Delta IV Heavy Roars Off Launch Pad on Secret NRO Mission

A Delta IV heavy lifts off from Cape Canaveral Air Force Station at 5:58 p.m. EDT carrying a secret NRO payload. Photo Credit: Universe Today/Alan Walters - awaltersphoto.com

[/caption]

CAPE CANAVERAL — United Launch Alliance (ULA) successfully launched a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida, sending a classified surveillance satellite to space. Liftoff occurred on Nov. 21 at 5:58 p.m. EDT. The enormous rocket thundered to life, and as almost to underscore the secretive nature of the mission, the fiery exhaust was only visible for a short while before disappearing into thick clouds. However, long after the rocket was out of view, it made its journey known through its roar. The vibration was so visceral that vehicles and windows of buildings in the immediate area began to rattle with the raw power that was unleashed.

The massive Delta IV makes its presence known - even from a distance of several miles. Photo Credit: Universe Today/Alan Walters - awaltersphoto.com

U.S. Air Force’ meteorologists predicted a 90 percent chance of acceptable weather for the launch, with only a tiny chance that winds could exceed the 20-knot limit. Winds were not an issue however and by all accounts the vehicle performed flawlessly.

The first launch attempt of the classified National Reconnaissance Office (NRO) satellite was scrubbed Friday during fueling of the Delta IV. Technicians determined that the reason for the scrub on Nov. 19 was a faulty sensor. The sensor gave incorrect temperature readings that were detected in the rocket’s three first-stage boosters. Technicians believed (correctly so) that they had resolved the issue.

Sunday's launch is the third successful flight for the Delta IV Heavy. Photo Credit: Universe Today/Alan Walters - awaltersphoto.com

The launch team rolled back the 330-foot mobile service tower earlier in the day and pumped approximately 450,000 gallons of liquid hydrogen and liquid oxygen into the twin boosters.

Tonight’s launch marked the third operational flight of the massive Delta IV Heavy since its first demonstration flight back in December of 2004.

“This mission helps to ensure that vital NRO resources will continue to bolster our national defense,” said Brig. Gen. Ed Wilson, 45th Space Wing commander. “The spectacular evening launch showcases how the 45th assures access to the high frontier and supports global operations.”

Flawless Launch of STP-S26

NASA successfully launched its first 'FASTSAT' on Nov. 17, 2010. Image Credit: NASA

[/caption]

While the U.S. Air Force unsuccessfully tried to get a Delta IV off the ground in Florida – things worked out far better for NASA at the Kodiak Launch Complex located in Kodiak, Alaska. Friday’s Minotaur 4 rocket launch successfully accomplished its mission of placing not one – but six satellites into orbit some 400 miles above the Earth.

The mission took off just before sunset from Launch Pad 1. After launch the $170 million flight turned southeast from its launch site going out over the Pacific Ocean. The launch took place under a clear sky with the moon lighting its way.

The payload for this flight was a rather mixed bag of NASA, military and university experiments. All six of the launch vehicle’s payloads were released right on time about 30 minutes after launch. The so-called ‘FASTSAT’ for Fast, Affordable, Science and Technology Satellite automatically switched itself on upon deployment. The project is a demonstration of ways to deploy experiments and other payloads cheaply and effectively to orbit.

Four of the satellites that were onboard the STP-S26 mission included the “ESPA-class:” STPSat-2, FalconSAT-5, FASTSAT-HSV01 and FASTRAC.

The FASTSAT program is NASA’s first microsatellite designed to provide multiple customers with access to orbit – at a lower cost. The main goal of the FASTSAT flight is to prove the viability of this capability to various government, academic and industry customers. The intent is to show that you do not have to invest millions of dollars into a single, large-scale satellite to conduct experiments on orbit.

The launch vehicle itself is also rather cheap as it is comprised of spare Peacekeeper missile tech. The STP-S26 mission was powered to orbit by a Minotaur IV launch vehicle, which was provided by the Rocket Systems Launch Program. The Minotaur IV is produced by Orbital Sciences Corporation.

