How did you do in last week’s Universe Puzzle? Did you figure out an answer, but didn’t write up your reasons why it was the best?
Do you enjoy these puzzles? What do you particularly like? Dislike? Would like to see changed? Would like to see more of? Let me know please!
Once again, this week’s puzzle requires you to cudgel your brains a bit and do some lateral thinking (five minutes spent googling likely won’t be enough). But, as with all Universe Puzzles, this is a puzzle on a “Universal” topic – astronomy and astronomers; space, satellites, missions, and astronauts; planets, moons, telescopes, and so on.
Say you’re at a friend’s place for a party. They’re playing some 60’s rock music, and a catchy song comes round. You wonder who the band is, and someone says “it’s the most famous 60’s band that you’ve never heard of!” (perhaps it’s Herman’s Hermits).
Well, this week’s Universe Puzzle is:
Who is the most famous astronaut you’ve never heard of?
And for ‘astronaut’ let’s include cosmonauts, taikonauts, and so on.
Be sure to explain your pick.
Update: answer posted below.
There certainly is not just one best answer!
You, dear commenters, are the judges: which of the answers below do you think is the best?
Universe Puzzle will be taking a bit of break, so there won’t be one next week. However, I really would appreciate your feedback: which of the 13 puzzles so far did you most like? which did you least like? what sort of puzzles would you like to see in future?
Our readers had questions about our series “13 Things That Saved Apollo 13,” and NASA engineer Jerry Woodfill has graciously answered them. Below is the final round of Q & A with Jerry; but if you missed them, here are part 1 and part 2. Again, our sincere thanks to Jerry Woodfill for not only answering all these questions — in great detail — but for being the impetus and inspiration of the entire series to help us all celebrate the 40th anniversary of Apollo 13.
Question from Dennis Cottle: I am wondering how much information was held back from one division to another in NASA regarding safety aspects of vehicles and for that matter the entire mission . In other words did the left hand have any idea what the right hand was doing in regards to safety?
Jerry Woodfill: One of the greatest achievements of Apollo was the management structure, i.e., how a program involving three main NASA Centers (Manned Spacecraft Center, Marshall Spaceflight Center, and Kennedy Space Center) with dozens of divisions among their civil servants and contractors could achieve a lunar landing. No, I didn’t experience any “holding back of safety information”, but I can vouch for the idea that the right hand DID KNOW what the left hand was doing.
I contend that this is the case because of my experience as the Caution and Warning Project Engineer for both the Command/Service Module and the Lunar Module. Despite Universe Today granting me the unspeakable privilege of explaining Apollo 13, at the time (1965-1972), I was a very-very low level engineer. Yet, when it came to how the management system regarded my opinion and input, I was treated with the same respect and consideration as the Apollo Program Manager. This was the brilliance of the program, intimately involving everyone’s contribution. Such a posture led to ferreting out safety issues. If someone was trying to hide something, another group would relish the opportunity to shine a laser light on the item.
Here are examples: I remember sitting at my desk talking by phone with a Grumman engineer about the status of the lander’s warning electronics. When I looked up, there was Apollo astronaut Jack Lousma standing before me. Jack had a question about one of the caution and warning alarms. On another occasion, the head of the entire Lunar Lander Project at the Manned Spacecraft Center, Owen Morris, called me directly asking how the warning system detected a “run-away” thruster. (Owen was at least five levels above my station at the Manned Spacecraft Center.) Not only do these examples speak to the openness of the Apollo teaming effort, they also reveal how intimately knowledgeable were all levels of workers, from Astronaut to Program Manager. The example of the Apollo 13 team’s fix of the CO2 filter problem, given in the duct tape account, likewise demonstrates the teamwork. Any of us might be consulted to assist. There was nothing hidden from one-another.
I always felt Grumman got a “bad rap” in the movie “Apollo 13” which was altogether undeserved. This regarded the scene about using the descent engine in a novel way for the rescue. Contrary to that scene, the Grumman guys were altogether thorough, cooperative, and excellent engineers…proactive to almost a fault. I’d have treated that scene differently from my experience with the Bethpage GAEC engineers.
Let me cite another example. After the Apollo One tragedy, I was asked to lead a NASA/Grumman team to review what changes need be made to the lander’s warning system. I’d travel to Long Island once a week to meet with the instrumentation group. Earlier, I’d had this thought about one of the Caution and Warning alarms, the Landing Radar Temperature alarm. The way the sensor functioned might cause it to ring a nuisance alarm. This might occur during Armstrong and Aldrin’s moon-walk, leaving the lander unoccupied. My concern was, if the thermal environmental near that sensor behaved “inappropriately”, the alarm would sound, aborting the EVA.
Rushing back to the LM, they’d discover a system no longer used after touchdown had sounded an alarm. This would have wasted, perhaps, an hour of their time. (Can you imagine what an hour of EVA time was worth on Apollo 11’s brief two and one-half hour walk?) I simply mentioned this to Jimmy Riorden, the Grumman manager. He set his guys to work, and they verified my concern. Furthermore, they suggested and implemented a fix, saving the program millions of dollars based on Armstrong and Aldrin’s hourly moonwalk cost. That’s the kind of cooperation that I experienced working with Grumman. This was the norm, not an exception.
Question from ND: To quote from the article, part 5: “While a fix had been planned for Apollo 14, time did not permit its implementation on Apollo 13’s Saturn V.”
But did it really need to be the hindsight of the Apollo 13 launch to know that this was a dangerous thing to do? Was delaying the Apollo 13 launch not an option?
Jerry Woodfill: I’m trying to be generous in giving opinions about those things which proved to be detrimental to Apollo. This is because I wasn’t involved in many of the situations I’ve been asked to discuss. So my answer should be classified as conjecture. In such cases, I’m trying to share examples from my experience where I made a decision which later proved to be the wrong one. The same mechanism which led to Apollo 13’s Oxygen Tank’s explosion probably speaks to your question. Nancy detailed all the series of WRONG THINGS, which, at the time, were considered to be the RIGHT THINGS which led to the explosion.
Yes, in looking back, for sure, the better thing, as you suggest, would be fix the problem and delay the launch. Yet, I’m sure those who made the decision to press forward believed they were justified in moving forward. I have saved most of my notes from day-to-day issues I dealt with on the lander’s warning system from 1966 forward. There are scores of the kinds of decisions I approved. These are like the decision to postpone the pogo fix until Apollo 14.
In fact, the configurations for my warning system differed for LM-1, LM-2, and LM-3 and subsequent landers. LM-5 landed on the Moon. This was the nature of Apollo engineering. I can still review each decision I made with regard to delaying an improvement. Sometimes it was based on meeting a schedule. In other instances, an analysis revealed the problem simply had no impact on the type of mission the LM would have.
