Fleet of Solar Sail Spacecraft Envisioned for Future Data Gathering Missions

Artist concept of data clippers in space. Credit: Thales Alenia Space

[/caption]

Future missions to explore the outer planets could employ fleets of ‘data-clippers’, maneuverable spacecraft equipped with solar sails, to ship vast quantities of scientific data back to Earth. According to Joel Poncy of satellite developer Thales Alenia Space, the technology could be ready in time to support upcoming missions to the moons of Jupiter and Saturn.

“Space-rated flash memories will soon be able to store the huge quantities of data needed for the global mapping of planetary bodies in high resolution.” said Poncy. “But a full high-res map of, say, Europa or Titan, would take several decades to download from a traditional orbiter, even using very large antennae. Downloading data is the major design driver for interplanetary missions. We think that data clippers would be a very efficient way of overcoming this bottleneck.”

Poncy and his team have carried out a preliminary assessment for a data clipper mission. Their concept is for a clipper to fly close to a planetary orbiter, upload its data and fly by Earth, at which point terabytes of data could be downloaded to the ground station. A fleet of data clippers cruising around the Solar System could provide support for an entire suite of planetary missions.

“We have looked at the challenges of a data clipper mission and we think that it could be ready for a launch in the late 2020s. This means that the technology should be included now in the roadmap for future missions,” said Poncy.

Spurred by the success of the Japanese Space Agency’s current solar sail mission, IKAROS, Poncy’s team have assessed the communications systems and tracking devices that a data clipper would need, as well as the flyby conditions and pointing accuracy required for the massive data transfers. Recent advances in technology mean that spacecraft propelled by solar sails, which use radiation pressure from photons emitted by the Sun, or electric sails, which harness the momentum of the solar wind, can now be envisaged for mid-term missions.

“Using the Sun as a propulsion source has the considerable advantage of requiring no propellant on board. As long as the hardware doesn’t age too much and the spacecraft is maneuverable, the duration of the mission can be very long. The use of data clippers could lead to a valuable downsizing of exploration missions and lower ground operation costs – combined with a huge science return. The orbiting spacecraft would still download some samples of their data directly to Earth to enable real-time discoveries and interactive mission operations. But the bulk of the data is less urgent and is often processed by scientists much later. Data clippers could provide an economy delivery service from the outer Solar System, over and over again,” said Poncy.

Poncy will be presenting an assessment of data clippers at the European Planetary Science Congress in Rome on Monday September, 20, 2010.

Source: European Planetary Science Congress

NASA Names Crew for Rescue Mission or Potential Added Shuttle Flight

Space Shuttle Atlantis. Credit: NASA

[/caption]

NASA announced the names of the four astronauts who will make up the crew of STS-335, the rescue mission that would fly only if there is a problem with the current final scheduled shuttle flight, Endeavour’s STS-134 mission. Additionally, the four crew members will prepare for the “final final” shuttle flight which may be added to the launch manifest, depending on what Congress decides on adding one more mission since Atlantis will be ready to fly.

“These astronauts will begin training immediately as a rescue crew as well as in the baseline requirements that would be needed to fly an additional shuttle flight,” said Bill Gerstenmaier, associate administrator for NASA’s Space Operations. “The normal training template for a shuttle crew is about one year prior to launch, so we need to begin training now in order to maintain the flexibility of flying a rescue mission if needed, or alter course and fly an additional shuttle mission if that decision is made.”

Having a “Launch On Need” crew ready for a rescue flight is based on recommendations made after the loss of space shuttle Columbia in February 2003. NASA has trained a launch on need crew to be ready to fly in the event of irreparable damage to a shuttle while in orbit. Typically, the next crew to fly serves as the rescue crew for the current mission.

The four astronauts are:

Chris Ferguson, a retired U.S. Navy captain and veteran of two previous shuttle missions, would command the flight. Astronaut and U.S. Marine Col. Doug Hurley would serve as pilot, and astronauts Sandy Magnus and retired U.S. Air Force Col. Rex Walheim would be the mission specialists.