One of the ‘firsts’ on this flight was the utilization of the Hydrazine Auxiliary Propulsion System (HAPS) to allow for dual-orbit capabilities. It is hoped, that in future flights this could be used to allow satellites to other orbits to give them far greater flexibility.
Another first employed on this mission was the first to use the Multi-Mission Satellite Operations Center Ground System Architecture. This center is capable of operating various satellites at the same time at a minimal cost. Indeed, the overriding theme of this launch would appear to be providing access to orbit – for less.

Launch of Delta IV Delayed; Shuttle Launch Options Weighed

Rocket Science
The Delta IV rocket now scheduled for launch on Nov. 21, 2010. Credit: Alan Walters (awaltersphoto.com) for Universe Today

[/caption]

Those waiting for a launch from Florida’s Space Coast will have to wait a little more. The liftoff of a United Launch Alliance (ULA) Delta IV Heavy rocket has been pushed back yet again, and is now scheduled for Sunday, Nov. 21 at 5:58 p.m. EST (2258 GMT) from Space Launch Complex 37 (SLC 37) at Cape Canaveral Air Force Station. The rocket will carry a National Reconnaissance Office payload.

Launch Complex 37 at Cape Canaveral Air Force Station. Credit: Alan Walters (awaltersphoto.com) for Universe Today.

Delayed from the 18th, the next countdown started on Friday, but this too was not to be. As technicians started to fuel up the rocket’s twin strap on boosters encountered temperature anomalies. Engineers did not want to give an estimate as to when the rocket will be ready for launch – until they had a chance to unload the fuel and give the vehicle a closer look.

The Delta IV with a NRO payload. Photo Credit: Universe Today/Alan Walters - awaltersphoto.com

The payload for this mission is a classified spy satellite. In media advisories released by the 45th Space Wing it is described only as a ‘Galaxy 3.’ The 45th is stationed out of Patrick Air Force Base. The Delta IV Heavy is the largest rocket in the Delta 4 family, with three booster cores combined to form what is essentially a triple-bodied rocket.

As far as space shuttle Discovery, NASA managers are still keeping all their options open. Inspectors this week found a fourth crack in support beams on the external fuel tanks of the space shuttle. The work to repair the cracks is ongoing, but the teams will need to complete an engineering review and develop the necessary flight rationale in order to launch with a damaged tank. On Thursday, NASA announced that the flight will launch no earlier than Dec. 3, four days after the opening of a short end-of-year launch window.

The window closes Dec. 6. If NASA cannot get Discovery off the ground in the next available launch window, there is only one other planned launch at KSC/CCAFS for this year. This is the Dec. 7 launch of SpaceX’s Falcon-9 with its Dragon spacecraft payload. If this launch happens before the end of this year, it will mark the first demonstration flight of the $1.6 billion Commercial Orbital Transportation Services contract that the private space firm has with the space agency.

Photo Credit: Universe Today/Alan Walters - awaltersphoto.com

The Cutest Little Spaceship that Never Flew

A close-up view of the X-38 under the wing of NASA's B-52 mothership prior to a test launch of the vehicle. Credit: NASA

[/caption]

Of all the missions and spacecraft that NASA has shelved over the years, I found the X-38 Crew Return Vehicle (CRV) to personally be one of the most disappointing. While its cancellation resulted in no loss of science and never stranded any astronauts in space, my disappointment was from strictly an aesthetic point of view: this was the cutest little spacecraft I had ever seen. The X-38 was a prototype for a wingless lifting body reentry vehicle that was to be used as a crew return and/or rescue vehicle for the International Space Station, but it was canceled in 2002 due to budget cuts. I guess cuteness doesn’t get you far in the space biz.