Trying to reconstruct my justifications for a system I knew intimately is extremely difficult, even with my notes. So I really can’t confidently address your question other than to say it was probably based on the same kinds of decisions I made, whether good or bad. However, I do recall researching the second stage POGO problem months ago which led to it being included among the “13 Things…” Below is some of what I found:
Mitigating Pogo on Liquid-Fueled Rockets, Aerospace Corporation Crosslink magazine, Winter 2004 edition : Later missions included anti-pogo modifications, which had been under development since before Apollo 13, that solved the problem. The modifications were the addition of a helium gas reservoir in the center engine liquid oxygen line to dampen pressure oscillations in the line, plus an automatic cutoff for the center engine in case this failed, and simplified propellant valves on all five second-stage engines.
Perhaps, the following sentence in the above summary is the explanation: “…but on Apollo 13 (POGO) had been amplified by an unexpected interaction with the cavitation in the turbo-pumps.”
Question from Cydonia: I always thought, that idea to use SPS and turn 13 around right after explosion was fiction of Apollo 13 movie. Somebody could explain to me, how could SPS be used to do that? They would need to change delta v for some 20 km/s! Doesn’t they?They used whole Saturn V to get half of that. What’s the math to make such maneuver possible?
Jerry Woodfill: Cydonia, recently an excellent paper (referenced in Part 6 of “13 things…) touched briefly on your question. Here is the link to that paper.
Here is information from the paper referring to your question:
B. Direct Return to Earth.
Soon after the incident Mission Control personnel examined direct return to Earth aborts that did not include a lunar fly-by. These burns had to be performed with the SM SPS before ~61 hours GET, when the spacecraft entered the lunar sphere of gravitational influence. Landings in both the Pacific and Atlantic could be made. A direct return to Earth (no lunar fly-by) with a landing at 118 hours GET could only be accomplished by jettisoning the LM and performing a 6,079 foot/second SM SPS burn (Table 2). Abort maneuver data for this burn was already on-board the spacecraft as a part of normal mission procedures. However, this option was unacceptable due to possible damage to the SPS and the necessity of using LM systems and consumables (power, water, oxygen, etc.) for crew survival.
Question from G2309: I’m really enjoying these posts I’ve always found the story fascinating. But what I don’t understand why they didn’t just replace the damaged tank rather than repair it. I understand the tank must be expensive but not compared to the cost of a failed space flight. ‘they couldn’t detect what damage might have occurred on the inside so why take the risk?
Jerry Woodfill: Since Tank 2, despite being “jarred,” exhibited no significant problems in retests, (see the four items below) the consensus was no damage was done. Below are the findings of the NASA Apollo 13 Investigation. I’ve included them as the justification given to your question about “why take the risk?” Indeed, on hindsight, the answer would be in the negative, i.e., don’t take the risk.
1.) It was decided that if the tank could be filled, the leak in the fill line would not be a problem in flight, since it was felt that even a loose tube resulting in an electrical short between the capacitance plates of the quantity gage would result in an energy level too low to cause any other damage.
2.) Replacement of the oxygen shelf in the CM would have been difficult and would have taken at least 45 hours. In addition, shelf replacement would have had the potential of damaging or degrading other elements of the SM in the course of replacement activity. Therefore, the decision was made to test the ability to fill oxygen tank no. 2 on March 30, 1970, twelve days prior to the scheduled Saturday, April 11, launch, so as to be in a position to decide on shelf replacement well before the launch date. Accordingly, flow tests with GOX were run on oxygen tank no. 2 and on oxygen tank no. 1 for comparison. No problems were encountered, and the flow rates in the two tanks were similar. In addition, Beech was asked to test the electrical energy level reached in the event ofa short circuit between plates of the quantity probe capacitance gage. This test showed that very low energy levels would result. On the filling test, oxygen tanks no. 1 and no. 2 were filled with LOX to about 20 percent of capacity on March 30 with no difficulty. Tank no. 1 emptied in the normal manner, but emptying oxygen tank no. 2 again required pressure cycling with the heaters turned on 4-22
3.) As the launch date approached, the oxygen tank no. 2 detanking problem was considered by the Apollo organization. At this point, the “shelf drop” incident on October 21, 1968, at NR was not considered and it was felt that the apparently normal de-tanking which had occurred in 1967 at Beech was not pertinent because it was believed that a different procedure was used by Beech. In fact, however, the last portion of the procedure was quite similar, although a slightly lower GOX pressure was utilized.
4.) Throughout these considerations, which involved technical and management personnel of KSC, MSC, NR, Beech, and NASA Headquarters, emphasis was directed toward the possibility and consequences of a loose fill tube; very little attention was paid to the extended operation of heaters and fans except to note that they apparently operated during and after the detanking sequences. Many of the principals in the discussions were not aware of the extended heater operations. Those that did know the details of the procedure did not consider the possibility of damage due to excessive heat within the tank, and therefore did not advise management officials of any possible consequences of the unusually long heater operations.
Question from Spoodle 58: In your opinion, as you have built the equipment to get man into space, do you think we as a species are being too cautious in our approach to exploring space? Or are we afraid of incidents like Apollo 13 happening again or worse like the shuttle Columbia, or do you think we should just get out there like the explorers of Earth in middle ages, take on space, take on the risk of being in space not just leaving robots and probes doing the work but to get some real people out there?
Jerry Woodfill: I like your question because it is one all of us at NASA continually ask ourselves. This results in a culture which does attempt to learn from past mistakes. It’s like the idea of sins of “omission an commission.” What did I fail to see about Apollo One, Columbia, or Challenger that could have avoided the tragedy? This is a question each of us who worked in any capacity on these vehicles and missions ask ourselves. I know I did.
When we speak of NASA, we are speaking collectively, not of the individuals that comprise the agency. But the thousands of individual employees, (I’m one of them.) are responsible for what you have asked. It’s always easy to hide behind the collective name for us NASA, but actually, it comes down to a single employee or small group who either did something exceptionally beneficial, or, woefully, hurtful. From time-to-time I’ve been in both groups. Over 45 years of NASA employment, I could cite many examples in each category. But most have been satisfactorily reported by the press such that changes have been made for the better.
An example would be the Columbia tragedy. Now, each tile and thermal surface is carefully examined post-launch to insure integrity of the reentry system prior to the orbiter’s return. For Apollo, an extra Oxygen Tank was added independent from the pair which failed. Additionally, a battery with 400 amp hours capacity was added as a backup should the fuel cell system failed. These changes were directly a result of reviewing the mishap so that fixes would be implemented to prevent a recurrence.
