The European Space Agency’s Automated Transfer Vehicle-2 (ATV-2) “Johannes Kepler” launch that was scheduled for Tuesday Feb. 15 was scrubbed due to a technical issue on the launch pad, and the slip could affect which day space shuttle Discovery launches for STS-133. Technicians at Launch Complex 3 in Kourou, French Guiana are looking at the problem, but preliminary details indicate some erroneous data on the status of the tank levels for fuel on the Ariane 5 rocket. They will go over the data carefully and if everything looks good they try again on Wednesday, Feb. 16.
This launch slip could change the launch date for STS-133, which is now scheduled for Feb. 24. If the ATV does launch on Wednesday (or on Thursday or Friday of this week), the launch of STS-133 will move to Feb. 25. But if the ATV launch slips beyond Friday means that the STS-133 launch stays on Feb. 24.
You can watch the launch attempt on Wednesday on NASA TV, and coverage will begin at 4:15 EST (21:15 GMT), with launch time at 4:50 pm EST (21:50 GMT). This is second launch of an ATV, and the 200th Ariane 5 launch.
NASA’s Stardust-NExT comet chaser successfully zoomed by Comet Temple 1 exactly as planned a short while ago at 11:37 p.m. EST on Feb. 14.
The cosmic Valentine’s Day encounter between the icy comet and the aging probe went off without a hitch. Stardust snapped 72 science images as it raced by at over 10 km/sec or 24,000 MPH and they are all centered in the cameras field of view. The probe came within 181 km (112 miles) of the nucleus of the volatile comet.
The images are being transmitted back now and it will take a several hours until the highest resolution images are available for the science team and the public to see. The first few images from a distance of over a thousand miles can be seen here
Tempel 1 is the first comet to be visited twice by spaceships from Earth. The primary goal was to find out how much the comet has changed in the five years since she was last visited by NASA’s Deep Impact mission in 2005, says Joe Ververka of Cornell University, who is the principal investigator of the Stardust-NExT mission. Deep Impact delivered a 375 kg projectile which blasted the comet and created an impact crater and an enormous cloud of dust so that scientists could study the composition and interior of the comet.
“We are going to be seeing the comet just after its closest passage to the sun. We know the comet is changing because the ice melts. We hope to see old and new territory and the crater and complete the Deep Impact experiment.”
Stardust-NExT is a repurposed spacecraft. Initially christened as Stardust, the spaceships original task was to fly by Comet Wild 2 in 2004. It also collected priceless cometary dust particles from the coma which were safely parachuted back to Earth inside a return canister in 2006. High powered science analysis of the precious comet dust will help researchers discern the origin and evolution of our solar system.
Stardust was hurriedly snapping high resolution pictures every 6 seconds and collecting data on the dust environment during the period of closest approach which lasted just about 8 minutes. The anticipation was building after 12 years of hard work and a journey of some 6 Billion kilometers (3.5 Billion miles)
“The Stardust spacecraft did a fantastic job,” says Tim Larson, the Stardust-NExT mission project manager from the Jet Propulsion Laboratory (JPL), Pasadena, Calif. “Stardust has already flown past a asteroid and a comet and returned comet particles to Earth”
“Because of the flyby geometry the antenna was pointed away from earth during the encounter. Therefore all the science images and data was stored in computer memory on board until the spacecraft was rotated to point towards Earth about an hour after the flyby.”
Each image takes about 15 minutes to be transmitted back to Earth by the High Gain Antenna at a data rate of 15,800 bits per second and across about 300 million miles of space.
NASA had bracketed five special images from the closest range as the first ones to be sent back. Instead, the more distant images were sent first. It will take about 10 hours to receive all the images.
So everyone had to wait a few hours longer to see the fruit of their long labor. Most of the team from NASA, JPL and Lockheed Martin has been working on the mission for a dozen years since its inception.
“We had a great spacecraft and a great team,” says Ververka. “Apparently, everything worked perfectly. The hardest thing now is we have to wait a couple of hours before we see all the goodies stored on board.”
The entire flyby was carried out autonomously using a preprogrammed sequence of commands. Due to the vast distance from Earth there was no possibility for mission controllers to intervene in real time.
Confirmation of a successful fly by and science imaging was not received until about 20 minutes after the actual event at about 11:58 p.m. EST. The dust flux monitor also registered increased activity just as occurred during the earlier Stardust flyby of Comet Wild 2 in 2004.