If required, the STS-335 rescue mission would launch on shuttle Atlantis in June 2011 to bring home the STS-134 crew from the International Space Station. STS-134 currently is scheduled to lift off on Feb. 26, 2011, from NASA’s Kennedy Space Center in Florida. If converted to an additional shuttle flight, STS-335 would be redesignated STS-135 and targeted to launch in June 2011.

Source: NASA

NASA Considering Rail Gun Launch System to the Stars

Different technologies to push a spacecraft down a long rail have been tested in several settings, including this Magnetic Levitation (MagLev) System evaluated at NASA's Marshall Space Flight Center. Engineers have a number of options to choose from as their designs progress. Photo credit: NASA

[/caption]

The idea for using rail guns to launch objects to space has been around for years – even Isaac Newton considered the concept. But now a group of NASA engineers is seriously studying the possibility of using a rail gun as a potential launch system to the stars, and they are looking for a system that turns a host of existing cutting-edge technologies into the next giant leap spaceward. Stan Starr, branch chief of the Applied Physics Laboratory at Kennedy Space Center said that nothing in the design calls for brand-new technology to be developed, but counts on a number of existing technologies to be pushed forward. He said developing such a system would be a “major technology revolution.”

“All of these are technology components that have already been developed or studied,” he said. “We’re just proposing to mature these technologies to a useful level, well past the level they’ve already been taken.”

A rail gun utilizes a magnetic field powered by electricity to accelerate a projectile along a set of rails, similar to train rails. One early proposal from the NASA group calls for a wedge-shaped aircraft with scramjets to be launched horizontally on an electrified track or gas-powered sled. The aircraft would fly up to Mach 10, using the scramjets and wings to lift it to the upper reaches of the atmosphere where a small payload canister or capsule similar to a rocket’s second stage would fire off the back of the aircraft and into orbit. The aircraft would come back and land on a runway by the launch site.

The engineers, from KSC and other NASA centers, contend the system, with its advanced technologies, will benefit the nation’s high-tech industry by perfecting technologies that would make more efficient commuter rail systems, better batteries for cars and trucks, and numerous other spinoffs.

Different technologies to push a spacecraft down a long rail have been tested in several settings, including this Magnetic Levitation (MagLev) System evaluated at NASA's Marshall Space Flight Center. Engineers have a number of options to choose from as their designs progress. Photo credit: NASA

For example, electric tracks catapult rollercoaster riders daily at theme parks. But those tracks call for speeds of a relatively modest 100 km/h (60 mph) — enough to make the ride exciting, but not nearly fast enough to launch something into space. The launcher would need to reach at least 10 times that speed over the course of two miles in Starr’s proposal.

The good news is that NASA and universities already have done significant research in the field, including small-scale tracks at NASA’s Marshall Space Flight Center in Huntsville, Ala., and at Kennedy. The Navy also has designed a similar catapult system for its aircraft carriers.

As far as the aircraft that would launch on the rail, there already are real-world tests for designers to draw on. The X-43A, or Hyper-X program, and X-51 have shown that scramjets will work and can achieve remarkable speeds.

The group sees NASA’s field centers taking on their traditional roles to develop the Advanced Space Launch System. For instance, Langley Research Center in Virginia, Glenn Research Center in Ohio and Ames Research Center in California would work on different elements of the hypersonic aircraft. Dryden Research Center in California, Goddard Space Flight Center in Maryland and Marshall would join Kennedy in developing the launch rail network. Kennedy also would build a launch test bed, potentially in a two-mile long area parallel to the crawlerway leading to Launch Pad 39A.

Because the system calls for a large role in aeronautic advancement along with rocketry, Starr said, “essentially you bring together parts of NASA that aren’t usually brought together. I still see Kennedy’s core role as a launch and landing facility.”

The Advanced Space Launch System is not meant to replace the space shuttle or other program in the near future, but could be adapted to carry astronauts after unmanned missions rack up successes, Starr said.

The studies and development program could also be used as a basis for a commercial launch program if a company decides to take advantage of the basic research NASA performs along the way. Starr said NASA’s fundamental research has long spurred aerospace industry advancement, a trend that the advanced space launch system could continue.

For now, the team proposed a 10-year plan that would start with launching a drone like those the Air Force uses. More advanced models would follow until they are ready to build one that can launch a small satellite into orbit.