On September 12, 1962, I, a Rice junior Electrical Engineering student, listened in Rice Stadium to President John Kennedy. It led to my NASA career. Listen especially carefully about why, as you put it, we should taking on space and taking on the risks:
(This is a video of Jerry Woodfill reciting President Kennedy’s speech at Rice University)
Also, there were several people who had questions about why the damaged Service Module wasn’t jettisoned immediately following the accident (or as soon as it was ascertained that the tank had ruptured).
Jerry Woodfill: I want to congratulate the readers of “13 Things…” Before Nancy suggested I reply to the questions as well as added queries, many of you had already given the right analysis. This was among them: The answer was, “not wanting to expose the heat shield to the severe hot and cold space environment for many days.”
Like the use of the lander’s descent engine, in a new way, the heat shield had not experienced such an extended thermal environment. The thought was, “Why add the risk?” Of course, some would argue that trying to steer the assemblage was extremely difficult with the attached service module. This placed the center of gravity in a cumbersome location for Jim Lovell’s steering via the lander’s thrusters. In fact, at first, Jim had difficulty avoiding what is known as “gimbal-lock”, a condition like a bicycle rider losing balance and falling over. But Jim triumphed over the steering problem faster than most of us can adapt to a new video game joy-stick.
You want details on this subject? Astronaut Mike Massimino has got ’em. The best line in the video comes from Mass: “This is the deepest, darkest secret about spaceflight. People always ask us about UFOs and aliens, and we’ve got nothing for them. But they don’t know about this,” this being that astronauts have a positioning trainer and aligning camera to teach them how to go to the bathroom in space.
Who knew that the terms “docking” and “aligning” have multiple uses in space?
Our many thanks to NASA engineer Jerry Woodfill for taking the time to answer questions from our readers about our series on “13 Things That Saved Apollo 13.” Here is part 2 of the questions, and if you missed Part 1, here is the link. That’s Jerry above, in the image with Apollo 13 astronaut Fred Haise. We’ll have one more round of Q & A’s with Jerry in a subsequent post.
Question from Billy Wells: The Apollo astronauts were suffering from being very cold on the way back from the moon – one of them being sick with a fever at that same time. Why didn’t two of them put on the lunar space suits that were on the lunar module ? I would think that would have kept them from being so cold and miserable during that trip home.
Jerry Woodfill: Have you seen the movie “A Christmas Story” about Ralphie and his heart-felt longing for a “Red-Ryder-carbine-action-range-model-lightning-loader-200-shot-air-rifle?” Well the author and I went to the same school, 20 years apart. We even had the same freshman English teacher, Mrs. McCullough. You are wondering what this has to do with cold Apollo 13 astronauts. In the movie, Ralphie’s brother Randy is “space-suited” by his Mom for a walk to school in the frigid northwest Indiana wind-blown environment. (The wind-chill must have made Apollo 13’s cabin feel tropical. I know I experienced it.) Randy’s attire is space-suit-like, bulbous, tight, immobile and wholly uncomfortable. When the lad trips, he is prostrate on his back unable to right himself, his limbs flailing with a dying Texas cockroach.
None of the astronauts, by their comments, enjoyed wearing Apollo spacesuits because of this “Randy-Effect”. In fact, they were only required to don the garments during critical mission phases. During such times, a malfunction-leak in the cabin might cause a loss of pressure and death.
In this series, the replacement of Ken Mattingly by the robust footballer Jack Swigert was discussed earlier. This relates to your question. Yes, the sick Fred Haise needed warming. But the discomfort of the space-suit rather than the comfortable/cooler casual wear was a factor. Besides, as long as Fred remained dry, the casual attire retained his body heat. No breeze was present, and, I’m told, that the actual 98.6 body temperature tended to warm crewmen through radiant body heating. Their inert bodies encapsulated within their casual wear tended to retain radiated body heat. Also, Fred had to record on paper updated procedures. The handicap of a space-suit’s “Randy-Effect” would make writing/printing more difficult.
Someone did a later study about how cold Apollo 13 actually was. I know that 38 degrees F was sort of accepted as the temperature during the rescue. (This was the reported temperature in the far reaches of the dead Command Module quarters where Jack Swigert dwelled.) But other analysis found an environment not nearly as cold, especially in the lander. The customary “barbeque-rotational-solar” heating was always present. Nevertheless, Jim Lovell stated in the 40th Anniversary panel discussion I attended, “I actually did hug Fred to keep him warm as the movie depicts.”
Now back to Randy: My Mom made me wear long-underwear from the same store Ralphie asked Santa Claus for the “Holy Grail of Gifts”, a B-B gun. It was like the multilayered Apollo space-suit underwear. You had to stuff the “long-johns” into your socks so the Lake Michigan wind wouldn’t slice into your ankles like a frozen meat cleaver. Then she insisted on “scratchy” coarse wool pants akin to an astronaut’s outer garment. I think that is why Haise rejected suiting-up in his LEM lander attire. I know I would have rather been a little cold than trussed-up in Mom’s Indiana winter-wear. If I see Fred, I’ll ask him about this. He lives near here. But would you opt for the comfort of what’s pictured below over the more casual astronaut garments worn on Apollo 13?
Question from John McKenna: Are solid rockets affected by POGO as was Apollo 13’s second stage?
Jerry Woodfill: While there is scant evidence of a Pogo-like effect in solid rockets, there is a likewise serious threat of resonant oscillations. It is described as a common shaking problem for solid rocket boosters. The mechanism results from pulses of added acceleration caused by gas vortices. It is akin to the wake generated by a speed-boat. When these vibration vortices resonate with the natural frequencies of the solid rocket motor’s combustion chamber, the combined effect can cause a destructive shaking just as serious as a liquid booster’s POGO threat.
Question from LPScott: Hey Jerry…One of my favorite questions about the Lunar Lander…Why did they end the steps about 3 feet from the surface and make the astronaut leap those last few feet? Why not make the steps go on down to the landing pads? Even if the surface had been softer the last step would just sink in and they would not have had to jump?
Jerry Woodfill: I love this question. Thanks for asking it. The reason I like it is because I was a friend of the NASA engineer responsible for the LM’s landing gear. Unfortunately, I couldn’t locate him for an answer. (I did a Google and Switchboard search. He must have moved away. He retired years ago.) So I’m going to “speculate” slightly from my background with lunar lander engineering. I think, in part, it has to do with the gear’s shock-absorbing design. A “posterior” jarring uneven touch down might be so jolting and uneven as to cause the forward pod to cant significantly. In such an instance, that lower rung of the ladder might jam into a lunar boulder or even an irregular rise in the surface topography. Why chance such a thing? Make the ladder shorter to provide clearance. In one-sixth gravity, that last step is virtually a play ground skip off a children’s playground slide.