The image above shows a test flight in 1999 where the the X-38 research vehicle was dropped from a B-52 airplane. Three different designs of the X-38 made flight tests, and the vehicle landed by using one of the biggest aerofoil parachutes ever made. The CRV was designed to fly automatically from orbit to landing using onboard navigation and flight control systems, but backup systems also would have allowed the crew to pick a landing site and steer the parafoil to a landing, if necessary. The X-38’s landed on skids, not wheels, reminiscent of the famed X-15 lifting body research aircraft.

The X-38 was developed at NASA’s Dryden Flight Research Center at Edwards Air Force Base in California, and atmospheric test vehicles were actually built by Scaled Composites – the very same company that later built SpaceShipOne and won the X PRIZE.

The X-38 drops from a B-52 aircraft. Credit: NASA

The X-38 looks like a mini-space shuttle, and would have fit into the payload bay of the full-size space shuttles.

X-38 weighed 10,660 kg and was 9.1 meters long. The battery system, lasting nine hours, was to be used for power and life support. If the crew from the ISS had to make an emergency return to Earth, it would only take two to three hours for the CRV to reach Earth.

One of the prototypes can now be seen at the Strategic Air and Space Museum in Ashland Nebraska, located just off Interstate 80, about 20 miles southeast of Omaha.

For more info about the X-38, see this NASA webpage.

Cassini Instruments Offline Until Nov. 24

Cassini-Huygens Mission
An artist illustration of the Cassini spacecraft. Credit: NASA/JPL

[/caption]

NASA announced that the Cassini spacecraft in orbit around Saturn will have its suite of scientific cameras offline until at least Nov. 24. Cassini is currently in safe mode due to a malfunction in the spacecraft’s computer. This shut down all non-essential systems to prevent any further damage happening to the spacecraft. This means that all scientific efforts on the mission have been suspended until the problem can be resolved.

Although these seem like severe issues, mission managers are relatively sure that they will have no serious long-term effects on the overall mission. Cassini entered safe mode around 4 p.m. PDT (7 p.m. EDT) on Tuesday, Nov. 2. Managers want to review what took place onboard Cassini, correct what they can and ensure that this doesn’t happen again. Programmers have already ascertained that the likely cause of the problem was a faulty program code line that made its way back to Cassini.

Cassini captured this startling image of Saturn's moon Hyperion. Photo Credit: NASA/JPL

Ordinarily when faulty code is sent from Earth to Saturn, Cassini would reject any coding that is deemed ‘bad.’ However, this did not happen in this case, causing the problem. Controllers are not totally convinced that a solar fare didn’t corrupt the code on its way out to the gas giant.

“The spacecraft responded exactly as it should have, and I fully expect that we will get Cassini back up and running with no problems,” said Bob Mitchell, Cassini’s program manager at JPL. “Over the more than six years we have been at Saturn, this is only the second safing event. So considering the complexity of demands we have made on Cassini, the spacecraft has performed exceptionally well for us.”

Cassini launched from Cape Canaveral Air Force Station back in 1997 atop a Titan rocket. In the thirteen years since that time it has entered ‘safe’ mode a total of six times.

Cassini discovered that Saturn's moon Enceladus is 'jet-powered' in the form of geysers erupting from the moon's surface into space. Photo Credit: NASA/JPL

The largest loss for Cassini’s planners is this will cost them a flyby of Titan, one of Saturn’s moons and the only moon in the solar system with an appreciable atmosphere. All is not lost however, as there are still some 53 possible flybys of the moon currently scheduled. The mission is currently planned to last until 2017.

The Cassini-Huygens mission is a cooperative program managed between NASA, the European Space Agency (ESA) and the Italian Space Agency. JPL, a division of the California Institute of Technology (Caltech) manages the Cassini program for NASA’s Science Mission Directorate located in Washington, D.C.

Stubborn Shuttle Discovery Refuses to Launch on Final Mission

Shuttle Discovery still on the launchpad. Credit: Alan Walters (awaltersphoto.com) for Universe Today.

