Earth.
Comets have continuously smashed into Earth over the eons and delivered vast quantities of key ingredients – such as water and organic molecules – that may have sparked the formation of life on the early Earth.
NASA approved the use of the already orbiting Stardust-NExT spacecraft to follow up on the science discoveries by Deep Impact as the best and most economical way to try and locate the crater blast site, image new terrain and look for changes on the comets surface since the 2005 mission as the comet also completed another orbit around our Sun and eroded due to solar heating.
The human made crater is about 150 meters wide and was formed by a 375 kilogram (800 pound) projectile propelled into the speeding path of Comet Tempel 1 by the Deep Impact mothership in 2005.
Stardust-NExT took 72 high resolution science images of the comet during the Valentine’s Day encounter flyby on Feb, 14 at 11:40 p.m. EST (8:40 p.m. PST). The probe absolutely had to be precisely navigated to exactly hit the aim point for sequencing the images to match the right moment in the erratic rotation of the volatile comet.
The results of the Stardust-NExT mission were announced at a post encounter new briefing after most of the images and science data had streamed back to Earth. The science team and NASA said that all the mission objectives were accomplished.
“If you ask me was this mission 100 percent successful in terms of the science, I’d have to say no. It was 1000 percent successful!” said Stardust-NExT principal investigator Joe Veverka of Cornell University, Ithaca, N.Y., at the news briefing.
“We found the Deep Impact crater. We see erosion in comparison to 2005. So we do see changes. Erosion on the scale of 20 to 30 meters of material has occurred in the five or six years since we took the first picture. We are seeing a change, but we have to spend time quantifying the changes and understanding what they mean.”
“We saw a lot of new territory. It’s amazing with lots of layers. There is lots of surface sublimation. We had to arrive at precisely the right time in order to see new and old territory.”
“We had monitored the comets rotation for several years. And we got the longitude almost perfect within 1 or 2 degrees,” Veverka said.
It took a few years of careful study to deduce the comets complex rotational patterns which change as the body orbits in a wide orbital path between Mars and Jupiter and is heated by the sun.
Peter Schultz, a science team co-investigator agreed and showed the comparison images.
“We saw the crater,” said Schultz, of University. “It’s subdued; it’s about 150 meters across and has a small central mound in the center. It looks as if from the impact, the stuff went up and came back down. So we did get it, there’s no doubt. I think one of the bottom-line messages is that this surface of the comet where we hit is very weak. It’s fragile. So the crater partly healed itself.”
“It was about the size we expected. But more subdued.”
The probes mission is almost complete since it has very little fuel left. The remaining science data from the flyby is being sent back and some outbound data is being collected.
“This spacecraft has logged over 3.5 billion miles since launch, and while its last close encounter is complete, its mission of discovery is not,” said Tim Larson, Stardust-NExT project manager at JPL. “We’ll continue imaging the comet as long as the science team can gain useful information, and then Stardust will get its well-deserved rest.”
Stardust-NExT is a repurposed spacecraft that has journeyed nearly 6 billion kilometers since it was launched in 1999.
Initially christened as Stardust, the spaceships original task was to fly by Comet Wild 2 in 2004. It also collected priceless cometary dust particles from the coma which was safely parachuted back to Earth inside a return canister in 2006. High powered science analysis of the precious comet dust will help researchers discern the origin and evolution of our solar system.
This was humanities first revisit to a comet and at a bargain basement price by using an old spacecraft already in space.
“The cost was just $29 Million dollars. A new Discovery class mission costs $300 to 500 Million. So that’s maybe 6% the cost of developing and launching a new mission,” said Ed Weiler, the associate administrator for NASA’s Science Mission Directorate at NASA HQ in Washington, DC.
Read more about the Stardust-NExT Flyby and mission in my earlier stories here, here, here and here