But this brings to mind a related account I think Universe Today’s readers will enjoy. Just several months before the July, 1969 landing, Neil Armstrong asked my friend to join him for a meeting with the Apollo Program manager, George Low to discuss the “one small leap (at least, as you said, three feet) for all mankind.” Each lander leg had, of course, landing pods. But what troubled Armstrong were the lunar contact probes extending another 5.6 feet beneath each of them. When they brushed the surface, the display panel lunar contact light would come on. This was the signal that the descent engine could be turned off.
Now, if you’ve watched the video of Buzz Aldrin’s leap backward onto the Moon from that last ladder rung, imagine what would have happened to Armstrong or Aldrin’s air-tight space-suit had the ladder’s leg contact probe bent up saber-style “inappropriately.” That would have spoiled Armstrong’s day. The result of Armstrong, Low, and my friend’s meeting was there would be no contact probe henceforth on any of the LEM’s forward ladder legs, including the Eagle.
Question from Steve Nerlich: Do you know if the scene in the movie “Apollo 13” where the actors all rip their medical telemetry off, in defiance of mission rules, really happened?
Jerry Woodfill: First, let’s review Jim Lovell’s book, renamed Apollo 13 (formerly Lost Moon). BTW, the best answer would come from Fred Haise and Jim Lovell. At times, either man might share what was embellished by Hollywood and what actually happened. For example, at the recent JSC 40th Anniversary panel discussion, Jim said, “That scene where I hugged Fred to warm him really happened.”
I checked the book. Interesting, that I randomly opened to page 269 which answers your question. I won’t quote it here, but I’m sure you have access to a copy. It pretty much answers your question(s) about the med-sensors.
Nevertheless, had I known your question, I’d have asked it at the Q & A at the 40th anniversary celebration. Should I encounter Fred (he lives near JSC.), I’ll ask him the question. But my thought is, “Yes, they removed the uncomfortable sensors, but probably not in the dramatic fashion shown in the film.” I’ve reviewed that cinematic treatment of the rescue dozens of times. Each time, I find something of interest to share with those I give presentations on the topic of the rescue. But generally, the screen play is a reliable recreation of events on board Apollo 13. Perhaps, I should do a “What’s Real/What’s Not” about the movie Apollo 13. While some have already created web-sites listing such, I have many more concerning the displays and caution and warning from my perspective, since I was a project engineer responsible for them. It might be a good way to encourage interest in manned space exploration. So thanks for the question.
Question from Chad: All of the books on Apollo 13 carry a certain tone of absoluteness… When the men of Apollo 13 became stranded, everyone involved seems to recall an attitude of “We Must!” My question is this: Looking back, was that an attitude that was held true at heart, or only projected outwardly. Obviously everyone involved on the ground was going to do EVERYTHING humanly possible to bring those men home safely, but to put it bluntly, failure was most definitely one of the possibilities. How did that weigh on your mind and heart? Did it help you (the plural you) work harder at the problem, or was a hindrance… Kind of a needle in your brain that jabbed at you constantly?
Jerry Woodfill: Chad…I’ll ask you to Google the name “Jerry Bostick”. His comment about how he came to author the phrase “Failure is not an option.” speaks to your question.
Also, I think these accounts kind of speak to what I felt then and still believe about “failure not being an option.”
I’d like to paraphrase and partially quote their content:
A mother and father’s son fell from a tree breaking his spine. The day he broke his spine, doctors said he’d probably be paralyzed for life. His parents said, “no way.” His mother recalled, “One of my comments at that point was from Apollo 13, which was, ‘Failure is not an option.'” Well, with the same resolve exhibited by the movie Apollo 13, the father searched the Internet and found an experimental drug that offered some promise if given within 72 hours of the injury. Like the movie Apollo 13, this was accomplished, but in 76 hours. However, though it seemed like an answer to their prayers, there was no assurance it would work in their son’s case. But it did! And 10 weeks later, he walked out of the hospital. Though doctors could not be sure it was a result of the drug, they admitted it was, as many view the rescue of Apollo 13, something of a miracle.
The second incident deals with the account of a daughter whose father is dying with cancer. She writes in hopes of encouraging others who must care for loved ones on the brink of eternity.
“Well… Apollo 13 has become my role model, my support, my comfort, and my favorite movie at 3 AM when I can’t sleep because I’m so overwhelmed with my own life. I’ve already written a review of Apollo 13 the movie. You can go look it up. I said it was great. I said you should watch it. But this isn’t just a review of the movie. This is about how I have emotionally connected with the movie. This is about how I use the movie as a crutch to get me through the day. This is about how Apollo 13 keeps me sane in an insane time!”
“They say that Apollo 13 was a Successful Failure because of all they learned from the experience. I’m hoping that my experience with cancer will also be a Successful Failure. The doctor has already told us that my dad won’t be cured and any treatments we do won’t change that. So I already know that I’m going to be a failure… Nothing I do can save my father’s life. But maybe I can learn and grow. Just maybe my dad and I can have some more good times together. Maybe we can have some fun and overcome some challenges on this journey. Then I’d say it would be a successful failure for sure. Sometimes I’m surprised at how my life seems to parallel the hardships the astronauts had to endure. I find myself doing things for my dad that I never imaged I would have to do.”
“The one line in Apollo 13 that echoes in my mind is Gene Kranz saying, “Failure is not an option!” I know that he meant they had to bring the astronauts back alive. I also know that my dad is dying and I can’t do anything to change that — except pray for a miracle. I am praying for a miracle, but I also know that I have to be prepared for my dad’s death. However, I still insist that FAILURE IS NOT AN OPTION! So, if death is inevitable — what do I mean? Well, I mean that whatever happens, I have to make sure I don’t give up. I don’t lose sight of the wonderful times we can still have. I don’t lose my humor or my love for life… I have to make sure that I do my best to make every day with my dad as wonderful as possible, that the end of his life is as good as it can be, and we learn something new every day we are together. I also need to remember that no matter how bad things get, I love my daddy and he loves me. If I just remember that… I can’t fail.”
Question from Terry G: With regard to the time constraints placed on the required engineering developments for the Apollo project, what was the greatest of the many engineering breakthrough that kept Apollo on track…which if any of the methods developed for Apollo’s lunar landings could we expect to see reused during the human space flight and landings on an asteroid and Mars?
Jerry Woodfill: The day you submitted this question, Nancy was drafting the best response I can think of – Lunar Orbit Rendezvous. Had America chosen the Direct Ascent Nova Class Rocket technique, I doubt if we would have succeeded in fulfilling President Kennedy’s challenge of reaching the Moon by 1970. Carefully read Account No. 12 in Nancy’s series of essays. It was the number one reason for our triumph!