The Stardust-NExT science briefing on NASA TV will be delayed a few hours, until perhaps about 4 p.m. EST
Check back here later at Universe Today, on Tuesday, Feb. 15 for continuing coverage of the Valentine’s Day encounter of Stardust-NExT with the icy, unpredictable and fascinating Comet Tempel 1
And soon the whole world can watch the up close meet up of the hot Stardust probe and the volatile, icy comet. The historic space tryst is less than a day away!
The Stardust-NExT spacecraft successfully hot fired its thrusters for the final course correction maneuver (TCM-33) on Feb. 12, setting up the fleeting celestial encounter with Comet Tempel 1 on Valentine’s Day, Feb. 14, Monday, at 11:37 p.m. EST. The space science probe will fly by the speeding comet at a distance of approximately 200 kilometers (124 miles) and at a speed of 10 km/sec.
The encounter phase has begun now (Feb. 13) at 24 hours prior to closest approach (Feb. 14) and concludes 24 hours after closest approach.
“The final TCM burn on Feb. 12 went well,” JPL spokesman DC Agle told me today (Feb.13)
It’s been a long wait and a far flung journey. Stardust has cruised some 6 Billion kilometers through our solar system – looping several times around the sun over a dozen years and is now nearly bereft of fuel.
For three and a half long years, the anticipation has been building since NASA approved the repurposing of the Stardust spacecraft in 2007 and fired the thrusters to alter the probes trajectory to Comet Temple 1 for this bonus extended mission.
But until the photos are transmitted across 300 million kilometers of space back to Earth, we won’t know which face of the comets surface was turned towards the camera as the curtain pulls back for the revealing glimpse.
Everything hinges on how accurately the mission team aims the reliable probe and the finicky rotation of the changeable comet.
The irregularly shaped nucleus of Tempel 1 measures barely 5 to 8 km in diameter.
The Feb. 14 encounter marks the first time in history that a comet has been visited twice by spaceships from Earth. The revisit provides the first opportunity for up-close observations of a comet both before and after a single orbital pass around the sun.
In July 2005, NASA’s Deep Impact probe delivered a 375 kg projectile that penetrated at high speed directly into the comets nucleus. The blast created an impact crater and ejected an enormous cloud of debris that was studied by the Deep Impact spacecraft as well as an armada of orbiting and ground based telescopes.
Somewhat unexpectedly, the new crater was totally obscured from the cameras view by light reflecting off the dust cloud.
“The primary goal is to find out how much the comet’s surface has changed between two close passages to the sun since it was last visited in 2005,” says Joe Ververka of Cornell University, who is the principal investigator of the Stardust-NExT mission.
This time around, researchers hope to determine the size of the crater. Numerous bets hinge on that determination.
It’s also quite possible that the crater itself has significantly changed in the intervening five and one half years as the Jupiter-class comet orbits between Mars and Jupiter.
“Comets rarely behave,” says Tim Larson, the Stardust-NExT mission project manager from the Jet Propulsion Laboratory (JPL), Pasadena, Calif.
“Temple 1 exhibits a complex rotation. The rotation period is about 41 hours. But the trajectory changes due to the comet jets and activity.”
“Ideally we would like to obtain photos of old and new territory and the crater from the Deep Impact encounter in 2005,” Larson explained.
“Tempel 1 is the most observed comet in history using telescopes worldwide as well as the Hubble and Spitzer Space Telescopes.”
Engineers are using all this data to fine tune the aim of the craft and get a handle on which sides of the comet will be imaged. But either way the team will be elated with the science results regardless of whether the images reveal previously seen or new terrain.
Today, Feb. 13, mission controllers at JPL are uplinking the final flyby sequences and parameters for Monday’s (Feb. 14) historic encounter.
Stardust-NExT will take 72 high resolution images of Comet Tempel 1 during the close approach. The team expects the nucleus to be resolved in several of the closest images. These will be stored in an onboard computer and relayed back to Earth starting about three hours later.
“All data from the flyby (including the images and science data obtained by the spacecraft’s two onboard dust experiments) are expected to take about 10 hours to reach the ground,” according to a NASA statement.