A rail launcher study using gas propulsion already is under way, but the team is applying for funding under several areas, including NASA’s push for technology innovation, but the engineers know it may not come to pass. The effort is worth it, however, since there is a chance at revolutionizing launches.

Source: NASA

Astronomy Without A Telescope – Space Towers

(Caption) The Seattle space needle pokes through the cloud tops (well, just fog really… it's only 184 meters high). Credit: Liem Bahneman, pixduas.com

[/caption]

Arthur C Clarke allegedly said that the space elevator would be built fifty years after people stopped laughing. The first space tower though… well, that might need a hundred years. The idea of raising a structure from the ground up to 100 kilometers in height seems more than a bit implausible by today’s engineering standards, given that we are yet to build anything that is more than one kilometer in height. The idea that we could build something up to geosynchronous orbit at 36,000 kilometers in height is just plain LOL… isn’t it?

Space tower proponents point to a key problem with the space elevator design. It may only be after we have spent years inventing a method to manufacture 36,000 kilometers of flawless carbon or boron nanotube fiber – which is light enough not to break under its own weight, but still strong enough to lift an elevator cabin – that we suddenly realize that we still have to get power to the cabin’s lifting engine. And doesn’t that just mean adding 36,000 kilometers of conventional (and heavy) electrical cable to the construction?

Mind you, building a space tower brings its own challenges. It’s estimated that a steel tower, containing an elevator and cabling, of 100 kilometers height needs a cross-sectional base that is a 100 times greater than its apex and a mass that is 135 times greater than its payload (which might be a viewing platform for tourists).

A solid construction capable of holding up a launch platform at 36,000 kilometers altitude might need a tower with ten million times the mass of its payload – with a cross-sectional base covering the area of, say, Spain. And the only construction material likely to withstand the stresses involved would be industrial diamond.

A more economical approach, though no less ambitious or LOL-inducing, are centrifugal and kinetic towers. These are structures that can potentially exceed a height of 100 kilometers, support an appreciable mass at their apex and still maintain structural stability – by virtue of a rapidly rotating loop of cable which not only supports its own weight, but generates lift through centrifugal force. The rotation of the cable loop is driven by a ground-based engine, which can also drive a separate elevator cable to lift courageous tourists. Gaining altitudes of 36,000 kilometers is suggested to be achievable by staged constructions and lighter materials. But, it might be sensible to first see if this grand design on paper can translate to a proposed four kilometer test tower – and then take it from there.

There are also inflatable space towers, proposed to be capable of achieving heights of 3 kilometers with hot air, 30 kilometers with helium or even 100 kilometers with hydrogen (oh, the humanity). Allegedly, a 36,000 kilometer tower might be achievable if filled with electron gas. This is a curious substance argued to be capable of exerting different inflationary pressures depending on the charge applied to the thin-film membrane which contains it. This would allow a structure to withstand differential stresses – where, in a highly charged state, the highly excited electron gas mimics a molecular gas under high pressure, but with a reduced charge it exerts less pressure and the structure containing it becomes more flexible – although, in either case, the overall mass of the gas remains unchanged and suitably low. Hmmm…

An inflatable 100 kilometer high, 300 kilometer long space pier, built to launch spacecraft horizontally. Humans might survive the G forces required to achieve orbit - which they certainly wouldn't do if the same trajectory was attempted from sea-level. Credit: Josh Hall, autogeny.org/tower/tower.html

If this all seems a bit implausible, there’s always the proposed 100 kilometer high space pier that would enable horizontal space launch without rocketry – perhaps via a giant rail gun, or some other similarly theoretical device that works just fine on paper.

Further reading: Krinker, M. (2010) Review of new concepts, ideas and innovations in space towers. (Have to say this review reads like a cut and paste job from a number of not-very-well-translated-from-Russian articles – but the diagrams are, if not plausible, at least comprehensible).