[/caption]

UPDATE: The launch has now been delayed until Nov. 30, as a crack was found in the foam on Discovery’s external tank after the fuel was offloaded this morning. Engineers posting on Twitter said the hydrogen leak this morning may have been a lucky break, as the crack had ice underneath and may have easily come off during launch. The crack was not seen previously.

It seems as through space shuttle Discovery keeps coming up with excuses to delay the launch of her final mission to space, and the launch pad facilities and weather are conspiring along with her. Originally scheduled to launch on Nov. 1, this latest delay comes from a hydrogen leak in a vent arm attached to the shuttle’s external tank. The work required will push back any further launch attempt until at least Monday, Nov. 8. That is the last day available in the current launch window, and if it doesn’t launch then the window closes until Nov. 30, due to unfavorable sun angles for when the shuttle would be docked to ISS.

This is not the first time a leak has occurred in the vent arm, but this time the leak was “substantial” said Launch Director Mike Leinbach.

“The signature of the leak is similar to what we’ve seen in the past when we’ve had leaks there, although the magnitude was higher this time and it occurred earlier in our tanking process,” he said.

Discovery’s 11-day mission to the International Space Station will bring a new storage module and the first humanoid robot, Robonaut 2, or R2 to the station. The Nov. 8 launch time is now scheduled for 12:53 Eastern STANDARD Time (17:53 UT).

Previous delays have stemmed from leaks in different systems, an electrical glitch and rainy, windy weather.

The launch scrubs have disappointed participants of the launch Tweet-up, where NASA allows Twitterers a chance to view a launch from Kennedy Space Center. While some of the participants are waiting out the delays, most have had to return home. This marks the first time there has been a launch delay when NASA has held a Tweet-up for a shuttle liftoff.

If you are needing to see a launch, try keeping an eye on a Delta II rocket launch from Vandenberg Air Force Base in California, with the COSMO Earth observing satellite. This rocket, too has had its share of delays, but is now slated for launch on Friday, Nov. 5 at 10:20 pm EDT (7:20 pm PDT).

Eyes On The Solar System

Eyes on the Solar System - a 3d environment browser application that operates in real time, letting you see what our robot spacecraft are up to.

[/caption]

NASA’s beta version of Eyes on the Solar System, built by JPL and Caltech, offers a neat way of tracking a range of current space missions – for example, as Nancy Atkinson mentioned yesterday, you can follow EPOXI’s flyby of comet Hartley 2. Reminiscent of Celestia, this browser application gives you a 3D environment running in real time and is updated regularly with NASA spacecraft mission data.

To get it operating, you can just click to the NASA link where you are prompted to install a Unity Web Player plug-in. This is fast and straight forward, from my experience. I did strike a problem with a certain small and squishy 64bit system that starts with X (where the menu text didn’t display correctly), but it ran fine on other systems. It is a beta version after all – and I feel obliged to note you should load at your own risk, yada, yada.

Anyhow, if you choose to proceed, you can then move around the solar system with left mouse click-hold and scroll wheel actions – or there’s the usual keyboard alternatives, or even on-screen controls. In default mode, a number of celestial bodies are shown and labeled, as are several spacecraft, which you can zoom over to by clicking on them. You can add more objects from the Visual Controls menu. Default settings have comets hidden, so you’ll need to add them to do an EPOXI-Hartley 2 encounter simulation.

There are some online tutorials you can take from the opening screen – which are short and useful – to get a quick run-through of the options available.

Eyes - in photo mode - showing EPOXI on approach to Hartley 2. If you're not a purist, you can also back-light an image. For example, to light up EPOXI in this image - where the Sun is not at the right angle to do it.

Like Celestia, you can speed up, slow down and move back and forth through time. This means you can replay EPOXI’s closest approach to Hartley 2 – or go right back to 1997 and zoom out to watch Cassini leave Earth and travel to Saturn via Venus and Earth flybys until it reaches Saturn in 2004 – all of which you can enjoy in about 5 seconds after cranking up the passage of time. You can also pick an ‘over the shoulder’ view to ride with Cassini through the F and G rings on its first approach to Saturn.