As far as the second query, I’ll punt on that one, however, Google things like: Hohmann Transfer Orbit, Aldrin Cycler Orbit, and Libration Points. After reading about these techniques, you’ll be an expert on this kind of thing. Each summer, JSC has an event called THE SPACE SETTLEMENT CONTEST. I was one of the technical trainers, in robotics, for the high school students selected to attend. After doing Internet searches using the above search terms, I found a myriad of approaches exist, all having specific merits. Take a look at them. It’s a fascinating study.
NASA successfully tested the pad abort system developed for the Orion crew vehicle on Thursday morning at the White Sands Missile Range near Las Cruces, New Mexico. The 97-second flight test was the first fully integrated test of the Launch Abort System developed for Orion. “It was a big day for our exploration team,” said Doug Cooke, NASA’s Associate Administrator for Exploration following the test. “It looked flawless from my point of view. This is the first abort system the US has developed since Apollo, but it uses much more advanced technologies. It was a tremendous effort to get to this point, designing such a complex system, and we’ve been working on this for about 4 years. I appreciate the amount of dedication and focus from the team. It was beautiful, a tremendous team effort.” Continue reading “Successful Test for Orion Launch Abort System”
Now that our series on “13 Things That Saved Apollo 13” is complete, NASA engineer Jerry Woodfill has graciously agreed to answer questions from our readers. We have a lot of questions, so we will post some of Jerry’s answers today and more over the next few days.
Question from Daniel Roy: Did we ever find out why Apollo 13’s trajectory was too shallow on the way back in spite of TCMs? I have trouble believing that the low impulse/ slow venting/ random pointing from ruptured tanks could explain the delta V.
Jerry Woodfill: The shallowing trajectory resulted from the lunar lander’s cooling system discharging vapor during the coast back to Earth. It was not a result of residual release of remnant gases from service module damage. No Apollo mission returned to Earth with a LM attached except for Apollo 13. For that reason the slight but, nevertheless, noticed contribution to the shallowing entry angle had to be dealt with by the Apollo 13 retro. To this day, I find it remarkable that, though the retro did not know the source of the shallowing, he was certain it would cease after the last corrective compensating burn. And, of course it did, after the LEM was jettisoned.
Question from wjwbudro about how much residual power was provided by the fuel cells after the explosion
Jerry Woodfill: Your question about how much residual power the fuel cells contributed prior to employing the emergency (or some call them reenty batteries) launched me into some research about the chemistry of fuel cell operation. I’ve always shared that the reaction of hydrogen and oxygen produce electricity with two by-products extremely useful to human space exploration, breathable oxygen and water. Both oxygen and hydrogen must be present for the reaction to continue.
For Apollo 13, the sequence of the loss of the ability of the fuel cells to produce power relates to the loss of O2 and H2 entering them. Sy Liebergot has a wonderful CDROM where he deals with “how the data read.” Sy had to contend with analyzing what was going on (IN REAL TIME) with regard to the timing of loss of the O2 cryo-tanks, the fuel cells, etc. Google Sy on the Internet, and you’ll find a wealth of information discussing the issue. My admiration of how Sy dealt with such an overwhelming failure so masterfully continues 40 years after the event. But the bottom line is…no O2 into the cells no water, oxygen, or electrical power out. That was the reason for employing the emergency batteries. The fuel cells weren’t much help after because the rupture of the plumbing caused O2 tank One’s O2 to vent into space after O2 tank 2 exploded (I always say “exploded” though some disagree contending it to be a rapid heating of cryogenic O2 being vented into space, sort of like heating air in an empty sealed container until the vessel ruptures.)
Question from science teacher Christopher Becke from Warhill High School: What were the specs of the onboard computers, both in the LM and the Command Module? What was the clock speed and how much (and what type of) memory did they have? I’m trying to impress upon my students that their graphing calculators are more powerful than the computers that brought astronauts to the moon.
Jerry Woodfill: About a year ago, I felt like comparing Apollo 13’s computer to today’s state of the art. Besides the computers (CSM and LM), the only integrated circuit contained among the millions of spacecraft parts was an octal counter in my lunar lander’s caution and warning system’s brain known as the Caution and Warning Electronic Assembly or C&WEA for short. There was an excellent article I discovered at this link from the Download Squad.
These documents are a national treasure for recreating the technical history of Apollo. I authored the warning system portion of the Apollo Experience Report on the lunar lander’s Caution and Warning System.
I recall that the strength of the Apollo computer, though it was a “lightweight” in RAM and Hard-Memory, was its “multi-tasking” ability. (Better than an iPhone, since Apple chose not to include that capability presently in mine.) However, when my warning system began to ring “Program Alarms,” (warnings, five of them to be exact) this multitasking capability proved altogether helpful in making Armstrong the first man on the Moon.
One of the Apollo Computer’s “subtasks” was akin to a kind of low level housekeeping info thing which generated an alarm. But the priority executive routine of providing landing control continued undisturbed. Ignoring the program alarms by Flight Controllers Steve Bales and John Garman was a huge reason Neil Armstrong was first on the Moon, that President Kennedy’s prediction and challenge was fulfilled in that decade, and, most importantly, for me…that I didn’t go down in engineering/aerospace infamy whose warning system sounded a “false-alarm” making Pete Conrad and Allan Bean the first men on the Moon on Apollo 12. Thanks Steve and John!
Question from Greg: Should NASA be spending more time reviewing the Apollo 13 mission and other mishaps in order to better anticipate and respond more effectively to new and unexpected mishaps in future missions?
Jerry Woodfill: The neat thing about every one of these questions is they launch potential investigations which can only help future space travelers. Whether it was Apollo One, Apollo 13, Challenger or Columbia, each tragedy resulted in fixing a later situation which might have been fatal if corrective steps had not been taken to learn from failure. This question is one that I’ve addressed extensively in unpublished books I’ve authored.
Now, regarding failure to fix potentially fatal items; yes, over the course of my 45 year career, it is easy to reflect and study failures after the fact and cite instances where people, groups, circumstances resulted in disaster and tragedy. I’m one of those guilty people. I should have done a better job with regard to the Apollo One warning system. Collectively, and, perhaps, individually, we share the burden of not having done a better job for Gus, Roger, and Ed.
Specifically, I remember the final review at North American of Spacecraft 012 where Ed, Gus, and Roger sat at the front of the conference room. They were included with a NASA review panel determining how to disposition “open items” or “squawks” needing fixing before or after shipment of their Apollo One spacecraft to the Cape.