Stardust-NExT is a repurposed spacecraft and this will be the last hurrah for the aging probe. Stardust was originally launched way back in 1999 and accomplished its original goal of flying through a dust cloud surrounding the nucleus of Comet Wild 2 on Jan. 2, 2004. During the flyby, the probe also collected comet particles which were successfully returned to Earth aboard a sample return capsule which landed in the Utah desert in January 2006.
Stardust continued its solitary voyage through the void of the space. Until now !
Watch the Stardust-NExT Romantic Rendezvous: Live on NASA TV
NASA has scheduled live mission commentary of the flyby and a post encounter news briefing on Feb. 14 and Feb. 15. These will be televised on NASA TV as follows:
February 14, Monday
11:30 p.m. – 1 a.m. (Feb. 15) – Live Stardust-NExT Mission Commentary (including coverage of closest approach to Comet Tempel 1 and re-establishment of contact with the spacecraft following the encounter) – JPL
February 15, Tuesday
3 – 4:30 a.m. Live Stardust-NExT Mission Commentary (resumes with the arrival of the first close-approach images of Comet Tempel 1) – JPL
Five facts you should know about NASA’s Stardust-NExT spacecraft as it prepares for a Valentine’s “date” with comet Tempel 1. From a NASA Press Release
1. “The Way You Look Tonight” – The spacecraft is on a course to fly by comet Tempel 1 on Feb. 14 at about 8:37 p.m. PST (11:37 p.m. EST) — Valentine’s Day. Time of closest approach to Tempel 1 is significant because of the comet’s rotation. We won’t know until images are returned which face the comet has shown to the camera.
2. “It’s All Coming Back To Me Now” – In 2004, Stardust became the first mission to collect particles directly from a comet, Wild 2, as well as samples of interstellar dust. The samples were returned in 2006 via a capsule that detached from the spacecraft and parachuted to the ground at a targeted area in Utah. Mission controllers then placed the still-viable Stardust spacecraft on a flight path that could reuse the flight system, if a target of opportunity presented itself. Tempel 1 became that target of opportunity.
3. “The First Time Ever I Saw Your Face” – The Stardust-NExT mission will allow scientists for the first time to look for changes on a comet’s surface that occurred after one orbit around the sun. Tempel 1 was observed in 2005 by NASA’s Deep Impact mission, which put an impactor on a collision course with the comet. Stardust-NExT might get a glimpse of the crater left behind, but if not, the comet would provide scientists with previously unseen areas for study. In addition, the Stardust-NExT encounter might reveal changes to Tempel 1 between Deep Impact and Stardust-Next, since the comet has completed an orbit around the sun.
4. “The Wind Beneath My Wings” – This Tempel 1 flyby will write the final chapter of the spacecraft’s success story. The aging spacecraft approached 12 years of space travel on Feb. 7, logging almost 6 billion kilometers (3.5 billion miles) since launch. The spacecraft is nearly out of fuel. The Tempel 1 flyby and return of images are expected to consume the remaining fuel.
5. “Love is Now the Stardust of Yesterday” – Although the spacecraft itself will no longer be active after the flyby, the data collected by the Stardust-NExT mission will provide comet scientists with years of data to study how comets formed and evolved.
Do you know the artists names who wrote and sing these celestially romantic tunes ?
NASA Stardust NExT Video: Date with a Comet – Tempel 1
The Orion crew cabin – know as the Ground Test Article or GTA – was shipped by truck and will arrive in Denver on Feb. 14 according to a Lockheed Martin spokesperson.
The next step at Denver is to install the heat shield and thermal protection backshell. The pathfinding vehicle will then be subjected to performance testing inside the acoustic and environmental testing chamber. The testing exercise ensures the vehicle can meet the challenges of ascent, on-orbit operations and safe landing.
“This is a significant milestone for the Orion project and puts us on the right path toward achieving the President’s objective of Orion’s first crewed mission by 2016,” said Cleon Lacefield, Lockheed Martin vice president and Orion program manager. “Orion’s upcoming performance tests will demonstrate how the spacecraft meets the challenges of deep-space mission environments such as ascent, launch abort, on-orbit operations, high-speed return trajectory, parachute deployment, and water landings in a variety of sea states.”
Engineers for Lockheed Martin successfully finished the initial construction and testing phase for this prototype Orion crew cabin at New Orleans. The final pieces of the Orion GTA were welded together in late May 2010 using a state of the art friction stir welding process. See photos below from my inspection tour of the newly welded Orion GTA.