Oh Canada! Hadfield Named First Canadian Commander of ISS

Hadfield's personal mission patch. Credit: collectSPACE

Congratulations to one of our favorite astronauts, Chris Hadfield from Canada. Today NASA and the Canadian Space Agency announced Hadfield will be heading to the International Space Station in 2012, serving as Flight Engineer for Expedition 34, and then transitioning to Commander midway through his 6-month stay when Expedition 35 begins. Hadfield will be the first Canadian to serve as Commander for the ISS. His ebullient style and passion for space exploration — evident in the video above from today’s announcement (Hadfield speaks in both French and English, so don’t worry if you’re not fluent in one or the other) should make for a lively and enlightening time on the ISS.

“This honor is beyond words,” Hadfield said at today’s announcement. “To have this opportunity is extremely challenging, extremely exciting and extremely rewarding. It still is two years away, I still have to pass two more of the toughest physicals on Earth before they’ll let me get in that Soyuz and dock with the space station… To be trusted … with the entire station on behalf of all the world’s space faring nations, but specifically Canada is a tremendous honor that we all can share.”

While there have been several great ambassadors for the wonders of space exploration who have served on board the ISS, Hadfield is one astronaut who can truly share what the experience of spaceflight is really like. See our interview with Hadfield where he describes what it is like to go on a spacewalk. (Or you can listen to the interview on the 365 Days of Astronomy podcast here.) He also has a great description of how to go the bathroom in space.

[/caption]

Above is Hadfield’s mission patch, in the shape of a guitar pick, which is symbolic of Hadfield’s musical interests with an emphasis on science and art, a distinguishing feature of Expedition 34/35, says Robert Pearlman from collectSPACE.

Joining Hadfield will be US astronaut Tom Marshburn, and Russian cosmonaut Roman Romanenko will also serve as flight engineers for the Expedition 34 mission. Astronaut Kevin Ford and Russian cosmonauts Oleg Novitskiy and Evgeny Tarelkin were previously announced as the other crew members for Expedition 34, which begins when Soyuz 31 undocks from the station in October 2012.

Expedition 35 will begin with the undocking of Soyuz 32 in March 2013. At that time, Hadfield will serve as station commander, with Marshburn and Romanenko continuing as flight engineers. The three additional crew members for Expedition 35 have yet to be assigned.

Hadfield and Marshburn have already completed an expedition together on the NEEMO (NASA’s Extreme Environment Mission Operations) underwater habitat, so they should make a great team in space. You can read Universe Today’s interview with them during their mission under the sea.

Sources: NASA, SpaceRef, CSA

Dragon Drop Tests and Heat1X-Tycho Brahe Set to Launch – SpacePod 2010.08.24

Home made rockets launched from home made submarines next to dragon wings floating in the ocean on your SpacePod for August 24th, 2010

Before we begin I just wanted to give a shout out to our new viewers on both Space.com and Universe Today. Hopefully you like what you’ll see and you’ll stick around for a while, check out some of our other videos and join us for our live weekly show all about space. For today though, lets start over the Pacific Ocean where SpaceX tested the Dragon’s parachute deployment system on August 12th, 2010.
Continue reading “Dragon Drop Tests and Heat1X-Tycho Brahe Set to Launch – SpacePod 2010.08.24”

Danish Amateurs Hope To Launch Suborbital Rocket Next Week

Copenhagen Suborbital's HEAT rocket and Tycho Brahe capsule ready to launch. Credit: Copenhagen Suborbital

[/caption]

It’s something like the movie “Astronaut Farmer,” but this is for real. And it’s in Danish. Copenhagen Suborbitals, headed by Kristian von Bengtson and Peter Madsen, hope to launch the world’s first amateur-built rocket for human space travel. As of this writing, the launch countdown clock on the Copenhagen Suborbitals’ website reads 7 days and 12 hours, which would put the launch on August 30 at about 1300 GMT. This upcoming flight will be an unmanned test flight, but if all goes well, Madsen hopes to be inside the single-passenger capsule named Tycho Brahe for a manned flight in the near future. They have a sea-launch site on the Baltic Sea near Bornholm, Denmark, and their HEAT 1-X rocket is ready to go.

Peter Madsen and Kristian von Bengtson. Credit: Copenhagen Suborbitals.