My warning system was a problem for me because it became sort of the “wolf crying boy” who is always the one to aggravate those who want to ignore a root problem blaming it on the messenger. During the initial factory tests of this, the first of the litter of subsequent Apollo Command modules, there were dozens of times the alarm system sounded Master Alarms.
In summary, virtually none were the fault of the alarm system. But, nevertheless, it was blamed until I could find the actual culprit. Some said, “The electronics are simply too sensitive ringing alarms when all that has happened is a momentary switch actuation causing a brief electrical transient which triggers that Master Alarm.”
After dealing with all the culprits, I had only one unexplained alarm remaining. This was the one I was called to present to the board which included Ed, Gus and Roger. “Next item, O2 FLOW unexplained Caution and Warning Alarm.” It was July of 1966. My wife Betty and I had been married less than a month, and here I was dealing with a life-threatening situation.
To digress here, I think the movie APOLLO 13 would have been better served with this event as the opening scene because all the players in the Apollo program were involved. I remember Apollo 7 crewman Walt Cunningham, one of the Apollo One back-up astronauts along with Wally Schirra and Donn Eisele, rooting around in the Spacecraft 012 mockup. Walt emerged with some kind of handle he had accidentally severed from the ship’s interior. Amazed and disgusted, Walt held it up for all to see. Perhaps, that was a precursor for what was to follow?
My explanation was that the O2 Hi alarm was another of those momentary transient things. I shared that nonthreatening events like a routine turning on of the cyclic accumulator demanded added O2 flow into the cabin actuating the alarm. In fact, in route to the Moon, even a urine-dump would cause the O2 flow to increase ringing the alarm. (Later, that was one of my jobs, to indicate in Apollo 11’s check-list that an O2 Hi master alarm could be expected for that reason.) If it was a problem, it would surface once more during Cape testing and be dealt with then. My assessment was accepted by the board.
On January 27th, 1967, Ed, Gus, and Roger were hours into what was called a “plugs-out” test simulating a voyage to the Moon. Suddenly came the call, “We’ve got a fire in here!” In seconds three men perished. When Deke Slayton arrived later and surveyed the interior of Spacecraft 012, he looked up at the alarm panel. The O2 flow hi light was still on. Likely, the ECS (Environmental Control System) should have called for the high flow of Oxygen feeding the fire, but I will never know if it came on before the fire to warn the astronauts to take action. So that is why I cannot “white-wash” this question because it is simply these kinds of events that result in the failures we have experienced over the course of human space flight. Whenever one happens, it is because of people like me who should have done a better job.
Question from Dirk Alan: My question is about the free return trajectory. After rounding the moon, could a spacecraft head back to earth – travel round the earth and head back to the moon? Could it round the moon and head back to earth again and again ? I’m asking if a space station would be feasible in a circumlunar orbit re-supplied now and again with fuel for course corrections to shuttle between the earth and moon?
Jerry Woodfill: The short answer is yes to all of the above. For Apollo 13, the free return trajectory has been much discussed. I’ve often reflected about it, as well. In fact, the first consideration in the rescue was to return to the free return trajectory after the explosion. (BTW, I think I erred in my No. 12 submittal of the “13 Things..” in suggesting that a lander-less-Apollo 13 would have resulted in cremating the crew days later if the explosion had occurred in the circumstance at 55 hours 54 minutes 54 seconds. They were not in the free return mode at that time having departed from it by an earlier burn.)
In actuality, the crew, shortly after the explosion, used the lander’s descent engine to return to free-return. Recently, in conjunction with Apollo 13’s 40th anniversary, added study has been done. The investigation sought to determine how close Apollo 13 would have come to Earth based on its free-return orbit. Here is the link to a YouTube video summarizing the effort. It’s really neat!
Hey, I just listened once more and watched this again. Apparently, I was right predicting the crew without the lander would have been cremated after all, five weeks later in May of 1970. Don’t ascribe this to any talent I have. It’s just lucky. But watching the video will do much to answer every question you have above about space stations, etc. You might Google other terms like Hohmann Transfer Orbit, Aldrin Cycler Orbit, Libration Points, and Sling-Shot orbits. These are strategies in orbital mechanics considered when planning planetary exploration, manned and unmanned.
Questions from Gadi Eidelheit, Quasy and Tom Nicolaides about the Hatch That Would Not Close
Jerry Woodfill: I’ve shared the account of “the hatch that would not close” virtually every time I’ve shared the Apollo 13 story. ( This is approaching a 1000 talks. Do the math. Simply telling the story once a month for nearly 40 years adds up to nearly 500 times.) One man believed the inability to make the hatch close resulted from differential pressure between the vehicles. I tend to discount that because the hatch had been open for some time stabilizing the interior atmospheric pressure throughout the assemblage.
Others who have considered the problem, think that Jack Swigert and Jim Lovell’s belief that a meteor had punctured the LM caused Jack and Jim’s hasty efforts to be flawed and inexact. The misalignment in the hurried closing was responsible. This was addressed in one of the crew debriefs I reviewed several years ago.
Now, I just had the thought, “The Apollo 13 capsule is available at the Kansas Cosmosphere.” To my knowledge, no one since the rescue has actually tried to reproduce the hatch closing problem. But, again, I simply don’t know if that has been the case. (As we press on, I’m going to be honest about what I know and don’t know. This is one of those things I really can’t answer satisfactorily.)
From Hans-Peter Dollhopf: Question about Why an Apollo 13 Movie and not an Apollo 11 Movie:
Jerry Woodfill: Another question I wanted to address among those left at the close of each of the “13 Things…” articles concerns why a movie was made about Apollo 13 and not about Apollo 11. My thought is because of the circumstance of how the movie came into production. I have a close friend named Jerry Bostick. Jerry was the lead FIDO for Apollo 13. We knew one another through the local Methodist Church, too. Jerry’s son Mike was in one of the Sunday school class sessions I taught.
Well, Mike went on to work for Ron Howard as a producer for Universal Studios. Being familiar with the Apollo 13 rescue because his dad, Jerry Bostick, had played a key role, Mike suggested to Ron Howard that Universal buy the rights to Jim Lovell’s book LOST MOON, for a movie. Incidentally, Jerry Bostick is the source of the quote, “Failure is not an option.”
Google Jerry Bostick’s name, and you’ll be able to read the story. Now had Neil Armstrong’s child worked for Ron Howard, and, if Neil had written a book focused on Apollo 11, it might have competed for an academy award like Apollo 13. Incidentally, there are moments in Apollo 11’s mission just as perilous and potentially fatal as the Apollo 11 mission. Perhaps, Nancy will let me address them in another Universe Today series! I can count a half dozen so it won’t be “11 Things That Saved Apollo 11.”