The spacecraft underwent proof pressure testing this past fall. Several mass and volume simulators including the parachutes were installed by the technical team to ready the capsule for shipment.
In Denver, the vehicle will be bombarded with acoustic energy and vibrations to simulate flight like situations that correlate the structural environment inside and outside the vehicle. The tests will determine if the spacecraft was properly designed to survive the harsh rigors of spaceflight. Lessons learned will be incorporated into the tools and manufacturing processes that will eventually lead to a human rated production vehicle.
The GTA vehicle will then be transported to NASA’s Langley Research facility for drop tests to simulate, validate and certify a variety of water landing scenarios at the new Hydro Impact Basin. The Langley facility will be used to test and certify water landing for all human-rated spacecraft for NASA according to Lockheed.
NASA and Lockheed hope to launch the first unmanned Orion test flight in 2013 if the budget allows. Construction of the service module and other key components is in progress.
Orion has achieved other significant development milestones in the past year.
The emergency abort rocket was successfully tested on May 6, 2010 at the U.S. Army’s White Sands Missile Range near Las Cruces, N.M. The abort rocket is bolted atop the crew cabin and is designed to pull the capsule away from the launcher in a split second in an emergency and save astronauts lives.
“The Phase 1 Safety Review was completed in June 2010 and formally acknowledges that Orion’s design meets all of NASA’s critical safety requirements for a human-rated space flight vehicle for flights to low earth orbit (LEO), lunar and deep space missions,” according to Larry Price, Orion Deputy Program Manager at Lockheed Martin.
In the past year the Orion budget has been cut significantly by NASA due to lack of funding from the federal government and the outlook for future funding is uncertain. The new Congress is aiming to cut NASA’s research and development budget even further.
Lockheed Martin Space Systems Company is the prime contractor for Orion and designed and built the GTA as part of a multiyear contract awarded by NASA worth some $3.9 Billion US Dollars. The goal is to produce a new, US-built manned capsule capable of launching American astronauts into space in the post shuttle era.
As soon as the shuttles are retired – for lack of money – the United States will have no capability to loft American astronauts to the International Space Station (ISS) for at least several years. NASA – and all other ISS partners – will be wholly dependent on the Russian Soyuz capsules for launching astronauts to the ISS until either the Orion or commercially developed space taxis such as the Dragon spacecraft from SpaceX are ready for flight. The first operational unmanned Dragon was test flown in Dec 2010.
The Obama Administration sought to cancel Orion in Feb. 2010 as part of NASA’s Project Constellation Return to the Moon program, but then decided to continue Orion’s development after the cancellation proposal met strong bipartisan opposition in Congress.
Orion was to have been launched atop the Ares 1 rocket which has now been officially cancelled. NASA has started the design of a replacement for the Ares 1 which will most likely be a shuttle derived vehicle. Congress has mandated that the first test flight of the still undefined heavy lift rocket must take place by 2016.
Alternatively, Orion could be launched atop a Delta 4 Heavy booster after the rocket is man-rated.
Orion Crew Vehicle Construction Video
Watch this video to see how the first Orion spacecraft was constructed from pieces at NASA’s Michoud Assembly Facility in New Orleans. Credit: NASA
360 degree panorama of Orion GTA and Lockheed Martin team. Credit: nasatech.net
She is the youngest orbiter in NASA’s fleet – and she is being looked at to keep her country in space during a period when the U.S. will lack the capability to do so. Both Endeavour and her sister Atlantis are part of a proposal to keep the shuttles flying into 2017. United Space Alliance (USA) submitted the proposal in the latter part of 2010 as part of NASA’s Commercial Crew Development Round 2 ( CCDev2).
NASA asked aerospace firms for concepts and ideas to advance the cause of commercial crew transportation. NASA has offered to provide funding to companies to look into various manned space flight systems. USA submitted the Commercial Space Transportation System (CSTS) – an adapted version of the shuttle’s Space Transportation System title.
USA wanted to make sure that all options for crew transportation to orbit were on the table. That included keeping the orbiters Atlantis and Endeavour in service until 2017. If this plan succeeds, the shuttles could conduct missions as quickly as by the year 2013. They would have to wait for new external tanks to be produced. Two flights annually would cost approximately $1.5 billion.