Unlike Celestia, because Eyes is mainly about spacecraft missions, its environment only covers the period from 1950 to 2050 and (curses) I couldn’t find any options to add in fictional spacecraft.

For a bit of edu-tainment you can access right-click controls which allow you to measure distances between objects – and monitor how those distances change as the objects move over time. For a bit of fun, you can also compare spacecraft to scale objects – with a choice between scientist, Porsche and football stadium. As one of the brief tutorials will explain, Voyager 1 is about the size of a Porsche.

Discovery’s Final Mission Scrubbed 24 Hours Due to Weather

The crew of STS-133 will have to wait a little longer for their date with destiny - this time thanks to weather. Photo Credit: NASA/Kim Shiflett

[/caption]

Discovery’s final flight faced its first hurdle in the form of a fuel leak in its right OMS pod. This problem seemed solved, but using an over-abundance of caution mission managers had the seals around the affected flange replaced. Then unrelated leaks of hydrogen and helium pushed the launch back to Nov. 2 and then Nov. 3. With that problem resolved many thought Discovery’s problems were behind her – enter a voltage issue in the number three engine’s backup control system. This conspired to push the launch back to Nov. 4.

However, in the early morning hours of Nov. 4 it was obvious that Florida’s turbulent weather would not allow a launch on this day and mission managers scrubbed the launch for at least 24 hours. Weather for Friday shows a 70 percent chance of favorable conditions. If Discovery does launch tomorrow, it will take place at 3:04 p.m. EDT.

Discovery’s final mission, STS-133, will deliver the Leonardo Multipurpose Module (PMM) with its cargo – including the first humanoid robot to be sent into space – Robonaut-2 (R2). Also riding along on this mission is the Express Logistics Carrier-4 and spare parts. Like the other remaining shuttle flights, these new components and supplies are designed to leave the space station better prepared for when the space shuttles are retired next year.

The crew of STS-133 will be comprised of Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists; Alvin Drew, Nicole Stott, Tim Kopra and Michael Barratt. All of these astronauts are space flight veterans.

Discovery’s Final Mission Delayed Again

Discovery on the launchpad. Credit: Alan Walters (awaltersphoto.com) for Universe Today

[/caption]

UPDATE: Discovery has been cleared for a launch attempt on Nov. 4 at 3:29:43 p.m. EDT. After a review, NASA managers decided the electrical glitch that prompted a 24-hour delay was not a threat to flight safety. The only problem now is that the weather report calls for rain and clouds, and gave an 80% chance for conditions that would prohibit launch. We’ll keep you updated.

A power controller on space shuttle Discovery’s main engine number three failed to start during routine checks this morning causing shuttle managers to push the final launch of Discovery back at least 24 hours to Nov. 4. Engineers began troubleshooting the problem – when it appeared to correct itself. Circuit breakers have had problems like this before. However, NASA mission managers wanted to make sure they fully understood what was causing the problems.

“We make sure we truly understand the risk before we fly,” said Mike Moses, Mission Management Team Chair. “The problem is pretty simple and we wanted to make sure we’re not to aggressive on our response.”

Teams will work through the night and into Wednesday morning on this problem. To remove the affected circuit is a fairly invasive procedure and some of the circuits involved cannot be retested on the launch pad. If the launch does not occur Thursday NASA has until Sunday to launch before the launch window closes. Currently, Discovery is set to launch Thursday, Nov. 4 at 3:29 p.m. EDT.

From a crew perspective it made sense to take an additional 24 hours,” said Mike Leinbach, Shuttle Launch Director. “We’ll pick back up with our launch countdown on Thursday morning.”