The team has been building their hybrid rocket since about 2004. Copenhagen Suborbitals is a non-profit endeavor, based entirely on sponsors and volunteers. Their mission: launch a human being into space. If they are successful, Denmark would become only the fourth nation to send a human into space. But this project is completely private – no national funds have been used. “We are working fulltime to develop a series of suborbital space vehicles – designed to pave the way for manned space flight on a micro size spacecraft,” said Madsen and von Bengtson on their website.

The Hybrid Exo Atmospheric Transporter or HEAT, is their booster rocket. It stands about 9 meters high, and it is a real scale rocket with a 640 mm diameter tube and uses liquid oxygen (LOX) for fuel. The HEAT booster will burn for about 60 seconds, providing 40kN of thrust, resulting in less than 3-g making the trip feasible for humans to endure in an upright position.

The flight trajectory for the HEAT rocket. Credit: Copenhagen Suborbitals.

The booster was successfully test-fired in February and May 2010. Copenhagen Suborbitals has also built three other rockets and successfully tested and flown them, including a small unmanned sounding rocket, named Hybrid Atmospheric Test Vehicle or HATV and smaller versions of the HEAT rocket.

“The mission has a 100% peaceful purpose and is not in any way involved in carrying explosive, nuclear, biological and chemical payloads,” said Madsen and von Bengtson.“We intend to share all our technical information as much as possible, within the laws of EU-export control.”

Previously, Madsen built the world’s largest home-made submarine, UC3 Nautilus. von Bengtson used to work for NASA. “This is the wildest thing I’ve made,” said Madsen in the Danish publication B.T. It is much wilder than the submarine.” Madsen added that he was tired of waiting for NASA, so decided to build a rocket himself.

The Tycho Brahe capsule is a single passenger capsule with a full view through a polymer plexiglas-dome so that the person can see and experience the entire ballistic ride. It has a pressurized volume providing support for one upright standing/half-sitting person. It will also have additional pressurized space, around and behind the astronaut, available for several other systems necessary for the flight procedure, and to support additional scientific and commercial project.

Peter Madsen inside the Tycho Brahe capsule. Credit: Copenhagen Suborbitals.

Copenhagen Suborbitals is taking donations, so check out their website. There’s also lots of images and videos available, on the site, too.

Since I am of one-half Danish heritage, I find this especially exciting. We’ll be following the progress of the Copenhagen Suborbitals’ historic flight. Stay tuned!

NASA Managers Approve Additional Shuttle Flight

Atlantis launches on its last scheduled mission. Image credit: Alan Walters (awaltersphoto.com) for Universe Today

[/caption]

While the final decision on adding an additional shuttle flight rests on the political process, today NASA managers approved adding the STS-135 mission, from a safety and logistics standpoint. If Congress gives final approval for funding one more shuttle mission beyond the two that are currently on the manifest, space shuttle Atlantis would be targeted to launch on June 28, 2011. The STS-135 mission – if not needed as a “Launch on Need” rescue flight for STS-133 or STS-134, would have a 4-member crew and carry a fully-loaded multi-purpose Logistics Module (MPLM) and a Lightweight Multi-Purpose Carrier to the International Space Station.

NASA’s Aerospace Safety Advisory Panel approved adding the flight from a safety standpoint. Having a crew of four means the crew – if stranded on the ISS – could stay on the space station and rotate coming back to Earth on the Soyuz spacecraft that serve as rides home/rescue vehicles , and NASA would not need another shuttle on standby for a rescue.

Originally, the Senate version of NASA’s 2011 budget included funding for an additional shuttle mission but the House version did not. However, NASASpaceflight.com reported that “The House authorization bill added the additional flight to mirror the Senate bill,” adding that the two bills differ in how the flight would be paid for.

Atlantis will be processed for the STS-335 Launch On Need mission, and the final decision on whether STS-135 becomes a reality remains to be seen. Stay tuned!

Source: NASASpaceflight.com

AEHF-1 Rides Atlas V To Orbit

A United Launch Alliance Atlas V carries the AEHF-1 satellite to orbit.

[/caption]

The U.S. Air Force successfully launched the first Advanced Extremely High Frequency satellite (AEHF-1) on top of a United Launch Alliance (ULA) Atlas V rocket Saturday, Aug. 14 at 7:07 a.m. EDT. The Atlas V lifted off from Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC 41) riding a pillar of flame across the morning sky. The window for the launch was two hours long, however it wasn’t needed, the launch occurred on the first attempt. 