Although some are calling the proposal a “long shot” the plan has some very tangible merits. It would limit the “gap” between the end of the end of the shuttle era and when commercial space-taxis could begin ferrying astronauts to the International Space Station (ISS). Keeping the shuttles in service would also help to significantly decrease dependence on the Russian Soyuz for access to the orbiting outpost.
“The CSTS could provide a near-term U.S. solution for crew transport until a new system is ready. It could provide a low-risk approach to bridging the gap in human spaceflight since the program has been flying since 1981 and is well understood,” USA spokesperson Tracy Yates told Universe Today. “It could also provide redundancy for human access to the ISS and therefore ensure the continued viability of an important national asset. The concept has the potential to offer a proven vehicle operated by a seasoned workforce at a market-driven price. It preserves down-mass capability, stabilizes a larger portion of the human spaceflight workforce for future NASA programs and keeps more crew transport dollars at home.”
For the Space Coast this proposal would also have the added benefit of staving off the crippling unemployment that has come as part of the one-two punch of the end of the shuttle era and the cancellation of the Constellation Program.
Although the CSTS has a specific date (2017) mentioned – it is capable of remaining in effect until the new commercial systems come online. This proposal would allow NASA to utilize a proven space vehicle and the overall idea of a “commercial shuttle program” is actually nothing new – the idea has been bandied about since the 90s.
However, while the cost is less than the $3 billion the shuttle program cost in 2010, it is basically the same amount that NASA is paying Space Exploration Technologies (SpaceX) for 12 missions to the space station. The NewSpace firm has stated that four manned flights would cost approximately $550 million.
“The main thing that this program has going against it is this, what does the shuttle offer that the HTV, ATV, Soyuz and soon commercial craft can’t offer,” said noted space historian David M. Harland. “In today’s economic climate it makes more sense to pay $50 million or so for a seat on Soyuz.”
[/caption]
CAPE CANAVERAL – From all appearances the first flight of the U.S. Air Force’s secretive X-37B space plane was a complete success. As such, the Air Force is planning to launch a second Orbital Test Vehicle (OTV) on March 4 from Cape Canaveral Air Force Station in Florida on top of a United Launch Alliance (ULA) Atlas rocket. The Air Force has not yet released a specific launch time.
The first flight of an OTV took place on Apr. 22, 2010 on top of an Atlas V 501 rocket and was designated USA-212. Built by Boeing, the spacecraft is unmanned and is in many ways similar to the space shuttle. It has a payload bay, maneuvering thrusters up front and to the rear of the spacecraft and a single, primary engine.
The OTV is different from the space shuttle in that it can operate on-orbit for up to 270 days. During the vehicle’s maiden flight it was spotted by a number of amateur astronomers who verified that the craft changed orbits a number of times before it landed safely at Vandenberg Air Force base on Dec. 3, 2010.
“We are tremendously excited to launch the second OTV space vehicle for the Air Force Rapid Capabilities Office. Our combined Air Force and ULA mission partner team has worked hard to prepare the Atlas V for this mission which is the first launch of the year for ULA from the east coast in 2011,” said ULA’s Director of Communications, Mike Rein. “I fully expect this launch to be a 100 percent successful mission – just like the first OTV launch in April 2010.”
Originally the OTV was to be deployed from the space shuttle’s payload bay, after the Columbia accident however, it was decided to launch from an EELV instead. At first a Delta II was given the nod to launch the space plane – before the Atlas V was confirmed as the launch vehicle that would be used.
The U.S. Air Force has disclosed only minimal information regarding the first mission and has said little about the upcoming mission as well. The Air Force has stated that the length of the OTV’s mission’s will be determined by the completion rates of the experiments that are onboard. Mission control is based out of Colorado with the 3d Space Experimentation Squadron.
The X-37B is only the second reusable spacecraft that is capable of conducting an automated landing. The only other reusable craft that has demonstrated this capability was Russia’s Buran shuttle which returned safely to Earth on Nov. 15, 1988.
The X-37B was a program initially handled by NASA; however the program was eventually turned over to the U.S. Defense Advanced Research Projects Agency (DARPA) and the Pentagon. The OTV flew several times on Scaled Composites’ White Knight aircraft and was drop tested twice successfully in 2006.