Question: Didn’t the Soviets Plan also use LOR?
Jerry Woodfill: About the Soviet Direct Ascent approach. Prior to the dismantling of the “iron curtain” and the cooling of the “Cold War”, information about Soviet Manned Space endeavors was sketchy. I found, in 1977, that a Soviet rocket scientist had proposed a lunar orbit rendezvous technique in the early days of rocketry, even before Sputnik. Unfortunately, or fortunately, with regard to America’s efforts, his approach was not accepted initially. Earliest Soviet approaches, like America’s, tended toward the Direct Ascent scheme. Probably the same debate ongoing with American lunar planners existed in the Soviet Union.
The simplicity of a single vehicle based on a NOVA class booster led at the onset. Ultimately, perhaps, as Soviets studied America’s choice of LOR, and its LEM offspring, an approach similar to America’s was pursued. Nevertheless, the ultimate Soviet booster N-1 was much more powerful than the Saturn V. (10,000,000 pounds of first stage thrust versus approximately, 7,500,000.)
I was altogether astounded to discover the evolution of the Soviet approach when sketches, and even videos, were released with the collapse of the Soviet Union and its posture of manned space secrecy. But, I still contend, that the early focused efforts by NASA championed by Dr. Houbolt on the LOR lunar architecture won out over, I believe, tardy acceptance by the same in the Soviet Union. One of the finest compliments one receives is the adoption of a competitor’s approach. Simply comparing BURAN to the Space Shuttle tends to make this case as well.
Check back tomorrow for more answers from NASA engineer Jerry Woodfill.
The phrase “last but not least” was likely never more appropriate. Though this is the last article of our “13 Things That Saved Apollo 13” series, it might be the most important. “Each time I’ve heard Jim Lovell or Fred Haise speak of the rescue,” said NASA engineer Jerry Woodfill, “they have always expressed their gratitude to the folks on the ground who contributed to saving their lives.”
And it wasn’t just the astronauts who were grateful. As a testament to the appreciation the rest of the country felt, the Mission Operations Team for Apollo 13 — those who worked in the Mission Operation Control Room (MOCR – more commonly called Mission Control) and the Mission Evaluation Room (MER) — were awarded a Presidential Medal of Freedom.
“We fulfilled the latter part of President Kennedy’s mandate,” said Woodfill, “by returning them safely to Earth.”
In previous articles in this series, we’ve highlighted just a few people who made significant – and some unsung – contributions to the Apollo 13 rescue. But likely every person who was part of the mission operations team made a contribution.
The words of President Richard Nixon as he presented the medal on April 18, 1970, perhaps say it best:
“We often speak of scientific ‘miracles’ – forgetting that these are not miraculous happenings at all, but rather the product of hard work, long hours and disciplined intelligence.
The men and Women of the Apollo XIII mission operations team performed such a miracle, transforming potential tragedy into one of the most dramatic rescues of all time. Years of intense preparation made this rescue possible. The skill coordination and performance under pressure of the mission operations team made it happen. Three brave astronauts are alive and on Earth because of their dedication and because at the critical moments the people of that team were wise enough and self-possessed enough to make the right decisions. Their extraordinary feat is a tribute to man’s ingenuity, to his resourcefulness and to his courage.”
But, says Woodfill, it wasn’t just those whose names are listed on the initial award.
“There were a thousand more who never were named though their contribution was huge. I could write another hundred accounts of specific acts which, had they not been done, could have resulted in disaster. There was an unseen “cloud of helpers” whom I now know helped just as much as I did though they were never recognized. These folks weren’t even NASA employees or affiliated with the supporting contractors, Grumman (GAEC) or North American Aviation (NAA). Universe Today could go on for months, on a daily basis if I could add all these accounts. Studying something for 40 years brings forth this kind of thing.”
But since Apollo 13 happened 40 years ago, many of those involved are no longer alive. Woodfill said astronaut Jack Swigert is an example. A 40th anniversary celebration of the Apollo 13 mission at Johnson Space Center in April included a panel discussion with Jim Lovell, Fred Haise, Gene Kranz, Glenn Lunney, John Aaron, and was moderated by Jeffrey Kluger, co-author with Lovell of the book Lost Moon.
“During that two hour exchange, I added a half dozen more insights of unique things that saved Apollo 13,” said Woodfill. “But when the Q&A launched, I all but ran to the microphone to ask the first question: ‘Jim and Fred, could you comment on Jack Swigert’s contribution?’ Their remarks were gracious and appreciative, remembering their friend and crewmate. Neither they nor the country has forgotten Jack. He is the only astronaut to be honored by a statue in Congress, as he became an elected representative in Congress from the State of Colorado. Sadly, cancer took Jack’s life before he could serve. But I think if Jack could speak to us about his experience on Apollo 13, he might select the Mission Operations Team as well. In a sense, he represents all those no longer with us. They helped make it possible for Jim and Fred to have blessed us for the past 40 years with the altogether inspirational story of the rescue of Apollo 13.”
So, while we have only scratched the surface among the many stories of Apollo 13’s rescue, surely there are thousands more tales of people being in the right place at the right time, decisions made years earlier that led to working at NASA, and chance meetings or discussions that opened up opportunities or jogged ideas for the rescue.
Jerry Woodfill is an example of such a story. He was attending Rice University on a basketball scholarship, a dream that inexplicably came true.
“However, my career as a college basketball player was as dismal as America’s early endeavors in space,” Woodfill admitted. “Sadly, I hold the record of the lowest shooting percentage in Rice University history…one out of eighteen shots! And the one shot I made at Baylor University with seconds left in the first half was a desperate 35 foot pass to our center under the basket. It sailed too high and went through the hoop. My only basket was actually a bad pass! In truth, I was zero for eighteen.”
He wasn’t doing very well in his classes, either. But then President John Kennedy came to Rice University to give a speech, a speech which helped launch the US to the Moon:
“But why, some say, the moon? Why choose this as our goal? And they may well ask why climb the highest mountain? Why, 35 years ago, fly the Atlantic? Why does Rice play Texas? We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are unwilling to postpone, and one which we intend to win, and the others, too.”
— John F. Kennedy, in his speech at Rice University, September 12, 1962
Inspired by Kennedy’s speech, Woodfill turned in his basketball shoes and focused on his studies of electrical engineering, hoping to become part of the space program to send people to the Moon – and return them safely to the Earth.
Yes, Woodfill become one of the half million Americans teaming up together to put the first men on the Moon.
And the rest is history.