“As we expected it was a totally successful launch.” said U.S. Air Force Captain Glorimar Rodriguez.

The AEHF constellation of satellites will replace the aging Milstar satellites. The more-modern AEHF is designed to ensure rapid communications for military leaders. This new, jam-proof system will be the link between the president and the armed forces in the event of a nuclear attack. Lockheed Martin is the prime contractor to construct both the AEHF fleet of satellites as well as the mission control center where the satellites will be operated.

AEHF launch. Credit: Alan Walters (awaltersphoto.com) for Universe Today

There are a number of U.S. allies that are involved with the AEHF program and can use these satellites once the system is activated. Some of these allies include the Netherlands, Canada and the United Kingdom.

When the system is complete it will be comprised of three functioning satellites and a spare satellite. These satellites will be inter-connected and are capable of communicating with one another. They will provide the military with vital communications-related data including, but not limited to, maps, video and targeting data. When operational, the AEHF constellation will be operated by the 4th Space Operations Squadron, who are stationed at Schriever Air Force Base, CO.

Pre-launch. Cape Canaveral Air Force Station’s Space Launch Complex 41. Credit: Alan Walters (awaltersphoto.com) for Universe Today

Spacewalkers Remove Failed Pump Module on ISS; Two More EVAs Needed to Complete Repairs

Image above: Expedition 24 Flight Engineers Doug Wheelock (right) and Tracy Caldwell Dyson work to replace a failed ammonia pump module outside of the International Space Station. Credit: NASA TV

[/caption]

Overcoming a disappointing spacewalk last weekend, today astronauts Doug Wheelock and Tracy Caldwell Dyson successfully removed the failed ammonia coolant pump module on the S1 truss of the International Space Station. But NASA managers said that at least two more EVAs will be required to complete all the repairs to the critical cooling system. Earlier, it was hoped that two spacewalks total would allow enough time, but it will take at least four. “There were a number of challenges in the first EVA that set us back, but as we looked closer at this, we were hedging our bets at how many EVAs we had ahead of us,” said Spacewalk officer David Beaver at a press briefing following the successful EVA today. “As we have done more and more work in laying this out in a stepwise fashion, it became clear to us early on that this was a much bigger set of EVAs than we originally made time for.”

He added that on orbit, the astronauts have stopped all research in order to save on the cooling system. The complex systems keeps the station from overheating and the six-member crew has relied on just one — instead of the usual two pumps –to handle the cooling ever since the one pump failed during a power surge on July 31.

“The system has been kind to us and we haven’t had any more failures,” Beaver said.

The spare pump will be installed on the S1 truss during a spacewalk that is now scheduled for Monday – originally it was set for Sunday, but NASA managers decided an extra day would help both the astronauts and the teams on the ground preparing for the EVAs.

Wheelock and Caldwell Dyson were able to close the quick disconnect valve for the final fluid connector for the failed ammonia pump module, and then detach the final fluid line from the failed ammonia pump module – which was the problem that couldn’t be overcome on the first spacewalk.

The two astronauts then extracted the pump module and stowed on another location on the truss, and Caldwell Dyson prepared the spare pump for installation on the next spacewalk on Monday.

The spacewalk lasted 7 1/2 hours, slightly shorter than Saturday’s eight-hour marathon, the longest EVA at the ISS without a space shuttle present. Wheelock and Dyson had to use decontamination procedures after the spacewalk just in case some ammonia leaked on their suits.

In response to the power-saving reconfiguration that has had to be done, the science team worked quickly to establish a plan to preserve experiment samples in the Japanese Experiment Module freezer. The on-orbit crew was able to transfer all the samples from the freezer in the Kibo laboratory to an operating freezer. No sciences samples were lost due to the pump module anomaly.

While the crew schedule has been interrupted to support the newly added spacewalks, the payload ground teams have been working closely with mission controllers to preserve and re-plan high priority activities. Other activities that can be rescheduled with little or no impact are being postponed to a later date.