An idea too good to die, or a case of recycle, reuse, reduce? Two rocket companies are joining forces to use part of the Ares-1 rocket and combine it with elements of the Ariane 5 launcher to create a new launch system called Liberty that they say will “close the US human spaceflight gap.” US company ATK (Alliant Techsystems) and the European firm Astrium announced their collaboration today on a 90-meter (300-ft) rocket that would fit under NASA’s Commercial Crew Development-2 (CCDev-2) procurement. The companies say the new rocket could be ready by 2013.
“This team represents the true sense of international partnership in that we looked across borders to find the best for our customers,” said Blake Larson, President of ATK Aerospace Systems Group in a press release. “Together we combine unique flight-proven systems and commercial experience that allows us to offer the market’s most capable launch vehicle along with flexibility to meet a wide variety of emerging needs. Liberty provides greater performance at less cost than any other comparable launch vehicle.”
The partners say Liberty would be much cheaper than the Ares I, because the unfinished upper stage of the Ares I would be replaced with the first stage of the Ariane 5, which has been launched successfully 41 consecutive times. The lower stage of the Liberty, a longer version of the shuttle booster built by ATK, would be almost the same as what was built for Ares-1.
Since both stages were designed for human-rating, the collaborators say this “would enable unmatched crew safety.” The team has planned an initial flight by the end of 2013, a second test flight in 2014, and operational capability in 2015.
Liberty would be able to deliver 20,000 kg (44,500 lbs) to the International Space Station’s orbit, which would give it a launch capability to carry any crew vehicle in development. This is less payload capability, however, than the 25-ton payload that the Ares-1 was advertised to deliver to the ISS.
With the announcement of the collaboration (and quick turn-around) the companies are hoping to be the recipient of some of the $200 million in funding NASA is planning to give out in March 2011 to private companies that are developing space taxis. Smaller NewSpace companies like SpaceX and , Orbital, along with big companies Lockheed Martin and Boeing are all vying for the CCDev-2 contracts.
With some space experts and Congress expressing concern about the length of time it might take for commercial companies to provide reliable transportation to space, as well as concerns about relying on the Russian Soyuz vehicles, this new collaboration could fit NASA’s needs nicely. Plus, the collaborators are hoping the new Liberty rocket will be a bargain compared to other contenders. They are targeting a price of $180 million per launch, which is slightly less than the Atlas V rocket launches by the Boeing-Lockheed Martin United Launch Alliance, ($187 million).
The two companies have touted the new rockets’ ability to carry a wide array of spacecraft and satellites.
“The Liberty initiative provides tremendous value because it builds on European Ariane 5 launcher heritage, while allowing NASA to leverage the mature first stage,” said former NASA astronaut Charlie Precourt, Vice President and General Manager of ATK Space Launch Systems. “We will provide unmatched payload performance at a fraction of the cost, and we will launch it from the Kennedy Space Center using facilities that have already been built. This approach allows NASA to utilize the investments that have already been made in our nation’s ground infrastructure and propulsion systems for the Space Exploration Program.”
If NASA chooses the Liberty system and it works well, it could mean that the money NASA spent on the Ares rocket was not wasted after all.
What do NASA, Robots, the Sun and the NFL have in common ?
Well … its Super SUNday … for Super Bowl XLV on Feb. 6, 2011
The unlikely pairing of Football and Science face off head to head on Super Bowl SUNday. Millions of television viewers will see NASA’s Robonaut 2, or R2, share the the limelight with the Steelers and the Packers of the NFL. The twin brother of R2 is destined for the International Space Station (ISS) and will become the first humanoid robot in space. It will work side by side as an astronaut’s assistant aboard the space station.
The fearsome looking R2 is set to make a first ever special guest appearance during the FOX Networks Super Bowl pre-game show with FOX sports analyst Howie Long. The pre-game show will air starting at 2 p.m. EST on Feb. 6.
And there’s more.
On Super SUNday Feb. 6, NASA will publish Humankinds first ever image of the ‘Entire Sun’ courtesy of NASA’s twin STEREO spacecraft. And given the stunningly cold and snowy weather in Dallas, the arrival of our Sun can’t come soon enough for the ice covered stadium and football fans. See photos above and below.
The two STEREO spacecraft will reach positions on opposite sides of the Sun on Sunday, Feb. 6 at about 7:30 p.m. in the evening, possibly coinciding with the Super Bowl half time show.
At opposition, the STEREO duo will observe the entire 360 degrees sphere of the Sun’s surface and atmosphere for the first time in the history of humankind.