Our extreme thanks to Jerry Woodfill for sharing his story, insights, and expertise as well as his warmth, humor and passion for NASA’s mission. “Godspeed to all you Apollo 13 rescuers, past and present, known and unknown!”
Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.
Going to the Moon was big. It was a giant stride in doing what had once been thought impossible. Initially many scientists and engineers had big plans for huge rockets akin to the ships imagined in science fiction: one piece vehicles that took off from Earth, landed intact bottom down on the Moon and had the ability to launch again from the lunar surface. But other rocket engineers had different ideas, and this caused some big arguments. The method of going to the Moon that eventually won out used — in part — a little lunar lander. This decision ended up being instrumental in saving the crew of Apollo 13. And that was big.
There were three different methods to choose from in reaching the Moon. One, called the Direct Ascent Mode, would have used the big Flash Gordon-like enormous rocket – which was known as a Nova class rocket –to fly straight to the Moon, land and return. Second, the Earth Orbital Rendezvous technique called for two not-quite-as big Saturn V boosters to launch and rendezvous in Earth orbit. In this mode, one rocket would carry a single Apollo vehicle and its crew, and the other, more fuel, which would be transferred to Apollo in Earth orbit, and then the spacecraft would head off to the Moon. The third option was Lunar Orbit Rendezvous which used only one three-stage Saturn V booster, and split the Apollo vehicle into two separate vehicles – a combined Command and Service Module (CSM), and a Lunar Module (LM).
Those familiar with NASA history know that Lunar Orbit Rendezvous was the final choice.
But this mode wasn’t an obvious choice, said NASA engineer Jerry Woodfill.
“At first, Werner Von Braun wanted to use the Nova class rocket Direct Ascent approach, and so did President Kennedy’s science advisor, ” Woodfill said. “But a group at Langley Research Center led by Dr. John Houbolt came up with the Lunar Orbit Rendezvous design. And most everyone ignored them at first.”
But Houbolt insisted the one-rocket system was not feasible. In a NASA interview Houbolt said, “It can not be done. I said you must include rendezvous in your thinking — to simplify, to manage your energy much better.”
Houbolt said it turned into a two-and-a-half year fight to convince people, but he and his team had the facts and figures to back up their claims.
Woodfill said one of his colleagues, former NASA engineer Bob Lacy was part of the discussions on which plan to use. “He said it was unbelievable,” Woodfill recalled. “They were debating in a meeting room at Langley about the best way to go to the Moon. One side was for sending a single vehicle requiring a huge booster to get it there. The other group wanted a two spaceship method. No one seemed agreeable to the other side’s approach. Tempers were starting to flare. To ease the situation someone said, ‘Let’s flip a coin to settle the score.’ Can you believe that?”
No one flipped a coin, but the story demonstrates the intensity of the debate.
In the race to get to the Moon, the Soviet Union had embraced the Nova rocket concept. “The Soviets pressed forward with the direct assent approach to use a Nova class booster,” said Woodfill. “Designated N-1, it clustered 30 engines on its first stage. The design achieved a Herculean thrust of 10-12 millions pounds. Additionally, this uncomplicated direct ascent launch would be less complex was thought to take less time to accomplish. Designing, building, testing and launching two separate spaceships might not win the race to the Moon.”
Woodfill said the Nova rocket may have proved to be the best choice except for the failure of just one of those 30 engines at launch. “This would unbalance the entire assemblage,” Woodfill said.
And twice in 1969 – one occurring just weeks before the scheduled launch of Apollo 11 — the Soviet N-1 booster exploded at liftoff. The huge rocket proved to be too complicated, while the Lunar Orbit Rendezvous method had a simple elegance that was also more economical.
In November 1961, Houbolt boldly wrote a letter to NASA associate administrator Robert C. Seamans, “Do we want to go to the Moon or not?” he wrote. “Why is Nova, with its ponderous size simply just accepted, and why is a much less grandiose scheme involving rendezvous ostracized or put on the defensive? I fully realize that contacting you in this manner is somewhat unorthodox,” Houbolt admitted, “but the issues at stake are crucial enough to us all that an unusual course is warranted.”
The bold move paid off, and Seamans saw to it that NASA took a closer look at Houbolt’s design, and surprisingly, it soon became the favored approach – after a little debate..
Houbolt’s design separated the spacecraft into two specialized vehicles. This allowed the spacecraft to take advantage of the Moon’s low gravity. The lunar lander could be made quite small and lightweight, reducing bulk, fuel, and thrust requirements.
When the oxygen tank in Apollo 13’s Service Module exploded, the Lunar Module “Aquarius” played an unexpected role in saving the lives of the three astronauts, serving as a lifeboat to return the astronauts safely back to Earth. Additionally, its descent stage engine was used for propulsion, and its batteries supplied power for the trip home while recharging the Command Module’s batteries critical for re-entry. And with ingenuity of Mission Control the LM’s life support system – which was originally designed to support two astronauts for 45 hours, — was stretched to support three astronauts for 90 hours.
Imagine, Woodfill said, if Apollo 13 had been a single vehicle employing the Direct Ascent approach. “After the explosion and subsequent loss of the fuel cells, only those entry batteries would have been available to sustain life. Their life, even if all systems except life support, were turned off would be less than 24 hours. And Lovell, Swigert and Haise along with Apollo 13 would return to Earth on that “free-return-trajectory” being cremated in the fiery heat of reentry. But for the clever Lunar Orbit Rendezvous approach, Apollo 13 would have been a casket. Instead, its lunar lander became a wonderful lifeboat” Woodfill said.
Next: Part 13: Houston
Earlier articles from the “13 Things That Saved Apollo 13” series:
Our series “13 Things That Saved Apollo 13″ has raised a few questions for some of our readers about spacecraft design, decisions made during the Apollo program, and general questions about spaceflight. Some of you have already left questions as comments on the articles or sent in emails. NASA engineer Jerry Woodfill, who has been featured in this series, has graciously agreed to answer reader questions, and we’ll publish the questions and Jerry’s answers in a Q&A format. Now’s your chance to ask away! Submit your questions in the comment section here, or on any of the “13 Things” articles. Or, you can email your questions to Nancy
Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.
A Hollywood movie depicts three astronauts who survive an accident in space, but their lives hang in the balance as the people in Mission Control at NASA work night and day to figure out a way to bring the spacefarers home safely.
You probably think I’m describing the 1995 movie, “Apollo 13” by producer Ron Howard, but actually this is a recap of a 1969 movie called “Marooned.“
“The correlation between ‘Marooned’ and actual events threatening Apollo 13 is really uncanny,” said NASA engineer Jerry Woodfill. “People may not agree, but in my mind this movie was actually a catalyst to the rescue of Apollo 13.”