Discovery is set to launch on her final, 11-day mission to the International Space Station on mission STS-133. The crew of Discovery consists of Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists; Alvin Drew, Nicole Stott, Tim Kopra and Michael Barratt. The payload for this mission is the Leonardo Permanent Multipurpose Module which houses among other things the first humanoid robot to fly into space – Robonaut-2. Also onboard is the Express Logistics Carrier-4 and much-needed spare parts.

Astronomy Without A Telescope – Warp Drive On Paper

aaaaa

[/caption]

The Alcubierre drive is one of the better known warp drive on paper models – where a possible method of warp drive seems to work mathematically as long as you don’t get too hung up on real world physics and some pesky boundary issues.

Recently the Alcubierre drive concept has been tested within mathematically modeled metamaterial – which can provide a rough analogy of space-time. Interestingly, in turns out that under these conditions the Alcubierre drive is unable to break the light barrier – but quite capable of doing 25% of light speed, which is not what you would call slow.

OK, so two conceptual issues to grapple with here. What the heck is an Alcubierre drive – and what the heck is metamaterial?

The Alcubierre drive is a kind of mathematical thought experiment where you imagine your spacecraft has a drive mechanism capable of warping a bubble of space-time such that the component of bubble in front of you contracts bringing points ahead of you closer – while the bubble behind you expands, moving what’s behind you further away.

This warped geometry moves the spacecraft forward, like a surfer on a wave of space-time. Maintaining this warp dynamically and continuously as the ship moves forward could result in faster-than-light velocities from the point of view of an observer outside the bubble – while the ship hardly moves at all relative to the local space-time within the bubble. Indeed throughout the journey the crew experience free fall conditions and are not troubled by G forces.

Standard images used to describe the Alcubierre drive. Left: Want to make the Kessel run in 12 parsecs? No problem - just compress the Kessel run into 12 parsecs. Right: The Alcubierre concept can be thought of as a spaceship surfing on a wave of space-time. Images sourced from daviddarling.info.

Some limitations of the Alcubierre drive model are that although the mathematics can suggest that forward movement of the ship is theoretically possible, how it might start and then later stop at its destination are not clear. The mechanism underlying generation of the bubble also remains to be explained. To warp space-time, you must redistribute mass or energy density in some way. If this involves pushing particles out to the edges of the bubble this risks a situation where particles at the boundary of the bubble would be moving faster than light within the frame of reference of space-time external to the bubble – which would violate a fundamental principle of general relativity.

There are various work-around solutions proposed, involving negative energy, exotic matter and tachyons – although you are well down the rabbit-hole by this stage. Nonetheless, if you can believe six impossible things before breakfast, then why not an Alcubierre drive too.

Now, metamaterials are matrix-like structures with geometric properties that can control and shape electromagnetic waves (as well as acoustic or seismic waves). To date, such materials have not only been theorized, but built – at least with the capacity to manipulate long wavelength radiation. But theoretically, very finely precisioned metamaterials might be able to manipulate optical and shorter wavelengths – creating the potential for invisibility cloaks and spacecraft cloaking devices… at least, theoretically.

Anyhow, metamaterials capable of manipulating most of the electromagnetic spectrum can be mathematically modeled – even if they can’t be built with current technologies. This modeling has been used to create virtual black holes and investigate the likelihood of Hawking radiation – so why not use the same approach to test an Alcubierre warp drive?

It turns out that the material parameters of even so-called ‘perfect’ metamaterial will not allow the Alcubierre drive to break light speed, but will allow it to achieve 25% light speed – being around 75,000 kilometres a second. This gets you to the Alpha Centauri system in about seventeen years, assuming acceleration and deceleration are only small components of the journey.

Whether the limitations imposed by metamaterial in this test are an indication that it cannot adequately emulate the warping of space-time – which the Alcubierre drive needs to break light speed – or whether the Alcubierre drive just can’t do it, remains an open question. What’s surprising and encouraging is that the drive could actually work… a bit.

Further reading: Smolyaninov, I. Metamaterial-based model of the Alcubierre warp drive.