The nearly identical twin brother of R2 is packed aboard Space Shuttle Discovery and awaiting an out of this world adventure from Launch Pad 39 A at NASA’s Kennedy Space Center (KSC) in Florida. Blast off of the first humanoid robot is currently slated for Feb. 24.
R2 is the most dextrously advanced humanoid robot in the world and the culmination of five decades of wide-ranging robotics research at NASA and General Motors (GM).
This newest generation of Robonauts are an engineering marvel and can accomplish real work with exceptionally dexterous hands and an opposable thumb. R2 will contribute to the assembly, maintenance and scientific output of the ISS
“R2 is the most sophisticated robot in the world,” says Rob Ambrose, Chief of NASA’s Johnson Space Center’s (JSC) Robotics Division.
“We hope R2 should help to motivate kids to study science and space,” Ron Diftler told me in an interview at KSC. Diftler is NASA’s R2 project manager at JSC.
The amazingly dexterity of the jointed arms and hands enables R2 to use exactly the same tools as the astronauts and thereby eliminates the need for constructing specialized tools for the robots –saving valuable time, money and weight.
The robot is loaded with advanced technology including an optimized overlapping dual arm dexterous workspace, series elastic joint technology, extended finger and thumb travel, miniaturized 6-axis load cells, redundant force sensing, ultra-high speed joint controllers, extreme neck travel, and high resolution camera and IR systems.
R2 weighs some 300 pounds and was manufactured from nickel-plated carbon fiber and aluminum. It is equipped with two human like arms and two hands as well as four visible light cameras that provide stereo vision with twice the resolution of high definition TV.
“With R2 we will demonstrate ground breaking and innovative robotics technology which is beyond anything else out there and that will also have real world applications as GM works to build better, smarter and safer cars,” according to Susan Smyth, GM Director of Research and Development.
“Crash avoidance technology with advanced sensors is a prime example of robonaut technology that will be integrated into GM vehicles and manufacturing processes.”
Robonaut 2 flight unit poses with the NASA/GM development team inside the Space Station Processing Facility at KSC in this 360 degree panorama from nasatech.net
I was fortunate to meet R2 and the Robonaut team at KSC. R2 is incredibly life like and imposing and I’ll never forget the chance to shake hands. Although its motions, sounds, illuminated hands and muscular chest gives the unmistakable impression of standing next to a lively and powerful 300 pound gorilla, it firmly but gently grasped my hand in friendship – unlike a Terminator.
So its going to make for a mighty match up some day between the fearsome looking R2 and the NFL players.
Well apparently, R2 and Howie will be making some predictions on which player will win the MVP award and a GM Chevrolet. Stay tuned.
So come back on SUNday Feb. 6 for NASA’s release of the first ever images of our entire Sun from the STEREO twins.
HOUSTON — Whether or not Mark Kelly would command the final scheduled flight of the space shuttle Endeavour, STS-134, had been left undecided in the wake of the shootings in Tucson, Arizona. It was announced today that Kelly would remain the commander of the mission, if all goes well he will launch with the remainder of his crew on Apr. 19.
Kelly’s wife, Rep. Gabrielle Giffords was severely injured when she was shot during an event held outdoors in Tucson, Arizona. As such, Kelly’s time has been spent at his wife’s side as she recuperates.
“I am looking forward to rejoining my STS-134 crew members and finishing our training for the mission,” Kelly said. “We have been preparing for more than 18 months, and we will be ready to deliver the Alpha Magnetic Spectrometer (AMS) to the International Space Station and complete the other objectives of the flight. I appreciate the confidence that my NASA management has in me and the rest of my space shuttle crew.”
Kelly was forced to take leave to be at his wife’s side. He asked that a backup commander be chosen. NASA selected four-time shuttle veteran Rick Sturckow, to take Kelly’s place in case he could not make the flight.
At a press conference on Friday, Kelly said his decision to return “has everything to do with what is right for NASA first and then me and my family.”
He said all of his family – including his daughters and Giffords’ parents – support his decision to fly the mission, and that when he was considering not commanding STS-134, they all told him he needed to reconsider.
The main reason he has decided to return to training is the incredible recovery of Giffords, which has surprised everyone, including her doctors. Kelly would not talk about Giffords’ condition, or give any information if Giffords has spoken directly to Kelly about the decision to fly the mission, but he did say that Giffords should be able to come to Kennedy Space Center for the launch in April.
“Absolutely. I have every intention that she’ll be there for the launch,” he said in response to a question of if she would be able to attend. “I’ve already talked to her doctors about it. There really shouldn’t be any reason why she can’t go to the launch.”
Although Kelly was willing to return as commander, Peggy Whitson, chief of the Astronaut Office, said they didn’t take his decision lightly. “We researched this and really looked into Gabby’s condition and looked at the prognosis,” as well as making sure Kelly wouldn’t change his mind at the last minute. They put Kelly through a trial run this week of what his activities would be during training and if he could hand the work flow.
Asked about those who might criticize his decision, Kelly said those people might not understand the entire situation.
“They don’t know her very well, so they don’t know what she would want,” he said. “She is a big supporter of my career, a big supporter of NASA. She really values the mission of NASA. What we do and what the nation gets from that are very high on her list of things she really treasures about this country. So I think they don’t understand that, and they also don’t understand her condition or the support system that I have in place. I think if they had more details about those things, you’d probably have less people being critical. But I think in any decision there’s a lot of interest in, you’re going to have people on both sides.”
As to whether NASA will be criticized for allowing Kelly to return when he has been absent from training for several weeks, Brent Jett, chief Flight Crew Operations Directorate said, “When Mark’s situation got to the point where he was ready to commit to fly, our job was to evaluate what was best for the mission, it is that simple. With all the training and time he has put in, we had to know if he was ready. But we had to take certain steps to make sure he was ready. And we feel we’ve done that. And we’re really happy that he is back as commander of STS-134.”
Kelly said the outpouring of support he has received is a bit humbling. “I’m very grateful for it,” he said. “It is nice to see that people care about who she is and what she represents. The fact that something so horrible where 6 people lost their lives, it is really a sad situation. But I’m hopeful that something positive can come from it.”
STS-134 is currently scheduled to be the final flight of the space shuttle Endeavour, the youngest orbiter in the fleet. It will carry the Alpha Magnetic Spectrometer – 2 (AMS-02) science experiment, the ExPRESS Logistics Carrier 3 as well as equipment that will test out the risk mitigation equipment for the Orion spacecraft.
Six men from Europe, Russia and China on a 520-day mock mission to Mars, have now reached the point in their mission where they have arrived ‘in orbit’ of Mars. Mars500, the first full-duration simulation, is like a real Mars mission, where the crew has been in isolation, living and working like astronauts, eating special food and exercising the same way as crews aboard the International Space Station, and even experiencing lag time in communications. Now after 244 days of virtual interplanetary flight, the crew is getting ready to ‘land’ on Mars on February 12 where they will make three EVAs onto simulated Martian terrain.
Mars500 is not a just a flight of fancy or fantasy, but scientists from Russia and the European Space agency say it is a “pioneering international study of the complex psychological and technical issues that must be tackled for long spaceflights.”
The simulation has been running for more than eight months in hermetically sealed modules imitating a Mars spacecraft at the Institute of Biomedical Problems (IBMP) in Moscow.
“Mars500 is a visionary experiment,” said Simonetta Di Pippo, ESA Director for Human Spaceflight. “Europe is getting ready to make a step further in space exploration: our technology and our science grow stronger every day. Mars 500 today is only an enriching simulation, but we are working to make it real.”
The crew has now opened a hatch between the mothership and the mockup of a lander that, according to script, was launched separately to Mars.
In the coming days, the cargo inside the ‘lander’ will be transferred into the habitat and the lander will be prepared for ‘undocking’ and ‘landing’.
The crew will then divide: Russian Alexandr Smoleevskiy, Italian Diego Urbina and Chinese Wang Yue will enter the lander, while the rest of the crew, Romain Charles from France and Sukhrob Kamolov and Alexey Sitev from Russia ‘remain in orbit’.
The hatch between the interplanetary spacecraft and lander will be closed on 8 February. The lander will undock and ‘touch down’ on Mars on 12 February.
The simulated Martian terrain is actually housed in a large hall alongside the Mars500 modules. The first EVA will take place on February 14, with subsequent sorties taking place on February 18 and 22.
Then the lander will return to orbit and dock with the mothership the following day.
The lander crew will stay in quarantine for three days before the hatch is opened on 27 February and the astronauts are reunited.
After that, the crew is faced with another long, monotonous ‘interplanetary cruise’ before arriving home in early November 2011.